Skip to main content
. 2016 Jan 11;17(Suppl 1):3. doi: 10.1186/s12859-015-0848-x

Table 3.

Performance of diagnostic support models constructed using combinations of candidate biomarkers with various classifiers

Features Classifier Accuracy Sensitivity Precision AUC
PTPRC+ASUN Decision tree 91.49 % 91.5 % 97.7 % 0.943
PTPRC+ASUN+DHX29 Random Forest 93.62 % 93.6 % 93.6 % 0.982
PTPRC+ASUN+DHX29 SVM 95.74 % 95.7 % 96.2 % 0.969
PTPRC+ASUN+DHX29 Naïve Bayes 97.87 % 97.9 % 98 % 0.979

Sensitivity: TP/(TP+FN); Precision: TP/(TP+FP); performance was evaluated by 5-fold cross-validation