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Model biases in rice phenology 
under warmer climates
Tianyi Zhang1, Tao Li2, Xiaoguang Yang3 & Elisabeth Simelton4,5

Climate-induced crop yields model projections are constrained by the accuracy of the phenology 
simulation in crop models. Here, we use phenology observations from 775 trials with 19 rice cultivars 
in 5 Asian countries to compare the performance of four rice phenology models (growing-degree-day 
(GDD), exponential, beta and bilinear models) when applied to warmer climates. For a given cultivar, 
the difference in growing season temperature (GST) varied between 2.2 and 8.2 °C in different trials, 
which allowed us to calibrate the models for lower GST and validate under higher GST, with three 
calibration experiments. The results show that in warmer climates the bilinear and beta phenology 
models resulted in gradually increasing bias for phenology predication and double yield bias per 
percent increase in phenology simulation bias, while the GDD and exponential models maintained a 
comparatively constant bias. The phenology biases were primarily attributed to varying phenological 
patterns to temperature in models, rather than on the size of the calibration dataset. Additionally, 
results suggest that model simulations based on multiple cultivars provide better predictability than 
using one cultivar. Therefore, to accurately capture climate change impacts on rice phenology, we 
recommend simulations based on multiple cultivars using the GDD and exponential phenology models.

Capturing warming effects on rice phenology is vital for obtaining reliable assessments of climate change impacts 
on global rice production. A number of studies have simulated declining rice production due to temperature 
increase associated with climate change1–3. Such yield losses are primarily attributed to changes in phenology. In 
particular, rising mean daily temperatures from emergence to maturity, i.e. growing season temperature (GST), 
shortens the vegetative growth4 and grain-filling3 stages and abridges the duration of vital physiological processes, 
such as light interception and photosynthesis5. Consequently, such processes significantly contribute to simulated 
yield declines in climate change-crop model studies6.

Two recent rice model inter-comparison studies7,8 showed that rice simulation models predicted both pro-
longed and shortened growth duration when models were applied to 3–6 °C warmer climate. Such contrasting 
results indicate uncertainty between model projections and fail to inform what models to use for climate impact 
studies. Although some degrees of model bias are always occurred, meaningful model prediction requires that 
model biases do not significantly depart or amplify when applied to warmer climates. Otherwise, unknown bias 
of model prediction might result in unreliable phenology and yield model projections under warmer climates.

However, maintaining the accuracy of rice phenology simulation has been proven a challenging task9. For 
example, using the ORYZA2000 model10, Zhang et al.11 found that with increasing GST, the simulated growth 
duration for one rice cultivar gradually departed from the observed despite a satisfactory calibration with the first 
three years of a 21-year record. By extending the study11 and including more observations, van Oort et al.12 were 
able to reproduce observed flowering dates, while the bias still increased progressively for the simulated maturity 
date, despite using all data for model calibration that requires further validation using independent dataset.

To our knowledge, there is no comprehensive assessment of the simulated bias in rice phenology mod-
els applied to warmer climates. Modelling experiments often assume no change in cultivar under future cli-
mate scenarios1–3, as the parameterization is considered cultivar-specific13 in most rice simulation models, e.g. 
ORYZA200010. Excluding the potential influence of cultivar on the phenology simulation bias requires a substan-
tial number of field observations for each cultivar under a wide range of GSTs to enable the resulting difference 
between the calibration with lower GST and validation with higher GST indicate the accuracy of the phenology 
model.
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The objectives of this study were to (i) evaluate the bias of four phenology models with increasing GST; 
(ii) quantify the influence of phenology bias on yield simulations; and (iii) identify possible explanations for  
model bias.

Results
Model calibration in lower GST. To cover the 2–7 °C temperature changes projected by 2100s in the major 
global rice-growing regions14, we collected data for 19 rice cultivars from 775 trials in 86 sites in 5 Asian countries 
for the period 1981–2009 (Fig. 1), where each cultivar includes between 14 and 260 trials that cover a GST range 
of 2.2–8.2 °C (Table 1). Here, a combination of cultivar, site and year is referred to as a single trial.

Four phenology models were examined: growing-degree-day (GDD), exponential, bilinear and beta models 
(Fig. 2). Description and function of each model can be found in Supplementary Note S1. In short, the four phe-
nology models represent (i) two phenological patterns where the GDD and exponential models assume there is 
no optimum temperature for phenology development while the bilinear and beta models assume that phenology 
development firstly accelerates, then decelerates after temperature has exceeded the optimum temperature; and 

Figure 1. Locations of rice trial sites included in the study. The map was generated with licensed ArcGIS 10.2 
using the map of Asia.

ID number Cultivars Genotype Number of sites (trials) Flowering DAE CV % Maturity DAE CV % GST range °C

1 Akihikari Jap, Inb 1 (21) 4.6 3.7 17.8–20.9

2 Boyou64 Ind, Hyb 6 (22) 5.2 3.8 24.9–28.4

3 Dyou63 Ind, Hyb 14 (33) 10.6 9.0 21.4–26.6

4 Gangyou22 Ind, Hyb 17 (39) 6.6 5.9 21.6–26.5

5 Guangluai4 Ind, Inb 6 (22) 5.0 4.0 22.6–26.2

6 Guangxuan3 Ind, Inb 6 (17) 7.3 6.1 22.9–26.1

7 Guichao13 Ind, Inb 6 (14) 9.4 7.5 21.3–25.4

8 IR36 Ind, Inb 8 (22) 11.8 9.9 25.1–28.8

9 Jinyougui99 Ind, Hyb 11 (25) 6.9 5.0 25.8–29.6

10 Shanyou10 Ind, Hyb 9 (20) 5.7 7.2 25.0–28.2

11 Shanyou2 Ind, Hyb 27 (76) 14.7 11.8 21.2–28.0

12 Shanyou36 Ind, Hyb 6 (18) 21.4 17.1 20.0–28.2

13 Shanyou63 Ind, Hyb 52 (260) 12.8 9.9 21.1–28.6

14 Shanyou64 Ind, Hyb 11 (34) 10.1 8.6 23.6–28.4

15 Shanyougui33 Ind, Hyb 8 (27) 9.9 6.5 24.7–26.9

16 Shanyougui99 Ind, Hyb 9 (28) 9.2 5.8 24.0–28.0

17 Weiyou64 Ind, Hyb 16 (57) 12.1 7.1 22.4–28.0

18 Xieyou64 Ind, Hyb 9 (22) 7.5 6.5 24.0–27.9

19 Zhefu Ind, Inb 4 (18) 7.3 4.4 21.5–25.2

Table 1.  The genotype, DAE to flowering and maturity coefficient of variation (CV) and the range of GST 
of 19 cultivars used in the study. The cultivars are arranged in alphabetical order. Jap. denotes Oryza Japonica; 
Ind. denotes Oryza Indica; Inb. denotes Inbred; Hyb. denotes Hybrid.
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(ii) two modelling curves for phenology, where the GDD and bilinear models use a linear response and the expo-
nential and beta models a non-linear response.

The phenology observations were grouped by the 19 cultivars. We identified the trial with the lowest GST for 
each cultivar, the GST was then subtracted from the GST for each remaining trial of that cultivar. The difference 
is referred to as Δ GST. Then we divided the trials for each cultivar group into three temperature intervals for cali-
bration: Δ GST ≤  1 °C, ≤ 2 °C, ≤ 3 °C (here referred to as calibration experiments 1, 2 and 3, respectively), where 
the trials with lower GST were used for calibration and the remaining for validation (see Supplementary Note S2).

Each phenology model was parameterized for each of the 19 cultivar groups, using an auto-calibration pro-
gram (see Supplementary Note S3). The graphical comparison (Fig. 3) and linear regression parameters (Table 2) 
for simulated and observed days after emergence (DAE) to flowering and to maturity are close to 1:1, indicating 
a good agreement between simulated and observed phenology across all models. The mean absolute deviation 
(MAD) between the simulated and observed values of DAE to flowering and maturity ranges from 3.5 to 7.2 days, 
with a normalized root mean square error (NRMSE) between 4.3 and 7.4% (Table 2).

Model validation in warmer GST. When the phenology models were validated with the higher GST data, 
their capacity to maintain the same accuracy as the calibration datasets differed. Figure 4 shows the percent bias 
in DAE to maturity between observed and simulated values. Three regression lines of the percent biases against 
increasing ∆ GST, at three quantiles, 0.025, 0.5 and 0.975, were derived to quantify the lower, middle and upper 
bias levels (see Supplementary Note S4). Our results show an increase in model biases for DAE to maturity simu-
lation when the bilinear and beta models were applied in warmer GSTs. Specifically, the bilinear model predicted 
a longer DAE to maturity than that for the observations, as indicated by the augmented upper bias from 5 to 40% 
and lower bias from − 10 to 0% (Fig. 4c,g,k). In contrast, the beta model simulated shorter DAE to maturity with 
the upper bias decreasing from 5 to 0% and the lower from − 10 to − 35% (Fig. 4d,h,l). Both the GDD (Fig. 4a,e,i) 
and exponential (Fig. 4b,f,j) models retained relatively constant bias. Similar results were found when the analysis 
was repeated for DAE to flowering (see Supplementary Fig. S1).

Figure 5 illustrates bias per cultivar for the four phenology models under the three calibration experiments. 
The model performance varied with cultivar, where the overall most reliable results were derived with the  
∆ GST ≤  2 °C calibration dataset using the GDD model for all simulations. For DAE to maturity, the bias was 
essentially zero for 10 of the 19 cultivars (P >  0.05), whereas the remaining 9 cultivars maintained significant bias 
(P <  0.05) (Fig. 5e). Similar results for DAE to flowering are presented in Supplementary Fig. S2.

Influence of phenology bias on yield simulation. To demonstrate to what extent biased phenology 
would influence yield simulations under warmer climate, we used the default crop parameters in ORYZA2000 
except for those related to phenology, and computed percent bias between simulated yields based on the observed 
and simulated phenology (see Supplementary Note S4). The model bias for each cultivar under the three 

Figure 2. Schematics of the four temperature response functions in the phenology models. (a) GDD 
(Tb =  8); (b) exponential (Tb =  8, TSEN =  0.25); (c) bilinear (Tb =  8, To =  30, Tc =  42); and (d) beta function 
(Tb =  8, To =  30, Tc =  42; TSEN =  1.25).
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calibration experiments is shown in Fig. 6. The direction of the simulated yield bias is consistent with the model 
performance for DAE to maturity (Fig. 5). The yield bias varied between − 30–10% depending on model and 
calibration experiments (Fig. 6). Notably, on average 1% bias in DAE to maturity in warmer GSTs returned a 2% 
(1.6–2.4%) yield bias (Fig. 7).

Discussion
With the unique phenology dataset of 19 cultivars covering a span of 2–8 °C GST, we investigated the perfor-
mance of four phenology models in cooler and warmer climatic conditions. The calibration results in the lower 
GST range showed MAD between the simulated and observed DAE to flowering and maturity (3.5–7.2 days 
with NRMSE between 4.3 and 7.4%) similar to other studies11,15–17 (2–9 days for MAD and 2–7% for NRMSE). 
However, under warmer GST, the models’ capacity to maintain accuracy diverted: the GDD and exponential 
models retained constant bias, while the bilinear model tended to overestimate and the beta model underestimate 
the duration of growth stages compared to observations. Our study provide further-step results compared with 
earlier model inter-comparison study8 which focused on uncertainty between models but did not demonstrate 
which models are able to provide better predictability in climate change assessment. Our result indicates that the 
GDD and exponential models capture the effects of warming better than the bilinear and beta models.

Two possible reasons for the gradual increasing bias in the bilinear and beta models are that (i) the models do 
not reflect actual phenological pattern to climate11; and (ii) the size of the calibration data fails to represent the 
actual phenological pattern and results in incorrect parameterization when there is a significant increase in GST 
between the calibration and validation datasets12. To exclude the latter cause of bias, we used all data as input to 
the auto-calibration program. The assumption was that a constant model bias across GST for all models would 
indicate that primarily incorrect parameterization caused the changing predictive biases in Fig. 4. In contrast, if 
gradually increasing model biases were still present with the bilinear and beta models, this would indicate diffi-
culties in capturing the actual phenology response patterns to climate change of the two models. The resulting 
bias trends (Fig. 8) were quite similar for all three calibration experiments in Fig. 4. Hence calibrating bilinear and 
beta phenology models with a range of GST data did not reduce bias under warmer climates, which suggests that 
the two models are likely to misrepresent phenological patterns under warmer climates.

The bilinear and beta models may be better suited for phenological patterns in chamber experiments18, where 
the phenology development rates accelerated until optimum temperature and then decelerated when the tem-
perature threshold was reached. Similar to our study, recent field-based observation studies found no particular 
advantage of using the more complex phenology models. For example, the beta model performed better than 
simpler models for phenology simulation in only one of China’s seven rice-producing regions7. Analogous results 
were found for wheat6, where the observed plant development rates in northern India accelerated rather than 
decelerated when temperatures exceeded optimum temperature. Comparing field and chamber experiments is 
recommended in further investigations to identify differences in phenological patterns to temperature.

Figure 3. Observed and simulated DAE to flowering (light grey) and DAE to maturity (dark grey) based on 
the four phenology models (upper x-axis) and three calibration experiments (right y-axis). The solid line is 1:1.
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By convention previous climate impact studies1–3 have calibrated rice models with only one cultivar. However, 
our results suggest that such approach may result in biased predictions. Even though the GDD and exponential 
models give overall consistent phenology responses across GST regimes (Fig. 4), they do not necessarily result 
in stable predictability for each cultivar (Fig. 5). This indicates that calibration with multiple cultivars and using 
GDD and exponential models would improve rice phenology predictions.

Another important consequence of phenology bias is the doubling in simulated yield bias (Fig. 6). Similar 
to studies for rice8 and wheat19, model uncertainties in simulated yields under optimal water and nutrient con-
ditions, strongly depend on temperature and inherited errors in the phenology simulation. This is because of 
that phenology determines many basic physiological processes that affect biomass and yield simulation, such 
as photosynthesis20 and light interception21. Therefore, our results stress that selecting the model that captures 
phenology over a range of temperatures is very important for more accurate yield predictions in warmer climates.

Despite the demonstrated advantages of GDD and exponential models for rice phenology and yield sim-
ulations, the bilinear model is widely used in rice models10,22,23. These crop models have often simulated that 
CO2-fertilization can offset the negative impacts of increased temperature in rice production in parts of Asia2,24,25, 
and thus benefit rice production. However, our study showed that the bilinear model frequently overestimated 
growth duration (Fig. 4), hence the actual yield reduction due to warming may have been underestimated in pre-
vious studies, as CO2-fertilization may not compensate for the loss. We recommend that the combined effects of 
CO2 and temperature on rice need to be re-evaluated using the GDD or exponential phenology models.

In conclusion, the phenological patterns of bilinear and beta models (where growth decelerates after a certain 
optimum temperature) resulted in increasing phenology bias under warmer temperatures. The model bias will 
be doubled when it carry over to yield simulation. More constant phenology biases were achieved with the GDD 
and exponential models, which simulate phenology without optimum temperature. Moreover, simulations based 
on multiple cultivars are also able to provide better predictability than using one cultivar. Therefore, for better 
estimates of climate change-impacts on rice phenology and production, we recommend calibrating with multiple 
cultivars and using GDD and exponential phenology models.

Methods
Dataset. The rice phenology data include field trial observations from agro-meteorological stations in China 
operated by the China Meteorological Administration, and trials operated by the International Rice Research 
Institute (IRRI) in the Philippines and its associated institutes in Bangladesh, India and Thailand (Fig. 1). The 

Phenology 
Model DAE

Calibration 
experiments

Sample size MAD α β R2 NRMSE

n trials days – – – %

GDD

Flowering

Δ GST ≤  1 °C 109 3.68 0.96 4.12 0.94 4.55

Δ GST ≤  2 °C 289 4.15 0.95 5.12 0.92 5.22

Δ GST ≤  3 °C 503 4.68 1.03 −2.33 0.92 5.84

Maturity

Δ GST ≤  1 °C 109 4.65 0.94 7.23 0.93 4.33

Δ GST ≤  2 °C 289 5.51 0.92 9.37 0.89 5.23

Δ GST ≤  3 °C 503 5.95 0.92 9.30 0.85 5.84

Exponential

Flowering

Δ GST ≤  1 °C 109 3.54 0.95 4.79 0.95 4.29

Δ GST ≤  2 °C 289 4.09 0.94 4.65 0.93 5.21

Δ GST ≤  3 °C 503 4.48 1.02 −1.77 0.92 5.67

Maturity

Δ GST ≤  1 °C 109 4.85 0.93 7.78 0.92 4.46

Δ GST ≤  2 °C 289 5.79 0.90 10.92 0.88 5.68

Δ GST ≤  3 °C 503 6.25 0.89 11.63 0.84 6.20

Bilinear

Flowering

Δ GST ≤  1 °C 109 3.54 0.98 1.87 0.95 4.27

Δ GST ≤  2 °C 289 4.25 0.99 0.95 0.93 5.16

Δ GST ≤  3 °C 503 5.82 1.12 −9.60 0.91 7.38

Maturity

Δ GST ≤  1 °C 109 4.41 0.97 4.16 0.93 4.32

Δ GST ≤  2 °C 289 5.69 0.96 6.24 0.89 5.31

Δ GST ≤  3 °C 503 6.44 0.99 1.86 0.85 6.06

Beta

Flowering

Δ GST ≤  1 °C 109 3.81 0.92 6.54 0.94 4.68

Δ GST ≤  2 °C 289 4.00 0.92 6.90 0.93 5.24

Δ GST ≤  3 °C 503 4.23 0.99 0.61 0.91 5.66

Maturity

Δ GST ≤  1 °C 109 5.45 0.90 10.43 0.92 5.11

Δ GST ≤  2 °C 289 6.53 0.90 11.19 0.82 6.90

Δ GST ≤  3 °C 503 7.19 0.91 9.21 0.79 7.38

Table 2.  Evaluation of DAE to flowering and maturity for the trials in calibration dataset in the three 
calibration experiments for the four phenology models. MAD: mean absolute deviation; α: slope of linear 
regression between simulated and observed values; β: intercept of linear regression between simulated and 
observed values; R2: coefficient of determination; NRMSE: normalized root mean square error. The equations 
are available in Supplementary Note S3.
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Figure 4. Bias between simulated and observed DAE to maturity expressed per ΔGST for each of the four 
phenology models (upper x-axis) and three calibration experiments (right y-axis). Solid lines represent the 
0.5 percentile regression, lower and upper dashed lines represent the 0.025 and 0.975 percentile regression lines. 
Dark grey dots illustrate trial data used for calibration and light grey dots data used for validation.

Figure 5. Changes in bias of DAE to maturity with increasing GST per cultivar for each of the four 
phenology models (upper x-axis) and three calibration experiments (right y-axis). The cultivar ID numbers 
are presented in Table 1. Grey bars indicate statistically significant bias in yield simulation with GST increase 
(P <  0.05), and white bars indicate insignificant bias (P >  0.05).
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Figure 6. Changes in yield bias with increasing GST per cultivar for each of the four phenology models 
(upper x-axis) and three calibration experiments (right y-axis). The cultivar ID numbers are presented in 
Table 1. Grey bars indicate statistically significant bias in yield simulation with GST increase (P <  0.05), and 
white bars indicate insignificant bias (P >  0.05).

Figure 7. Relation between yield bias and DAE to maturity bias with increasing GST for each of the four 
phenology models (upper x-axis) and three calibration experiments (right y-axis). Each dot represents a 
cultivar and the line indicates the ratio of yield bias to phenology bias over all 19 cultivars.
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dataset includes phenology (dates for emergence, transplanting, panicle initiation, flowering and physiological 
maturity) for 19 cultivars at 86 sites in 775 trials (Table 1), where all except the IR36 cultivar were conducted 
in China. The dataset includes only cultivars and trials that were carried out under optimal water and nitrogen 
conditions and with comparable research protocols for phenology measurements for each specific cultivar, to 
minimize the potential difference in measurement standards between the sites. Daily meteorological data, includ-
ing sunshine hour, minimum and maximum temperatures, vapour pressure, wind speed and precipitation, were 
obtained from weather stations at respective site.

Calibration experiments. Four phenology models were examined: GDD, exponential, bilinear and beta 
models (algorithms for each model are found in Supplementary Note S1). For the trials sharing one cultivar 
group, the lowest GST was subtracted from the GST for each trial of the specific cultivar (referred to as Δ GST). 
For each cultivar group, three calibration experiments were conducted (see Supplementary Note S2). For exper-
iment 1, the calibration data consisted of the trials with Δ GST ≤ 1 °C with the remaining data for validation. For 
experiments 2 and 3, the calibration data comprised the trials with Δ GST ≤ 2 °C and ≤ 3 °C. For calibration, we 
used an auto-calibration program that iterates to return the parameter values with the least difference between 
observed and simulated phenology for each model (see Supplementary Note S3). For validation, we applied the 
phenology models and associated calibrated parameters to the trial data with higher GST.

The percent bias between simulated and observed DAE to flowering and maturity was calculated for each 
cultivar. The changes in model accuracy were measured by regressing percent bias with increasing ∆ GST at three 
quantiles, 0.025, 0.5 and 0.975, to quantify the changes in lower, middle and upper biases as increases in GST (see 
Supplementary Note S4).

To estimate the error carried over from a biased phenology to yield simulation, we ran ORYZA2000 for 
each trial with observed phenology dates and phenology simulated using each of the four phenology models. 
ORYZA2000 was run with potential water and nitrogen conditions with default parameters, except for those 
related to phenology (default values are available at https://sites.google.com/a/irri.org/oryza2000/downloads). 
Lastly, we calculated the percent bias between yields generated from observed and simulated phenology (see 
Supplementary Note S4).
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