
Network burst dynamics under heterogeneous cholinergic 
modulation of neural firing properties and heterogeneous 
synaptic connectivity

Scott Knudstrup1, Michal Zochowski2, and Victoria Booth1,3

1Department of Mathematics, University of Michigan, 530 Church St, Ann Arbor, MI 48109, USA

2Department of Physics and Biophysics Program, University of Michigan, 450 Church St, Ann 
Arbor, MI 48109, USA

3Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA

Abstract

The characteristics of neural network activity depend on intrinsic neural properties and synaptic 

connectivity in the network. In brain networks, both of these properties are critically affected by 

the type and levels of neuromodulators present. The expression of many of the most powerful 

neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural 

state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic 

connectivity properties. Namely, ACh significantly alters neural firing properties as measured by 

the phase response curve in a manner that has been shown to alter the propensity for network 

synchronization. The aim of this simulation study was to build an understanding of how 

heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic 

connectivity affect the initiation and maintenance of synchronous network bursting in excitatory 

networks. We show that cells that display different levels of ACh modulation have differential 

roles in generating network activity: weakly modulated cells are necessary for burst initiation and 

provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide 

the overall activity level necessary to sustain burst firing. By applying several quantitative 

measures of network activity, we further show that the existence of network bursting and its 

characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of 

cell types providing the synaptic connections in the network. These results suggest mechanisms 

underlying ACh modulation of brain oscillations and the modulation of seizure activity during 

sleep states.
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Introduction

One of the difficulties in understanding the mechanisms generating brain network activity is 

the significant heterogeneity in both neuronal firing characteristics and synaptic connectivity 

structure. Both of these properties can dynamically vary, in normal and pathological 

conditions, owing to a number of different short-term and long-term mechanisms, including 

neuromodulation and synaptic plasticity mechanisms (Zucker, 1989; Stevens & Wang, 1995; 
Marder & Thirumalai, 2002; Beverlin et al., 2012). Computational modelling has provided 

insights into how neuronal characteristics contribute to network behaviour; however, less is 

understood about the situation when neuronal properties vary significantly across a network, 

as can occur in neuromodulation by some of the brain’s most potent neuromodulators. This 

study was motivated by the aim to build an understanding of specific contributions of 

neuromodulator-induced heterogeneity in neural firing properties and in synaptic 

connectivity to the generation of neural network activity patterns.

Acetylcholine (ACh) expression in cortical and hippocampal regions varies tonically and 

phasically with behaviour. Its release is high during waking, decreases during non-rapid eye 

movement (REM) sleep, and increases to its highest levels during REM sleep (Marrosu et 
al., 1995); phasic ACh increases have been measured during cognitive and memory tasks 

(Stancampiano et al., 1999; Bianchi et al., 2003). Previous work has shown that ACh 

modulation significantly increases neural excitability and alters neural firing properties as 

measured by the phase response curve (PRC) (Cole & Nicoll, 1983; Stiefel et al., 2008). 

Theoretical and modelling studies have illustrated that ACh-induced changes in the neuronal 

PRC alter the propensity for network synchronization (Hansel et al., 1995; Ermentrout, 

1996; Bogaard et al., 2009).

In this simulation study, we investigated how heterogeneity in the cholinergic modulation of 

neural firing properties and the resulting heterogeneity of the cell types supporting synaptic 

connectivity in the network affected the characteristics of network spatiotemporal activity. 

We considered the simplified context of excitatory networks in order to fully identify the 

underlying mechanisms; however, excitatory synaptic signalling can dominate in brain 

networks under some conditions. For example, under seizure conditions, inhibitory 

interneurons have been observed to enter depolarization block and not participate in network 

firing activity (Ziburkus et al., 2006; Shin et al., 2010). During these episodes, interactions 

among excitatory cells would be the primary drivers of firing activity. Generally, purely 

excitatory networks tend to show population bursts composed of episodes of higher-

frequency firing by a large population of the neurons, separated by periods of relative 

quiescence across the network. Our results show that different network bursting patterns can 

result from variations in the heterogeneous makeup of individual neural firing properties and 

the resultant heterogeneity in synaptic connectivity of the underlying network. Namely, we 

show that cells that are strongly and weakly modulated by ACh contribute differentially to 

the existence of population bursts and to their initiation, maintenance, and intraburst 

synchronization. Furthermore, variations in network connectivity among strongly and 

weakly modulated cells can lead to the abolition of population bursts. Although the networks 

that we investigated are biophysically simple, our results identify fundamental mechanisms 

that participate in the generation of observed brain network activity, including ACh-induced 
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modulation of the power of hippocampal theta rhythms and the dependence of sleep state on 

seizure activity.

Materials and methods

Cortical neuron model

All model cells in this study were implemented with a Hodgkin–Huxley-based model that 

included a fast Na+ current, a delayed rectifier K+ current, a leakage current, and a slow, 

low-threshold M-type K+ current (Stiefel et al., 2009; Fink et al., 2013). The cellular 

response to the presence of ACh was modelled by varying the maximum conductance gKs of 

this low-threshold K+ current. Specifically, ACh blocks the M current as a result of 

activation of muscarinic ACh receptors (Brown, 1988). As described below, weak ACh 

modulation, simulated by gKs = 0.6 mS/cm2, endows these model cells with a Type II PRC, 

whereas strong ACh modulation, simulated with gKs = 0.2 mS/cm2, leads to a Type I PRC 

(Stiefel et al., 2008, 2009). Therefore, we refer to weakly modulated cells as Type II and 

strongly modulated cells as Type I. The current balance equation for the ith cell was given 

by:

with C = 1 μF/cm2, Vi in mV, and t in ms.  was the synaptic current input to the cell.

, the intrinsic driving current for the ith cell, was set such that it would induce firing at 

a frequency fi in the range 15–21 Hz when isolated from the network (the particular choice 

for fi was made uniformly at random within this range for each cell). In order to accomplish 

this, frequency–current responses were obtained and then subjected to polynomial fitting. 

For Type I neurons, this results in the function:

Type II neurons have a minimal firing frequency (~3.3 Hz), and their frequency–current 

relationship is well approximated above threshold with the continuous function:

Activation of the Na+ channel was instantaneous and modelled by the steady-state activation 

function m∞ (V), whereas the inactivation variable h evolved in time. Likewise, the gating 

variables n and z, respective to the delayed rectifier K+ current and the M-type K+ current, 

also evolved in time according to the relationship:
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With the exception of the previously detailed variation in the maximum conductance 

constant gKs, all parameters were constant across the network. The steady-state activation 

and time constant functions for the gating variables and parameter values used were as 

follows:

Parameter values were as follows: gNa = 24.0 mS/cm2, gKdr = 3.0 mS/cm2, gL = 0.02 mS/

cm2, VNa = 55 mV, VK = −90 mV, and VL = −60 mV.

Network simulations

Networks were composed of 250 Type I neurons and 250 Type II neurons, and the synaptic 

connectivity structure was generated in a manner similar to the algorithm defined by Watts 

and Strogatz for the formation of ‘small-world’ networks (Watts & Strogatz, 1998). First, a 

one-dimensional ring network consisting of N cells was constructed, with each cell 

synapsing onto its 1st to kth nearest neighbours. Second, by use of the randomness 

parameter p constrained to the interval [0, 1], kp outgoing synapses from each cell i were 

chosen uniformly at random and removed. Finally, kp synapses were returned to each cell I, 
and were wired to any cell j, also chosen uniformly at random, provided that a synapse from 

i to j did not already exist and that i ≠ j. We considered networks with N = 500 and k = 20, 

corresponding to 4% synaptic connectivity, which is within reported measurements of 2–5% 

connectivity in brain networks (Sporns, 2011). For Fig. 2, the rewiring parameter p was 

varied between simulations.

For simulations corresponding to Figs 3–7, we first formed a network with parameters N = 

500, k = 20, and P = 0.5. This network was then used as a template for the formation of all 

networks in which synapses of a particular type were removed. We refer to this network as 

the ‘fully connected’ or ‘0% removed’ network. To generate a network in which 5% of 

synapses were removed, all of Type T (e.g. Type I–Type II), 500 synapses of Type T were 

selected uniformly at random and removed from the network. To generate a network with 

10% synapses of Type T removed, we repeated the process above with the 5% removed 

network as the template. Removal of 25% of synapses of Type T resulted in removal of 

approximately all Type T synapses, as there are four types of synapse. This recursive method 

of generating increasingly sparse networks was conceived in order to control for the 

architectural variation that would arise if each network were generated independently from 

the others. Networks referred to as having ‘uniform’ removal were generated by successively 

removing (5%)/4 synapses of each of the four synapse types rather than by the successive 

removal of 5% synapses of all the same type. As the degree of connectivity in and of itself 

has a dramatic effect on network dynamics, these simulations are meant to provide a frame 
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of reference for comparing networks with the same connectivity density but different 

distributions of synapses between the heterogeneous cell types.

Synaptic current was transmitted from presynaptic neuron i to postsynaptic neuron j at time t 
according to the equation:

where, for AMPA-like synaptic currents, w = 0.08 mS/cm2, τ = 0.5 ms, and Esyn = 0 mV. 

Variable Vj represents the membrane potential of postsynaptic neuron j, and variable tspike 

represents the most recent time when the membrane potential of presynaptic neuron i 
breached 0.0 mV from below.

For N-methyl-D-aspartate (NMDA)-like synaptic currents, τ = 180.0 ms, and the current was 

activated only when the postsynaptic cell’s voltage was above −30 mV. The minimum value 

of synaptic strength w was calculated so that the total synaptic current matched that of the 

AMPA-like synapse, and was set to w = 0.000266 mS/cm2. This value was doubled and 

quadrupled in some simulations.

Addition of cellular noise

For a subset of simulations, we added external random noise stimulation to each cell. Noise 

was modelled by applying brief (1 ms) current pulses Inoise to each cell at randomly 

determined times. The minimum Inoise amplitude was set to 1.4 μA, which corresponds to 

the pulse amplitude needed for the Type I cell to spike from resting membrane potential. 

Inoise amplitude was increased up to 6 μA. The probability of a current pulse being delivered 

at a given time step was linked to the intrinsic (uncoupled) firing frequency of a cell. The 

baseline frequency of the noise pulses, on average, matched the spiking frequency of the 

neurons. Noise frequency was increased up to four times this value.

Networks were simulated for a total of 25 s, including an initial 500-ms transient period. 

Each series of simulations was completed five times, each time generating a new synaptic 

connectivity template to introduce topological variation. In Figs 2–7, boxplots represent the 

complete set of data obtained from all simulations. For numerical integration of the network, 

we employed the fourth-order Runge–Kutta algorithm with a time step of 0.025 ms. All 

networks were generated and simulated with custom C++ code.

PRCs

To compute the neuronal PRC, a single cell was numerically simulated at a constant intrinsic 

driving current until it reached a stable 15-Hz spiking pattern (‘stable’ here means that the 

standard deviation of 10 successive interspike intervals was below 0.1). The cell was then 

perturbed at 100 equally spaced times (or phases) during the interspike interval with a 

current pulse of 3.0 μA/cm2 for a duration of 0.1 ms. The subsequent spike time was 

recorded and compared with the projected spike time in the absence of the perturbation. The 

normalized phase shift was computed by dividing the difference between the projected and 
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actual spike times by the duration of the interspike interval. Figure 1 shows this phase shift 

plotted against the phase of the perturbation within the interspike interval where the spike 

occurs at phases 0 and 1.

Firing rates

Curves representing the collective firing rate of a neural population p (e.g. all Type I cells) 

were generated by averaging the firing rate functions ri (t) for each neuron i in population p, 

where ri (t) is the linear filter:

where tk is the time of the kth spike time, and D (t − tk) refers to the window function.

Thus, the firing rate function Rp (t) for population p can be expressed as.

Our choice of the parameter σ = 2 for the kernel was motivated by its impact on the function 

Rp (t); in particular, our value of r generated ri (t) curves that were sufficiently wide to form 

relatively smooth Rp (t) curves (thus making the curve more amenable to finding robust local 

maxima or minima), but were sufficiently narrow to avoid the possibility that ri (t) might 

exceed the value ri (t) = 1. Additionally, this implies that Rp (t) will also be confined to the 

interval [0, 1].

Bursting metrics

To quantify network bursting patterns, we computed several burst measures from the profiles 

of the firing rate curves averaged across bursts, including peak burst height, burst width, a 

measure of burst shape, and termination order. Individual bursts were isolated by 

determining their onset and offset times. The onset of a burst was defined as the event in 

which the instantaneous global firing rate breached the bursting threshold, here taken to be 

0.1 spikes/cell/ms. Likewise, burst offset was defined by the firing rate dropping below that 

same threshold. To guard against erroneously categorizing small perturbations above and 

below the threshold as bursts, we enforced two constraints: the firing rate must reach at least 

0.5 spikes/cell/ms, and the time duration above threshold must exceed 25 ms. Peak burst 

height was the highest local maximum obtained during the burst, and burst width was 

calculated by taking the difference between the two trans-threshold events. Burst shape was 

computed as the ratio of the last local maximum in global firing rate before burst termination 
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to the highest peak within the burst, and termination order was the difference between the 

offset times of the Type I and Type II firing rate curves.

We additionally computed power spectral density (PSD) functions and cross-correlations of 

the firing rate traces for each simulation. PSD functions were computed by Welch’s method, 

with a sample rate of 40 000 Hz and a 15 000-sample segment length, and averaged over five 

realizations of the simulation for every synapse removal case.

Intraburst causality diagrams

The intraburst causality diagrams in Fig. 10 illustrate which population initiated the burst 

and its intraburst oscillations. This was computed by determining which population first 

began to increase in activity following the previous oscillation by comparing the timing of 

local minima in Type I and Type II firing rate curves, as shown in Figs 3A–6A (lower 

panels). For example, to determine which population typically initiated an intraburst 

oscillation, for each burst we found the times of the preceding local minima for Type I and 

Type II firing rates, and registered a score in the following manner. If the Type I local 

minimum occurred before the Type II local minimum, then a score of 1.0 was recorded for 

that oscillation (conversely, a score of 2.0 was recorded if the Type II local minimum 

occurred first; ties were marked as 1.5). Once a score for every intraburst oscillation of each 

burst had been obtained, we took the average of these values across all analysed bursts. The 

opacity of each point reflects the fraction of bursts that contained its corresponding number 

of intraburst oscillations (that is, the first few points are quite opaque, as nearly all bursts 

have at least a few intraburst oscillations; conversely, relatively few bursts contained > 10 

oscillations, and these points are therefore relatively transparent). Note that the 0th local 

minimum was defined as the initiation of the burst, and the score in this case was determined 

by which population had the greater firing rate at the time of onset.

Results

PRCs and synchrony

In hippocampal and cortical pyramidal cells, ACh blocks a slow, M-type K+ current through 

its action on muscarinic ACh receptors (Brown, 1988). Blockade of this current has been 

shown to increase neuronal excitability and to induce a shift in neuronal response properties 

as measured by the PRC (Stiefel et al., 2008). Generally, the PRC measures how external 

stimuli change the timing or phase of an oscillating system. In the context of neurons, the 

PRC measures the change in spike timing of a repetitively firing neuron in response to a 

synaptic input or an applied current. PRCs of most neuron models and from experimental 

measurements fall into two primary types of shape, Type I and Type II. Neurons with Type II 

PRCs respond with either a delay or an advance in spike firing in response to an excitatory 

stimulus; firing is delayed if the stimulus arrives at early phases of the firing cycle, and is 

advanced if the stimulus is delivered at later phases of the cycle. Neurons with Type I PRCs 

exclusively show advances in spike firing, and the magnitude of the advances is generally 

symmetric about a peak advance near the middle of the cycle. In the neuron model used in 

our simulation study (Stiefel et al., 2009) and in similar neuron models (Pfeuty et al., 2003), 

decreasing the magnitude of the maximum conductance of the M-type K+ current, gKs, as a 
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simulation of ACh modulation, varies the frequency–current curve, reflecting an increase in 

excitability, and switches the PRC from Type II-like to Type I-like (Fig. 1).

The significance of this switch in PRC shape is a change in the propensity for 

synchronization among cells coupled together in a network. Analysis of models of two 

coupled neurons with Type I and Type II PRCs by employing the theory of weakly coupled 

oscillators has shown that Type II neurons have a higher propensity to synchronize than 

Type I neurons (Hansel et al., 1995; Ermentrout, 1996). This property of Type II cells was 

also shown to hold in simulation studies of large networks with varying connectivity 

structures (Bogaard et al., 2009; Fink et al., 2011). We note that the higher synchronization 

propensity of Type II neurons does not seem to depend on the existence of an explicit delay 

region at early phases of the PRC; in numerical studies, networks of neurons with PRCs 

showing little response to stimuli at early phases and an asymmetry towards later phases in 

the peak of phase advances synchronized more readily than networks whose cells had more 

symmetric Type I-like PRCs (Pfeuty et al., 2003; Fink et al., 2011; Beverlin et al., 2012).

Network bursting in heterogeneous excitatory networks

In the context of cholinergic neuromodulation of a neural network, heterogeneous 

modulation of cell excitability type is expected, as different cells have different expression 

profiles of muscarinic ACh receptors, and ACh levels have been shown to increase slowly 

with changes in network activity and behaviour (Zhang et al., 2010). The aim of this study 

was to understand the contributions of cellular heterogeneity, and thus heterogeneity in the 

propensity for synchronization, to the formation of spatiotemporal activity in the simplified 

context of a solely excitatory network. We considered 500-cell networks composed of 50% 

Type I and 50% Type II cells, to avoid biasing cellular properties within the network, and 

4% synaptic connectivity.

First, to establish baseline network activity, we measured the properties of activity patterns 

for heterogeneous excitatory networks with varying connectivity topology (ranging 

continuously from local to random connectivity). As the synaptic rewiring parameter p was 

varied from 0 to 1, network activity transitioned from intermittent global or local 

propagating activity to synchronous bursting activity (Fig. 2A). Network bursting occurred 

for p ≥ 0.1, with synchrony within bursts increasing with p. We quantified these changing 

burst characteristics by using metrics based on the collective network firing rate (Fig. 2A, 

lower panel). As synaptic rewiring increased, peak burst height quickly tended toward its 

maximum value, reflecting the increase in synchronous recruitment of cells, resulting in 

nearly all cells firing simultaneously when p > 0.5 (Fig. 2B). Rewiring also opposed 

variability in peak height. The width of bursts decreased with increasing randomness in 

synaptic connectivity (Fig. 2C), as increasing synchronous firing promoted more synchrony 

in termination of firing.

Many bursts for values of p < 0.5 were characterized by a strong initial peak followed by a 

series of intraburst population spikes of diminishing magnitude (e.g. p = 0.2 in Fig. 2A). 

This behaviour represents a reduction in total spiking activity during the burst and/or a 

progressive desynchronization of network activity. This burst characteristic may be 

important, because either or both of these phenomena may be closely linked to a mechanism 
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for the termination of longer bursts. We quantified this pattern by taking the ratio of the last 

local maximum in global firing rate before burst termination to the highest peak within the 

burst. Here, we see that more locally connected networks promoted this tapering behaviour 

far more strongly than random networks (Fig. 2D).

Although both types of cells must necessarily cease firing for a burst to terminate, we 

observed a strong tendency for Type I cells to maintain firing for longer than Type II cells. 

To quantify this behaviour, we compared the offset times of Type I and Type II firing rates 

during burst termination (Fig. 2E). Type II cells reliably ceased firing before Type I cells for 

most p-values; for the largest p-values, the variance in this measure increased as all cells 

ceased firing more simultaneously with more synchrony across the network.

Changes in network burst properties as a function of targeted synaptic removal

To determine the nature of interactions between Type I and Type II cells and how these 

interactions generated the dynamics of the network as a whole, we varied the degree to 

which Type I and Type II cells were able to communicate with other cells of the same and 

opposing types. This variation in connectivity structure was achieved by first categorizing 

each synapse on the basis of the types of its presynaptic and postsynaptic cells (for example, 

all synapses delivering current from Type I cells to Type II cells are of the same synapse 

type, namely Type I–II). This resulted in four synapse types: I–I, I–II, II–I, and II–II. The 

degree of connectivity for each synapse type was then varied by deleting some number n of 

its connections. This targeted synapse deletion can, in theory, mimic slower changes in the 

fraction of population type, but also dynamic changes happening on much faster timescales 

related to short-term facilitation or depression of synapses.

As removing synapses of any kind necessarily reduces the connectivity density of the 

network (and thus changes its dynamics), we also simulated networks in which n/4 synapses 

of each type were removed uniformly rather than removing all n synapses from a single 

category. The effects on network burst dynamics for this uniform synapse removal case and 

for each single-type synapse removal case are shown in Figs 3–7 for 500-cell networks 

consisting of 50% Type I and 50% Type II neurons with 4% initial synaptic connectivity. As 

we were primarily interested in changes in stereotypic bursting dynamics as a function of 

synaptic removal, we performed the described study for networks with rewiring parameter p 
= 0.5. Note that network bursting when p = 0.5 with no synapses removed is similar to the 

case when p = 1, shown in Fig. 2A, as indicated by similar values of all burst measures (Fig. 

2B–E).

Reducing the overall synaptic connectivity of the network resulted in bursts with only 

moderately reduced peak height (Fig. 3B) and shorter duration (Fig. 3C). With successive 

uniform removal of synapses, we observed more significant but still limited progressive 

degeneration of intraburst structure, illustrated by the falling ceiling as intraburst oscillations 

decreased in magnitude (Fig. 3D). Although Type I cells continued to fire beyond the 

cessation of Type II cells at burst termination, the variation in this offset time difference was 

reduced (Fig. 3E). In summary, when synaptic connectivity was reduced but the proportions 

of each synapse type remained constant, burst characteristics did not change qualitatively: 
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burst width and termination order were not greatly affected and variability was reduced in 

these measures, whereas variation in burst shape and peak height increased slightly.

In contrast, when synaptic connectivity was reduced by removing synapses of specific types, 

the characteristics of network bursts, i.e. their generation, duration, internal structure, and 

termination, changed significantly. These results indicated that the distinct, qualitative 

differences in burst characteristics can enable the identification of the underlying 

composition of synapses in the network.

Removing Type I–I synapses resulted in highly stereotypic, regular network bursts with 

increased synchronization of intraburst activity (Fig. 4). This was reflected by the decrease 

in variance of all burst measures as synapses were successively removed (Fig. 4B–E). Burst 

peak height remained high (Fig. 4B) and burst width became consistently narrower (Fig. 

4C). The recruitment of the cells in each intraburst oscillation changed only slightly during 

burst duration, indicating that, throughout the burst, cells fired synchronously. The burst 

shape was much less sloped and with less variance than with uniform removal of the same 

number of synapses (Fig. 4D). Thus, in this case, burst termination was not attributable to a 

drop in synchrony during the burst. With little or no synaptic activity between Type I cells, 

these cells lost their characteristic tendency to continue activity far past the terminal drop in 

Type II cell activity (Fig. 4E), thus aiding in a synchronized fall into global silence.

To better compare the intraburst activity across removal of different synapse types, we 

computed the PSD of the global network firing rate curves (Fig. 8). When Type I–I synapses 

were removed (Fig. 8A), bursting was maintained as reflected by the consistent peak near 10 

Hz, which captures the interburst frequency. Higher-frequency oscillations (~80 Hz) gained 

more power and became more focused as Type I–I synapses were removed (red and blue 

curves), reflecting increased synchrony of intraburst activity as compared with uniform 

synaptic removal (grey curve) and with full synaptic connectivity (black curve).

In contrast, removal of Type II–II synapses led to bursts with completely asynchronous 

intraburst activity (Fig. 5). The lack of Type II–II connections did not prevent Type II cells 

from initiating bursts, as shown by the higher Type II collective firing rate at the onset of 

burst initiation (Fig. 5A, lower panel). Moreover, the initial peak burst height was 

comparable to that in the uniform removal case, indicating a well-synchronized initiation 

(Fig. 5B). However, the synchronization of Type II cells quickly degraded (Fig. 5D). Firing 

rates of Type II cells remained high; however, the intraburst temporal structure was 

effectively abolished, allowing for a large increase in burst duration (Fig. 5C) (that is, the 

burst does not terminate because of lack of activity or because of highly synchronous 

discharges). The variance of burst width greatly increased (note the change of scale in Fig. 

5C as compared with Figs 3C, 4C, 6C, and 7C) as the collective silencing of Type II cells, 

which usually preceded burst termination, became more dependent on fluctuations in Type I 

cell activity. The degradation of intraburst synchrony is reflected in the heavily sloped shape 

of the bursts (Fig. 5D) and the larger difference in offset times of Type I and Type II cells 

(Fig. 5E) as synapses were removed. The PSD plot for this case reflects the maintenance of 

longer bursts (Fig. 8D); the low-frequency peak is skewed towards lower frequencies with 

increasing synapse removal. At the same time, intraburst synchronous activity disappeared, 
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as reflected in a loss of power in the ~80-Hz range. Power increased in higher frequencies 

(~100 Hz), owing to intraburst asynchronous fluctuations.

Removing Type I–II synapses degraded network bursting and reduced intraburst 

synchronization (Fig. 6). Peak burst height decreased, reflecting less synchronization at burst 

initiation (Fig. 6B), and the increased slope and variance of burst shape indicated a loss of 

intraburst synchrony (Fig. 6D). The collective firing rate of Type II cells (Fig. 6A, lower 

panel) was lower in these networks than in the uniform synaptic removal case (Fig. 3A, 

lower panel) and was consistently lower than that of Type I cells, indicating that removal of 

Type I–II synapses degraded not only their frequency but also the ability of Type II cells to 

synchronize with each other and thus provide a synchronized signal to Type I cells. This led 

to an interesting effect on burst width: up to 15% synaptic removal, bursts narrowed (Fig. 

6C), while at the same time Type I cells became less able to follow Type II cells into a global 

silent period, as shown by the increase in termination order (Fig. 6D). As more synapses 

were removed, the lingering tail of Type I activity at the end of a burst merged with the 

beginning of the next burst, thus conjoining consecutive bursts and forming a bi-peaked 

burst structure (Fig. 6A, lower panel). This transition caused the jump in burst width after 

15% removal. Degraded bursting activity was reflected in the decrease and rightward shift of 

the peak near 10 Hz in PSD (Fig. 8B) as Type I–II synapses were removed, with the shift 

that occurred between the 15% removal and 25% removal cases capturing the transition 

from typical single burst dynamics to the less synchronous bi-peaked burst dynamics. 

Additionally, the high-frequency peak generated by intraburst synchronous activity was lost 

as these synapses were selectively removed. At the same time, it is worth noting that bursts 

still originated with Type II cell activity (Fig. 6A, lower panel), as Type II activity drove 

recruitment of Type I cells that, in turn, propelled burst initiation.

Finally, removal of Type II–I synapses completely destroyed network bursting (Fig. 7). As 

these synapses were removed, peak burst height decreased (Fig. 7B) and the burst shape 

became more sloped (Fig. 7D). When > 15% of synapses were removed, there were no 

periods of global silence, and continuous asynchronous activity was shown, as indicated by 

the absence of burst measures. The synchronizing propensity of Type II cells was still 

evident in the higher peaks in the Type II collective firing rate in response to small rises in 

the Type I rate (Fig. 7A, lower panel). However, the lack of sufficient synaptic signalling 

from Type II to Type I cells made it impossible to recruit Type I cells into synchronized 

activity. The loss of bursting was clearly reflected by the loss of the PSD peak near 10 Hz 

when these synapses were absent (Fig. 8C).

Understanding qualitative interactions between Type I and Type II neurons during bursting 
dynamics

The above results identify the contributions of Type I and Type II cells to generating network 

bursting, and in particular indicate the role of Type II cells in synchronization. Intuitively, it 

makes sense that the Type II cells, by synchronizing among themselves, would provide a 

synchronizing drive to the Type I cells in the network. This effect of Type II cell activity was 

evident in our results by the promotion of asynchronous activity when either Type II–I 

synapses were removed (Fig. 7) or Type II–II synapses were removed (Fig. 5). However, 
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synaptic signalling from Type I cells was also critical in generating well-synchronized burst 

dynamics, as burst synchrony degraded when Type I–II synapses were removed (Fig. 6). Our 

results indicate that the synaptic drive provided by the Type I cells to the Type II cells is 

necessary for the Type II cells to generate a coherent synchronizing signal to the entire 

network. In a qualitative way, we can think of the Type II cells as promoting synchronization 

in the network, and the Type I cells as providing the necessary excitation to generate a 

coherent synchronizing signal.

These roles for the two cell types were clarified in measures that revealed the temporal 

relationship between their firing activities during network bursting, including the cross-

correlation between Type II and Type I firing rate curves (Fig. 9), the intraburst causality 

measure (Fig. 10, left panels), and plots of typical burst trajectories in the phase space of the 

firing rate curves (Fig. 10, right panels). To avoid repetition, we show burst characteristics 

revealed by these measures in Figs 9 and 10 simultaneously.

The cross-correlation between the Type II and Type I firing rate curves revealed which cell 

type led, on average, the overall activity within the burst by the offset of the peak relative to 

zero lag (Fig. 9; positive lag corresponds to Type II leading). In the full network, with no 

synapses removed, the cross-correlation peak was slightly negative, indicating a slight 

tendency for Type I cells to drive behaviour (Fig. 9, all panels, black curves). This can be 

explained by the generally higher excitability of Type I neurons. Note also that this does not 

contradict the fact that, generally, Type II cells initiate the burst; leading Type II neurons at 

burst initiation are quickly overtaken by Type I cells during subsequent burst evolution. To 

illustrate these changing temporal relationships, we plot the firing rate trajectories during a 

typical burst in the Type I–Type II phase space (Fig. 10A, right panel). In the phase space, 

clockwise motion indicates Type II activity leading Type I activity. During burst initiation 

(blue portion of the curve), motion was clockwise, but it quickly reversed to counter-

clockwise motion for the remainder of the burst. To further quantify these temporal 

relationships, Fig. 10 also displays an intraburst causality measure (left panels; see Materials 

and methods) that identifies the cell type leading each intraburst oscillation in firing rate 

activity (identified by local minima) averaged over all bursts in the simulation. In the full 

network, Type II cells reliably led activity at burst initiation, but Type I cells took over 

leading the intraburst oscillations.

Bursts after uniform synaptic removal were generated by similar interactions between the 

cell types as in the case of full connectivity. The peak in cross-correlation was shifted 

slightly positively (Fig. 9, all panels, grey curve), reflecting Type II cells leading behaviour 

at burst initiation. The shift in peak was positive in this case, because the bursts were shorter, 

with fewer intraburst oscillations led by Type I cells than in the full network, owing to the 

decrease in synaptic density. The leading behaviour of Type I cells in the intraburst 

oscillations was also evident by the counter-clockwise motion of the intraburst trajectory in 

the Type I–Type II phase space (Fig. 10B, right panel, black and gold portions of the curve) 

and in the intraburst causality measure (left panel).

When Type I–I synapses were removed, Type II cells became the primary drivers of the 

regular, more synchronous bursting observed in these networks. The cross-correlation peak 
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was shifted positively (Fig. 9A) and the motion of the trajectories was clockwise throughout 

the burst in the Type I–Type II phase space (Fig. 10C, right panel). Average behaviour over 

all bursts in the simulation, shown in the intraburst causality measure (Fig. 10C, left panel), 

indicated that Type I cells led some of the final intraburst oscillations.

The importance of the synaptic signalling from Type I cells to Type II cells in promoting 

their coherent synchronizing signal was revealed in the cross-correlation plot when those 

connections were removed. Here, the positively shifted peak indicated that Type II cells 

were leading activity, but the broad peak reflects the lack of synchronized intraburst 

oscillations [Fig. 9B; compare with the well-defined peaks in full network (black curve) and 

when Type I–I synapses were removed (Fig. 9A)]. The phase space plot of the burst 

trajectory, on the other hand, shows that, whereas Type II cell activity led the initial rise in 

activity at burst onset, Type I cell activity outpaced Type II activity by the peak of the onset 

(Fig. 10D, right panel; note that the blue portion of the trajectory crossed the y = x line). 

This lack of coherence of Type II activity in driving burst initiation was further reflected in a 

value of < 2 in the intraburst causality measure (Fig. 10D, left panel).

Although Type II cells continued to lead activity at the onset of burst initiation when Type 

II–II synapses were removed, as reflected in the initial portion of the trajectory in the phase 

space (Fig. 10F, right panel) and in the intraburst causality measure (left panel), neither cell 

type consistently led the asynchronous intraburst activity, as reflected in the symmetric, 

broad shape of the cross-correlation curves (Fig. 9D). This more uniform temporal 

relationship between cell types was also clear from the approach to a value of 1.5 in the 

intraburst causality measure during burst progression.

The cross-correlation plot clearly showed that removal of Type II–I synapses weakened 

intraburst structure (Fig. 9C; note the broad peak with 15% synapses removed, red curve) 

before their complete removal caused loss of network bursting altogether. The resulting 

asynchronous activity was led by Type I cells, as reflected in the leftward shift in the peak of 

the cross-correlation, owing to their random fluctuations in activity propelling a synchronous 

response in Type II cells.

Stability of the network bursting in the presence of noise

We also investigated how the network bursting behaviours responded to the introduction of 

external random noise stimulation to the cells. To do so, we applied rectangular current 

pulses of fixed amplitude at randomly chosen time points to each cell individually. The 

average frequency of pulse delivery was varied from a baseline frequency such that each cell 

received an average of 1.5 pulses per spiking cycle. Pulse amplitude was varied from a 

minimal amplitude such that a Type I cell (at resting potential) receiving pulses at this 

baseline frequency would be driven to fire an action potential.

The observed burst characteristics observed were very robust even for relatively high noise 

levels (Fig. 11). For the lowest pulse amplitude and frequency values up to intermediate 

values (i.e. twice the minimal amplitude and four times the baseline frequency), there were 

no major differences as compared with the no-noise results for the different cases of synapse 

removal (middle column). As expected, network burst characteristics did show changes 
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under high noise levels (amplitude and frequency both four times the minimal values; right 

column). The major differences were observed for networks with uniform or Type I–II 

synapse removal, in which bursting was abolished. The high noise levels promoted high 

activity of the Type I cells that could be maintained during decreases in Type II firing 

activity that sculpt the envelope of burst firing. This effect was also apparent in the Type I–I 

removal case, where bursting still occurred with high noise levels but Type I firing rates did 

not decay to zero during the quiescent periods between bursts. These results indicate that the 

observed bursting dynamics are extremely robust to noise, and the ability of Type II cells to 

gate network firing into bursting activity can be retained under extreme noise levels when 

recurrent excitation among Type I cells is limited.

Network bursting in the presence of long-lasting synaptic currents

It is hypothesized that NMDA synapses play an important role in the generation of bursting 

in networks (Bonansco & Buno, 2003; Bland et al., 2007). NMDA synaptic currents are 

characterized by significantly longer time constants and Mg2+ blockade at cell voltage levels 

below −30 mV. We investigated how the addition of long-lasting synaptic currents affect 

network burst characteristics in the cases of different synapse removal (Fig. 12). In addition 

to the fast, AMPA-like synaptic currents, we included an NMDA-like synaptic current with a 

longer synaptic decay time constant, and restricted activation to when the postsynaptic cell 

voltage was above −30 mV (see Materials and methods). The amplitude of the NMDA 

synaptic current was varied from a baseline level such that the total current released by these 

synapses in response to a presynaptic action potential matched that of the AMPA current. 

The introduction of strong NMDA-like currents (amplitude twice that of the AMPA current; 

middle column) resulted in prolongation of bursts driven by maintained activity levels of 

both cell types. With Type I–II synapses removed, bursting was degraded, as Type I cell 

activity remained high during decreases in Type II cell activity. These trends continued for 

stronger NMDA-like currents (amplitude four times that of the AMPA current; right column) 

except for in the uniform removal case, where the longer-lasting synaptic currents 

maintained almost continuous Type II cell activity levels. These results are similar to those 

for networks with external random noise added, in that bursting was maintained only in 

networks with Type I–I synapses removed, suggesting that Type II cells are able to gate 

network firing into bursts when the underlying connectivity limits Type I cell recurrent 

excitation.

Discussion

In brain networks, cellular properties and network structure are influenced by numerous 

factors during normal brain states, such as by neuromodulation, and in pathological brain 

states. In this study, we focused on the interaction of both cellular and network properties 

that can underlie changes in activity patterns. Specifically, we constructed networks 

composed of neurons having two types of membrane excitability properties, as measured by 

their frequency–current curves and PRCs, as a result of different responses to the 

neuromodulator ACh. PRCs provide a powerful theoretical framework for understanding the 

synchronization propensity of neural networks, and at the same time can be measured 

experimentally (Smeal et al., 2010; Schultheiss et al., 2012). We identified synapses as 
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belonging to one of four groups depending on the types of the presynaptic and postsynaptic 

neurons. Through systematic removal of specific synapse types, we constructed networks 

with the same connectivity density but with varied distributions of synapse types. 

Comparing dynamics in these different networks elucidated differential roles for the two cell 

types in the formation, maintenance and termination of synchronous bursts in network 

activity, as summarized in the Graphical Abstract. Generally, as predicted by other studies 

(Hansel et al., 1995; Ermentrout, 1996; Bogaard et al., 2009), Type II neurons promoted 

synchronized activity, whereas Type I cells were more excitable and provided overall 

network excitation. Although these roles are not surprising, given the known changes in 

frequency–current relationships and PRCs resulting from cholinergic modulation, how these 

roles determined overall network activity depended on the distribution of synapse types. Our 

results showed that variations in the balance of the interactions between cell types caused 

dramatic changes in the stereotypic properties of network bursts.

Fewer synaptic connections originating from Type I cells generally lowered the amount of 

recurrent excitation in the network. However, the effect of deleting these connections 

depended on their postsynaptic target. Deletion of Type I–I connections generally lowered 

recurrent excitation between Type I cells. In this case, Type II cells continued to receive a 

significant amount of Type I input, and thus could generate synchronized population spikes. 

However, owing to limited recurrent excitation, the pool of Type I cells available to maintain 

bursting activity was diminished, leading to short bursts with well-defined internal structure. 

In contrast, when Type I–II connections were deleted, the Type II cells could not generate 

well-synchronized population spikes or maintain high levels of overall activity, owing to 

lowered input. This, in turn, reduced the population of Type I cells that could fire in response 

to synchronous input from Type II cells. The resulting diminished feedforward and feedback 

interactions between the cell types led to short variable bursts with a low degree of intraburst 

structure.

Fewer synaptic connections originating from Type II cells, on the other hand, generated 

drastically different bursting activity, depending on the target of those connections. If Type 

II–I connections were deleted, bursting was abolished. This was because the Type I cells did 

not receive synchronous drive that could force them to fire together. Type II cells continued 

to fire somewhat synchronously, but their coherence was low, because the feedback input 

from the Type I cells was asynchronous. A completely different scenario occurred when 

Type II–II connections were abolished. In this case, the Type II cells had limited ability to 

form synchronized bursts in response to Type I recurrent input. Thus, except for the initial 

spike at the onset of the burst, the network showed moderate levels of asynchronous activity. 

The average cellular firing rate was sufficiently high for recurrent excitation to maintain 

network activity, and synchronization was sufficiently low to avoid episodes in which a large 

fraction of cells were in the refractory phase of their cycle, leading to the quiescent periods 

between bursts. Thus, in this case, the network achieved a delicate balance of relatively low 

levels of synchrony and moderate levels of recurrent excitation that allowed the burst to 

continue for a long time.

These roles for cells with Type I and Type II excitability properties in generating network 

burst activity were also evident in related results regarding synaptic plasticity dynamics in 
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similar heterogeneous excitatory networks (Knudstrup et al., 2016). In that study, synaptic 

weights were allowed to evolve according to a spike-timing-dependent plasticity rule (Dan 

& Poo, 2004). The role of Type II neurons as drivers of the synchronizing signal to Type I 

cells was revealed by the maximal potentiation of Type II–I synapses and the almost 

complete weakening of Type I–II synapses, owing to Type II cells, on average, firing before 

Type I cells. In neither that study nor the current study did we include short-term synaptic 

plasticity mechanisms, such as short-term depression or facilitation of synaptic efficacy, in 

the networks. However, our results may point to possible effects of such activity-dependent 

plasticity. Generally, Type I neurons have higher firing rates in the networks considered here, 

suggesting that Type I–I and Type I–II synapses would be most susceptible to depression or 

facilitation. Facilitation of Type I–I synapses would lead to longer bursts but perhaps less 

synchrony within bursts, whereas facilitation of Type I–II synapses may increase intraburst 

synchrony, owing to heightened drive to the Type II cells. The effects of depression of these 

synapses is harder to predict, as burst synchrony may be promoted by depression of Type I–I 

synapses but degraded by depression of Type I–II synapses.

Our simplified network model does not include many components of actual neurons and 

brain networks that can also contribute to synchronized network bursting. For example, we 

have not included inhibitory neurons in our networks. Inhibitory interneurons are well 

known to contribute to synchronized firing in cortical and hippocampal networks by gating 

the firing times of excitatory pyramidal cells through the ING and PING mechanisms 

(Whittington et al., 1995, 2000). In these mechanisms, during the time windows of firing 

opportunities for pyramidal cells, their intrinsic firing properties and the synaptic 

connectivity among them, as investigated here, will affect their activity patterns. 

Interestingly, some types of inhibitory interneuron, such as oriens-lacunosum moleculare 

cells, contain M-type K+ currents, which would also be targets of cholinergic modulation 

(Lawrence et al., 2006). Current work by our group is investigating the effects of such 

cholinergic modulation on the activity of coupled inhibitory cell networks, including 

synchronization, which would affect ING/PING network mechanisms. In our neuronal 

model, we have also not included the Ca2+-dependent K+ current, IAHP, which is modulated 

by ACh (Madison et al., 1987). Modelling studies have shown, however, that modulation of 

IAHP does not affect the neuronal PRC and thus the cell’s propensity for synchronization 

(Stiefel et al., 2009). Because we have concentrated on the effects of cholinergic modulation 

leading to heterogeneous cellular dynamics, we have focused on its modulation of the M-

type K+ current, which has the primary effect on the PRC (Stiefel et al., 2009).

Although ACh has effects on synaptic transmission and plasticity, especially in hippocampal 

networks (Hasselmo, 2006), we have focused on its influence on intrinsic neuronal response 

properties. Our thorough dissection of the contributions of these different cellular properties 

provides a detailed understanding of the mechanisms generating population activity. These 

insights, although provided by a simplified network model, can translate to more 

biophysically realistic settings. For example, in the hippocampus, ACh is strongly 

implicated in the generation and modulation of theta rhythms (Vertes & Kocsis, 1997; 
Hasselmo, 2006; Alger et al., 2014). Both ACh and theta rhythms are essential for normal 

hippocampal function, and their disruption leads to impairment of learning and memory 

(Jerusalinsky et al., 1997; Buzsaki, 2002; Power et al., 2003). Simultaneous in vivo 
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measurements of ACh levels and extracellular local field potentials by amperometry have 

shown slow phasic increases in ACh during episodes of theta rhythm activity (Zhang et al., 
2010; Santos et al., 2015) generated by a population of slow-firing, putatively cholinergic 

neurons in the medial septum (Zhang et al., 2011). The activity of these slow-firing cells 

precedes increases in the power of hippocampal theta rhythms (Zhang et al., 2011). Our 

simulation results provide an explanation for such an increase in theta rhythm power, as 

phasic increases in ACh will increase the proportion of pyramidal cells with Type I-like 

excitability properties that can drive network activity to promote the synchronization 

coordinated by theta-generating mechanisms, including interneuron activity and projections 

from the medial septum (Buzsaki, 2002).

Persistent firing of prefrontal cortical neurons during working memory tasks is another 

example where the cholinergic-induced effects on neuronal activity reported here may be 

contributing. As has been clearly shown during delayed match-to-sample tasks in primates, 

certain neurons show persistent, maintained firing during the delay period following the 

brief presentation of the sample cue, and the rate of this persistent firing directly correlates 

with task performance (Goldman-Rakic, 1996; Funahashi, 2006). Further studies have 

suggested that persistent firing of recurrently connected clusters of pyramidal cells codes for 

the location of sample cues in the visual field (Goldman-Rakic, 1995). Scopolamine, an 

antagonist of muscarinic receptors that mediate ACh’s effect on the M-type K+ current, 

degrades performance on working memory tasks and reduces the rate of persistent firing 

during the delay period (Zhou et al., 2011). Our results suggest that, in control conditions, 

ACh would contribute to persistent firing in the delay period by promoting Type I properties 

that enhance activity within the pyramidal cell clusters.

ACh has been implicated in the generation of hippocampal sharp waves (SPWs), which are 

large-amplitude deflections in local field potential recordings caused by highly synchronous 

population firing events (Buzsaki, 2015). SPWs occur in all behavioural states but are more 

frequent during non-REM or slow-wave sleep (SWS) and during extended periods of 

immobility during waking, when ACh levels are lower. Although the suppressive effects of 

ACh on synaptic transmission may have the biggest influence on inhibiting the synchronous 

firing underlying SPWs (Hasselmo, 2006), its cellular effects may also contribute to limiting 

synchronization. Pyramidal cells in both the CA3 and CA1 hippocampal regions contain M-

type K+ currents, and cholinergic modulation results in increased cellular excitability 

(Vervaeke et al., 2006; Hu et al., 2007). Although not explicitly measured, CA1 pyramidal 

cells are more likely to show changes in neuronal PRCs, as ACh acts to increase burst firing 

in CA3 pyramidal cells (Vervaeke et al., 2006). Our results suggest that recruitment of 

pyramidal cells into synchronous SPW events may be attenuated by high ACh levels, when 

Type I cellular properties would be most prevalent. This effect, in addition to suppression of 

synaptic transmission, would limit the extent of propagation and thus the amplitude of the 

SPW. These effects may particularly contribute to the different activity patterns of SPWs 

across sleep and wake states (Buzsaki, 2015).

Pathological brain states are caused by disease-driven changes to both network structure and 

to the properties of a propotion of neurons. Whereas changes in cellular properties, which 

depend on a cell’s receptor and channel repertoire and extracellular molecular milieu, have 
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been studied extensively (Lerche et al., 2001; Catterall et al., 2008), changes to underlying 

network properties are less well understood. Under seizure conditions, inhibitory 

interneurons have been observed to enter depolarization block (Ziburkus et al., 2006; Shin et 
al., 2010), making excitatory synapses the dominant connection type, as in our network 

models. Stereotypical seizures evolve from the fast oscillatory activity observed at onset to 

sequences of lower-frequency, population burst events as the seizure terminates (Netoff & 

Schiff, 2002; Jirsa et al., 2014). These evolving dynamics are certainly generated by 

dynamic changes to the underlying cellular and connectivity properties of the neural 

network. Our results predict that cellular or synaptic plasticity mechanisms that lead to a 

dominance of Type II cellular responses and of Type II synaptic efficacy would promote the 

transition to shorter, more synchronized population burst activity. More generally, the 

distinct characteristics of burst activity obtained with different distributions of synaptic 

connections could enable predictions of properties of the dominant synapse type within the 

underlying network. Additionally, experimental recordings of single cell activity during 

interictal discharges in epileptic patients have identified classes of neurons with different 

firing patterns during the discharge, with some neurons showing high firing rates only at the 

onset of the discharge, and other neurons whose firing increases only after discharge onset 

(Keller et al., 2010). Our results predict that these firing patterns would correspond to cells 

with Type II and Type I response profiles, respectively.

Our results also relate to the modulation of epileptic activity during sleep states. ACh levels 

are state-dependent, with high levels occurring during wakefulness, very low levels during 

non-REM movement or SWS, and the highest levels during REM sleep (Marrosu et al., 
1995). These differences in the neuromodulatory environment can significantly change the 

cellular properties in a given network, with Type II cellular responses dominating during 

SWS, and Type I responses dominating during REM sleep. It has been established that REM 

sleep in humans is largely seizure-free, even though neuronal activity levels are high 

(Herman et al., 2001; Minecan et al., 2002; Rocamora et al., 2013). Our results support the 

hypothesis that the lack of seizures is attributable to the domination of Type I cellular 

properties induced by high ACh levels. We have shown that activity of Type II neurons 

underlies seizure onset, and the lack of Type II–I connections leads to abolition of seizures. 

On the other hand, interictal epileptic discharges are common during deep-stage SWS, but 

they often do not lead to seizure onset (Malow et al., 1998; Minecan et al., 2002). Our 

results predict that, because of low ACh levels, Type II cellular properties dominate and 

promote synchronized bursts, but they do not convert to seizure activity, owing to the lack of 

cells with Type I response properties. Furthermore, our results provide an explanation for the 

higher propensity for there to be seizure onset during the lighter sleep stages that occur 

during the early stages of a sleep episode (Herman et al., 2001; Minecan et al., 2002; 
Rocamora et al., 2013). During these stages, ACh levels are also changing, so it is more 

likely that cells are heterogeneously modulated, leading to a mixture of Type I and Type II 

responses. Our simulations show that the feedforward and feedback interactions between 

synchronizing signals generated by Type II cells and the overall excitability of Type I cells 

generate the perfect conditions for seizure activity.
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ACh acetylcholine

NMDA N-methyl-D-aspartate

PRC phase response curve

PSD power spectral density

REM rapid eye movement

SPW sharp wave
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Fig. 1. 
ACh modulation changes the excitability and response properties of a cortical pyramidal cell 

model: frequency–current curves (A) and PRCs (B) under strong ACh modulation (Type I, 

gold curves) and under weak ACh modulation (Type II, blue curves).
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Fig. 2. 
Randomness of synaptic connectivity promoted population bursting and synchrony. (A) 

Raster plots (top panels) and time-dependent firing rates (bottom panels; see Materials and 

methods) for networks with different degrees of randomness in synaptic connectivity 

controlled by parameter p. All networks are composed of 250 Type I and 250 Type II cells, 

each with 4% connectivity (synaptic out-degree k = 20). (B–E) Tukey boxplots showing the 

relationship between randomness in network connectivity (parameter p) and four bursting 

metrics (p = 0 not included, owing to absence of bursting). The bottom, midline and top of 

each box represent the lower quartile (25th percentile, or Q1), median (50th percentile, or 
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Q2), and upper quartile (75th percentile, or Q3), respectively; whiskers extend down from 

Q1 and up from Q3 to cover 1.5 times the interquartile range (Q3–Q1) of the samples. (B) 

Peak height of network firing rate during the burst. (C) Burst width. (D) Ratio of the last 

local maximum of network firing rate before termination to the highest peak in firing rate 

within the burst. (E) Difference in offset times of Type I and Type II firing rates at burst 

termination.
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Fig. 3. 
Reducing the overall connectivity of the network resulted in bursts with reduced peak height 

(B), shorter duration (C), a falling ceiling as intraburst oscillations decreased in magnitude 

with successive synaptic removal (D), and closely matched firing rates of Type I and Type II 

cells during burst termination (E). (A–E) Raster plots (A, top panel), network firing rates (A, 

bottom panel) and bursting metrics (B–E, boxplots as in Fig. 2) for an excitatory 

heterogeneous network with 25% of synapses removed (A) or with 5% of synapses 
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successively removed (B–E), for synapses randomly chosen uniformly among the four 

synapse types (see Materials and methods).
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Fig. 4. 
Removing Type I–I synapses resulted in a highly regular network bursting structure and 

highly synchronized population bursts. Peak height decreased (B), burst width became 

consistently narrower (C), burst shape became more sloped (D), and bursts terminated with 

similar firing cessation of each cell type (E). (A–E) Raster plots (A, top panel), network 

firing rates (A, bottom panel) and bursting metrics (B–E, boxplots as in Fig. 2) for an 

excitatory heterogeneous network with 25% of synapses removed (A) or with 5% of 

synapses successively removed (B–E); all removed synapses were Type I–I.
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Fig. 5. 
Removing Type II–II synapses desynchronized intraburst activity. Peak height was high, 

indicating strong synchronization at initiation (B), burst width increased greatly and became 

highly variable (C), burst shape was heavily sloped, reflecting long, slowly terminating tails 

of activity (D), and termination order was not affected (E). (A–E) Raster plots (A, top 

panel), network firing rates (A, bottom panel) and bursting metrics (B–E, boxplots as in Fig. 

2) for an excitatory heterogeneous network with 25% of synapses removed (A) or with 5% 

of synapses successively removed (B–E); all removed synapses were Type II–II.
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Fig. 6. 
Removing Type I–II synapses degraded synchrony and burst structure. Peak height 

decreased (B), burst width narrowed until 80% of Type I–II synapses were removed, when 

Type I activity was not completely silenced and bursts became bimodal (C), burst shape 

became more sloped (D), and Type I cells maintained their activity long after Type II cells 

were silenced (E). (A–E) Raster plots (A, top panel), network firing rates (A, bottom panel) 

and bursting metrics (B–E, boxplots as in Fig. 2) for an excitatory heterogeneous network 
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with 25% of synapses removed (A) or with 5% of synapses successively removed (B–E); all 

removed synapses were Type I–II.
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Fig. 7. 
Removal of Type II–I synapses abolished network bursting. No bursting was obtained when 

> 15% of the Type II–I synapses were removed. (A–E) Raster plots (A, top panel), network 

firing rates (A, bottom panel) and bursting metrics (B–E, boxplots as in Fig. 2) for an 

excitatory heterogeneous network with 25% of synapses removed (A) or with 5% of 

synapses successively removed (B–E); all removed synapses were Type II–I.
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Fig. 8. 
PSD functions of the global network firing rate curves for heterogeneous excitatory 

networks with 0% (black curve), 15% (red curve) and 25% (blue curve) of synapses 

removed, all Type I–I (A), Type I–II (B), Type II–I (C), or Type II–II (D). PSD for networks 

with 25% of synapses removed randomly chosen uniformly among the four synapse types is 

shown for comparison in each panel (grey curve). In all curves, the centre curve is the 

average across five simulation runs, and the shadow region indicates the standard deviation 

interval.
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Fig. 9. 
Cross-correlation between the Type I and Type II firing rate curves for heterogeneous 

excitatory networks with 0% (thin black curve), 15% (thick red curve) and 25% (thick blue 

curve) of synapses removed, all Type I–I (A), Type I–II (B), Type II–I (C), or Type II–II (D). 

Cross-correlation for networks with 25% of synapses removed randomly chosen uniformly 

among the four synapse types is shown for comparison in each panel (thin grey curve). A 

positive time lag corresponds to Type II leading.
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Fig. 10. 
Phase diagrams of Type I vs. Type II firing rate curves during a single representative burst 

(right panels) and intraburst causality diagrams (left panels; see Materials and methods) for 

network bursting activity in excitatory heterogeneous networks with no synapses removed 

(A) or with 25% of synapses removed, randomly chosen uniformly among the four synapse 

types (B), and all Type I–I (C), all Type I–II (D), or all Type II–II (E). In the phase diagrams 

(left), the different time intervals of the burst trajectory are indicated by curve colour: blue, 

burst initiation; black, intraburst activity; gold, burst termination. The intraburst causality 

diagram (right) indicates the average of the cell type (1.0, Type I; 2.0, Type II) whose firing 

rate curve, shown in the lower panels of Figs 3A, 4A, 5A and 6A, led activation of burst 

initiation (0th oscillation) and subsequent intraburst oscillations in activity. Decreased 

opacity of the curve reflects the fraction of bursts in the simulation showing the number of 

oscillations.
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Fig. 11. 
Network bursting behaviours with the introduction of external random noise stimulation to 

individual cells (see Materials and methods): firing rate curves of the entire network (black 

curves), Type I cells only (gold curves) and Type II cells only (blue curves) in the different 

synapse removal cases (labelled rows) with no noise added (left column, similar to the 

results shown in Figs 3–7), with intermediate noise stimulation amplitude and frequency 

(middle column, twice minimal amplitude and four times baseline frequency), and high 

noise stimulation amplitude and frequency (right column, four times minimal amplitude and 

baseline frequency).
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Fig. 12. 
Network bursting behaviours with the inclusion of slower NMDA-like synaptic currents in 

addition to fast AMPA-like synaptic currents (see Materials and methods): firing rate curves 

of the entire network (black curves), Type I cells only (gold curves) and Type II cells only 

(blue curves) in the different synapse removal cases (labelled rows) with only AMPA 

synapses (left column, similar to the results shown in Figs 3–7), with NMDA synaptic 

conductance twice that of AMPA synaptic conductance (middle column), and with NMDA 

synaptic conductance four times that of AMPA synaptic conductance (right conductance).
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