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Significance

Abstract

Loss-of-function genetics provides strong evidence for a gene’s function in a wild-
type context. In many model systems, this approach has been invaluable for dis-
covering the function of genes in diverse biological processes. Axolotls are urodele
amphibians (salamanders) with astonishing regenerative abilities, capable of regen-
erating entire limbs, portions of the tail (including spinal cord), heart, and brain
into adulthood. With their relatively short generation time among salamanders,
they offer an outstanding opportunity to interrogate natural mechanisms for ap-
pendage and organ regeneration provided that the tools are developed to address
these long-standing questions. Here we demonstrate targeted modification of the
thrombospondin-1 (tsp-1) locus using transcription-activator-like effector nucleases
(TALENS) and identify a role of #sp-1 in recruitment of myeloid cells during limb
regeneration. We find that while zsp-7-edited mosaic animals still regenerate limbs,
they exhibit a reduced subepidermal collagen layer in limbs and an increased num-
ber of myeloid cells within blastemas. This work presents a protocol for generating
and genotyping mosaic axolotls with TALEN-mediated gene edits.
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pholinos, antisense oligonucleotides that block the access of
mRNA and decrease protein expression, have enabled local

An axolotl can regenerate many parts of its body includ-
ing entire limbs and portions of the heart, brain, spinal
cord (Seifert & Voss 2013), making it a very attractive
model to study regeneration. In recent years, several modern
techniques have been applied to axolotls, allowing for the
functional study of specific genes. For example, plasmids
containing genes of interest can be delivered to local tissues
by virus infection (Whited et al. 2013) or electroporation
(Echeverri & Tanaka 2003) and foreign DNA can also be in-
jected into single-cell-stage embryos to generate transgenic
animals and inducible transgenic animals (Sobkow et al.
2006; Whited et al. 2012; Khattak et al. 2013). However,
all these methods involve introducing exogenous DNA, and
it will be imperative to also be able to decrease or elimi-
nate gene function to fully understand regeneration. Mor-

and transient knockdown of specific gene activities in sala-
manders (Schnapp & Tanaka 2005; Tsonis et al. 2011; Zhu
et al. 2012). While useful, this method is not permanent,
and many genes likely to be important may not be suffi-
ciently knocked down to impair regeneration. Furthermore,
morpholinos can sometimes produce off-target effects, and
the method is labor-intensive as the treatment needs to be
administered with each experiment. The development of an
alternative method to examine loss of function is of partic-
ular interest in this field, and one exciting possibility is to
develop methods for targeting and editing endogenous ax-
olotl genomic loci.

Transcription-activator-like effector nucleases (TALENS)
have been successfully applied to several animal mod-
els such as Caenorhabditis elegans, Drosophila, zebrafish,
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Figure 1. Editing axolotl tsp-1 locus by
TALENSs. (A) Schematic of the exonic
region in axolotl tsp-1 locus and design of
TALENSs. The exonic region of tsp-1locus

TALEN 2

TACCGGATCGAGGATGCGGACCGGATCCCCCCACTGCCGGAGGAGCA

is indicated by the black line and the

intronic region is indicated by the gray

line. The binding sequences of the TALEN

pairs used in this study are underlined

and highlighted in red or marked as gray B

ATGGCCTAGCTCCTACGCCTGGCCTAGGGGGGTGACGGCCTCCTCGT

TALEN 1 mRNA (pg)

boxes. Primers used for PCR reactions WT 300 200 100 50 25 WT TAL1
are indicated by arrows, and the BsmF| - 2 + = + - + = + i + + +
recognition sites of restriction enzymes i — W — - — —————  —
used for determining efficiency of editing 300 = _

are noted. (B) Cleavage of PCR products ) 2004

by restriction enzymes indicates that the il oL =19 e id =400 se

tsp-1locus has been edited. Genomic

DNA from one embryo of WT (wild-type; TALEN 2 mRNA (pg)

non-injected) or TALEN mRNA injection is WT 300 200 100 50 25 WT TAL2
used for each lane. For each sample, an BamHI - - + - + - + - + - + + +
equal amount of PCR product, not 750 - ' — e S e
incubated with the restriction enzyme, ;ggg - - - - . - - -

was loaded as an undigested control. The 100 = S
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is the DNA ladder. PCR amplicons from c
TALENT and TALEN2 mRNA-injected

embryos were cleaved by BsmFI| or

TALEN 1 (300 pg mRNA)

(0/12) TGACCTCTTTGAGCTGACTGGCTTCTCGCGGARGGGCGCGTCCCGECGCTCTGGCGCAGTGCACCTGGTGARGGGCC WT
BamHI, respectively. (C) Sequencing (1/12) TGACCTCTTTGAGCTGACTGGCTTCTCG---=—=-==== GTCCCGGCGCTCTGGCGCAGTGCACCTGGTGARGEGCC (~11 bp)
. (9/12) TGACCTCTTTGAGCTGACTGGCTTCTCGCGGAAG! GCAGTGCACCTGGTGAAGGGCC (-19 bp)
results of the PCR amplicons from tsp-1 (1/12) TGACCTCTTTGAGCTGACTGGCTTCTCGCG-— C (-37 bp)
locus of embryos injected with 300 pg (1/12) TGACTGOCTTCTCGC-~mnmmmmmm e mmemme /o CGGAG (-105 bp)
TALEN mRNA, which shows various indel
mutations in the tsp-1-TALEN target site.
© 1sp arg TALEN 2 (300 pg mRNA)
The numbers listed at the beginning of
. (0/12) CCTCCAGCCCGGCGTACCGGATCGAGGATGCGGACCGEATCCCCCCACTGCCGGAGGAGCAGTTCCAGGACCTGE  WT

each sequence indicate the frequency of (1/12) CCTCCAGCCCGGCGTACCGGATCGAGGATGC = mmmmmmmm e CCCCACTGCCGGAGGAGCAGTTCCAGGACCTGC (-11 bp)

H (1/12) CCTCCAGCCCGGCGTACCGGAgga=———=—m====m- GATCCCCCCACTGCCGGAGGAGCAGTTCCAGGACCTGC (-16/+43 bp)
that Sequence belng deteCted among a” (1/12) CCTCCAGCCCGGCGTACCGGATC CCGGAGGAGCAGTTCCAGGACCTGC (-18 bp)
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(1/12) CCTCCAGCCCGGCGTACCG!

CCCCACTGCCGGAGGAGCAGTTCCAGGACCTGC (-21 bp)
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CCTCCAGCCCGGCGTACCGGATCGAAY,

Lower-case letters indicate insertions. (2/12) SCTCCACCOCCECGTACCEG

are underlined in WT sequences. (1712}

Xenopus, mouse and rat (Huang et al. 2011; Sander et al.
2011; Lei et al. 2012; Liu et al. 2012; Ferguson et al.
2013; Sung et al. 2013; Miki et al. 2014; Sugi et al. 2014)
and also two species of salamanders, Iberian ribbed newts
(Hayashi et al. 2014) and axolotls (Fei et al. 2014), for
site-specific gene targeting and editing. TALENs are en-
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ACTGCCGGAGG

AGTTCCAGGACCTGC (-22 bp)
AGTTCCAGGACCTGC (-31/+3 bp)

GAGCAGTTCCAGGACCTGC (-34 bp)

gineered DNA nucleases that contain two effective com-
ponents: a customized DNA binding domain derived from
transcription-activator-like (TAL) effectors and a DNA nu-
clease derived from FokI endonuclease that mediates double-
strand breaks. TAL effectors are originally from plant
pathogenic bacteria Xanthomonas (Bogdanove et al. 2010),
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and their recognition of DNA is mediated by repeat-variable
di-residue (RVD) (Boch et al. 2009; Moscou & Bog-
danove 2009), by which one RVD recognizes one nucleotide.
Double-strand breaks are generated when DNA is targeted by
TALENSs and lead to two highly conserved DNA repair pro-
cesses: non-homologous end joining, which is error-prone
and often results in insertions or deletions (indels) that can
result in frame shifts or a premature stop codon, or homolo-
gous recombination, which leads to high fidelity DNA repair
but occurs at a lower rate. In the presence of an exogenously
introduced homologous sequence flanking the cleavage site,
the homologous recombination process can be used for pre-
cise gene modification.

We have sought to implement TALEN-mediated gene
editing to create loss-of-function alleles of axolotl
thrombospondin-1 and thereby enable elucidation of its role
in regeneration. Thrombospondin-1 (TSP-1) is an extracel-
lular matrix protein that belongs to the highly conserved
thrombospondin family (reviewed in Adams & Lawler 2011).
TSP-1 has numerous and diverse functions in mammals; for
example, it is involved in platelet aggregation, inflamma-
tion, wound healing, angiogenesis, tumor progression, and
cardiovascular diseases (reviewed in Esemuede et al. 2004;
Lopez-Dee et al. 2011). Recently, TSP-1 has been shown to
be involved in regeneration in other organisms. TSP-1 ex-
pressed from endothelial cells supports the differentiation
of murine lung epithelial stem cells (Lee et al. 2014) and
some reports indicate that TSP-1 inhibits liver cell prolifera-
tion during liver regeneration (Hayashi et al. 2012; Starlinger
et al. 2013). We have previously shown that the expression
of tsp-1 is induced during axolotl limb regeneration (Whited
et al. 2011). In this report, we successfully edited the ax-
olotl zsp-1 locus using the Golden Gate method (Cermak
et al. 2011) for assembly of TALENs and subsequent in-
jection into single-celled embryos. We found that mosaic
depletion of TSP-1 results in decreased collagen thickness
beneath the epidermis in the limb as well as increased num-
bers of myeloid cells within the blastema, the collection of
limb progenitor cells at the tip of the stump.

Results

Strategy for designing TALENSs targeting
axolotl thrombospondin-1

To design the DNA recognition sequences for TALENs, we
first identified a relatively long exon within the axolotl tsp-1
gene amenable to polymerase chain reaction (PCR) amplifi-
cation and containing potential TALEN target sites. Because
the genome of axolotl has not been sequenced, we aligned
axolotl zsp-1 cDNA (Genbank accession number HQ380179;
Whited et al. 2011) to the Xenopus laevis tsp-1 open reading
frame and identified possible exon junctions. We confirmed

© 2015 The Authors. Regeneration published by John Wiley & Sons Ltd.
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the junctions by sequencing PCR products amplified from
genomic DNA (data not shown).

Next, we designed two sets of TALEN pairs targeting sites
close to the 5’ end of this predicted exonic region (Fig. 1A).
The TALENSs work in pairs. Each monomer contains an array
of RVDs to bind DNA sequences on the opposite strand. The
nuclease activity is mediated by dimerization of FokI, which
results from proper orientation of each TALEN monomer and
proper length of the spacer region (DNA sequence between
two DNA binding sites). We designed each TALEN pair to
have 15-17 RVDs that recognize and bind DNA, and with a
spacer of 15 bp between two TALEN monomers. The plas-
mids containing proper RVDs to recognize the tsp-1 locus
were then assembled by the Golden Gate method described
previously (Cermak et al. 2011). The TALEN mRNAs were
transcribed and purified in vitro.

Embryos targeted by TALENs showed
indel mutations

To determine the optimal amount of mRNA for TALENS,
single-cell-staged embryos were first injected with 300, 200,
100, or 50 pg of TALEN mRNAs, or left uninjected. Most
embryos survived at 2 days post-injection (Table 1). Two
apparently healthy, well-developed embryos of each group
were harvested for genomic DNA isolation, while the re-
maining embryos were allowed to continue to develop. We
used restriction enzyme digestion to determine if the tar-
get site within the tsp-1 locus was edited. The wild-type
sequence includes a specific restriction enzyme recognition
site that is cleaved in the PCR product from unedited alleles,
resulting in smaller, digested bands on a gel compared to
undigested PCR product. Edited alleles may delete the re-
striction enzyme recognition site, resulting in the presence
of uncleaved PCR products following incubation with the
enzyme. Genome editing was observed in all harvested em-
bryos injected with various amounts of RNA ranging from
50 to 300 pg per embryo (Fig. 1B). Higher efficiency was
observed in embryos injected with more mRNA (Fig. 1B).
However, higher mortality was also observed in those condi-
tions (Table 1). Still, we observed editing at 25 pg, with ap-
proximately 62% and 63% efficiency in embryo preparations
from TAL1 and TAL2 injections, respectively, as determined
by restriction enzyme digestion (Fig. 1B).

To further confirm that the tsp-1 locus was edited by TAL-
ENs, the PCR amplicon was cloned into a TA cloning vec-
tor and sequenced. Indeed, embryos showing evidence of
editing by restriction enzyme digestion also have insertion
or deletion mutations, which were revealed by sequencing
(Figs. 1C and S2). The sequencing results also confirmed the
dosage-dependent effect of TALEN mRNA on genome-
editing efficiency.
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Table 1. Survival rate of embryos injected with various concentrations of TALEN mRNA or left uninjected. For each condition, up to 10 individual
embryos were injected initially. Embryos without successful fertilization were excluded from the experiment. At two days post-injection, two
embryos from each group were harvested for DNA isolation and the subsequent survival rate was determined according to the adjusted total
animal numbers. Survival was determined by visual inspection.

Survival rate

Total mRNA
injected (pg) 1 day 2 days?® 4 days 6 days 15 days 18 weeks
WT N.A. 86% (6/7) 80% (4/5) 80% (4/5) 80% (4/5) 80% (4/5) 80% (4/5)
TALENT 300 88% (7/8) 83% (5/6) 0% (0/6) 0% (0/6) 0% (0/6) 0% (0/6)
200 90% (9/10) 88% (7/8) 13% (1/8) 13% (1/8) 13% (1/8) 13% (1/8)
100 100% (9/9) 100% (7/7) 43% (3/7) 29% (2/7) 14% (1/7) 0% (0/7)
50 100% (8/8) 100% (6/6) 83% (5/6) 83% (5/6) 67% (4/6) 33% (2/6)
TALEN2 300 100% (8/8) 33% (2/6) 0% (0/6) 0% (0/6) 0% (0/6) 0% (0/6)
200 88% (7/8) 67% (4/6) 0% (0/6) 0% (0/6) 0% (0/6) 0% (0/6)
100 100% (8/8) 100% (6/6) 50% (3/6) 50% (3/6) 0% (0/6) 0% (0/6)
50 100% (8/8) 83% (5/6) 67% (4/6) 50% (3/6) 50% (3/6) 50% (3/6)

a. Two embryos from each group were harvested for DNA isolation at 2 days post-injection. Remaining animals (N-2) were subsequently used
to determine survival rate. N = initial number of embryos injected.

A B
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Figure 2. TALEN-targeted animals show edited tsp-7 locus in the limbs and normal limb morphology. (A) Morphology of developed limbs
and regenerated limbs 6 weeks post-amputation from wild-type and TALEN-targeted animals. Scale bar indicates 1 mm. (B) PCR amplicon
of the tsp-1 locus from limbs from wild-type and TALEN-injected juvenile animals digested by restriction enzyme indicated edited tsp-1 locus.
Genomic DNA from one forelimb of WT (wild-type; non-injected) or TALEN mRNA-injected animals was used in each lane. For each sample,
an equal amount of PCR product, not incubated with the restriction enzyme, was loaded as an undigested control. The predicted patterns of
DNA fragments after restriction enzyme digestion are illustrated on the right. The first lane from the left is the DNA ladder. PCR amplicons from
TALEN1- and TALEN2-mRNA-injected embryos were cleaved by BsmF| or BamH]I, respectively.

TALEN-targeted cells persist during
development and are found in juvenile
limbs

Next, we examined the effect of embryonic TALEN injec-
tions in juvenile axolotl limbs. Similar to the phenotype ob-
served in tsp-1 knockout mice (Lawler et al. 1998), no ob-
vious developmental defects were observed in the limbs of
tsp-1 TALEN-targeted juvenile axolotls (Fig. 2A). We am-
putated all four limbs of each animal to examine the effect of
tsp-1 gene editing on limb regeneration. Limb tissues near the
amputation plane were harvested for DNA extraction. PCR

40

amplicons of the region flanking zsp-1 edits were subjected
to restriction enzyme digestion, which revealed that limb tis-
sues near the amputation plane were also edited by TALENs
with high efficiency (ranging from 35% to 97%, Fig. 2B).
We calculated the average editing efficiency as 72 £ 9%
(N = 6 limbs) for TALI1-edited limbs and 77 £ 6% (N =
16) for TAL2-edited limbs. PCR amplicons from each of the
TALEN-edited limbs were also cloned and sequenced. We
found that limbs showing evidence of editing by restriction
enzyme digestion do indeed have insertion or deletion muta-
tions (Fig. S2). However, those limbs regenerated normally

© 2015 The Authors. Regeneration published by John Wiley & Sons Ltd.
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Figure 3. TALEN-targeted animals show increased macrophage and monocyte infiltration in regenerating limbs and decreased stump collagen
deposition. NSE staining was performed to detect monocytes and macrophages in regenerating juvenile limbs at 6 days post-amputation. (A)
Wild-type sibling control. (B) TALEN-targeted tsp-1 deletion animal. (C) The quantification of NSE positive cells (A, B, black) within the blastema
mesenchyme were quantified (N = 14, 6, 16 limbs for wt, TAL1and TAL2respectively). (D), (E) Subepidermal collagen thickness was measured
(yellow double arrow) in control and TALEN-targeted stumps, and quantified in (F) (N = 14 controls; 6 TALT; 16 TAL2). Scale bars in all images

are 50 um; *P < 0.05, **P < 0.01; error bars indicate SEM.

compared to non-TALEN-targeted control limbs (Fig. 2A,
lower panel). In these mosaic animals, even with many cells
probably harboring defective coding sequences for TSP-1, a
threshold number of cells producing wild-type TSP-1 pro-
tein may enable relatively normal regeneration. However,
it is also possible that in a complete loss-of-function set-
ting, with all cells defective in TSP-1 production, limbs may
regenerate normally and TSP-1 may be dispensable for re-
generation. Distinguishing between these possibilities will
require breeding the animals to produce individuals whose
genotype is tsp-1~'* or possibly tsp-1~/~ in all cells.

Thrombospondin-1 edited limbs have
specific cellular differences compared
to wild-type

We sought to determine if there was an observable cellular
effect of mosaic loss of sp-1 activity. We histologically an-
alyzed regenerated limbs from TALEN-edited animals and
compared them to limbs from wild-type siblings. It has re-
cently been shown that macrophages are required for axolotl
limb regeneration (Godwin et al. 2013). Furthermore, the
tspl null mice show increase in several myeloid lineages
(Lawler et al. 1998). Therefore, we performed a non-specific
esterase stain (NSE) to identify macrophages and monocytes
in the regenerating limbs of tsp-7/-edited animals and their
wild-type siblings (Fig. 3A—C). We found that tsp-1-edited

© 2015 The Authors. Regeneration published by John Wiley & Sons Ltd.

animals exhibited a statistically significant increase in the
number of NSE(+) cells in the central blastema of limbs
at 6 days post-amputation compared to wild-type. We also
noticed that the collagen fibril layer beneath the stump epi-
dermis appeared thinner in the tsp-7/-edited limbs, and this
observation was confirmed by measuring the thickness of
this tissue layer. Tsp-I-edited animals exhibited a nearly
twofold reduction in the thickness of subepidermal collagen
compared to wild-type (Fig. 3D—F). Future work will be
necessary to determine the implication of these differences
upon regeneration or development.

Future directions

Several powerful methods for genome editing have recently
been developed, and new work to improve each is ongo-
ing. The CRISPR system has recently been applied to ax-
olotls using wild-type Streptococcus pyogenes Cas9 nuclease
(Flowers et al. 2014). The CRISPR system is an attractive
editing technique because it is relatively simple, fast, and
cheap to design and generate targeting components. While
wild-type Cas9 provides high editing frequency, it can also
induce off-target indel mutations (Fu et al. 2013; Hsu et al.
2013; Pattanayak et al. 2013) due to the tolerance of mis-
match in the guide RNA—DNA (gRNA—DNA) interaction.
Off-target effects are especially problematic in species where
the genome is unsequenced (and they are therefore less pre-
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dictable) and the generation time is long (and hence sim-
ply “crossing out” the off-target lesions may be logistically
very difficult), such as in axolotl. The specificity of CRISPR
can be increased by using paired Cas9 nickase (Mali et al.
2013; Ran et al. 2013; Cho et al. 2014), truncated-gRNA (Fu
et al. 2014), and RNA-guided FokI nucleases (Tsai et al.
2014). However, while these modifications increase speci-
ficity, they also show reduced editing efficiency.

Both the TALEN and CRISPR techniques have been
shown to offer high genome-editing efficiency (e.g., Li 2011;
Lei et al. 2012; Ding et al. 2013; Smith et al. 2014; Veres
et al. 2014). Degeneracy in RVD-DNA binding has been
shown in TALENs (Bogdanove & Voytas 2011), but little
evidence of off-target and mismatch has been shown. In
contrast to CRISPR techniques, TALENSs require a slightly
longer time to construct the DNA binding motif. However,
the selection of a DNA binding target is less constrained in the
TALEN methodology compared to CRISPR. CRISPR gRNA
must be designed to immediately precede an NGG (Proto-
spacer Adjacent Motif, PAM) sequence. The high specificity
CRISPR platforms require two gRNAs (which means two
PAM sequences) to be located within a designated distance
(Mali et al. 2013; Ran et al. 2013). In contrast, TALENSs
can target almost all sites in the genome. The ability to target
nearly any sequence may be extremely important for creating
engineered mutations.

As both the TALEN and CRISPR technologies are
improved upon, developing both technologies is a wise
investment for the axolotl community. Crucially, for many if
not most genes of interest, determining the effect of gene loss
on regeneration will require breeding the edited individuals to
homozygosity. For some genes, these technologies may also
require layering additional approaches, such as knocking-in
sequence to the locus at the time of editing, for example to
enable conditional excision of genes which may be embry-
onic lethal in the homozygous state. In summary, this report
demonstrates another successful application of TALENs and
supplements a rising powerful arsenal of tools for studying
the remarkable regenerative abilities of axolotls. This report
also identifies a role for tsp-1 in controlling subepidermal col-
lagen thickness in the limb as well as the amount of myeloid
cells localized within the blastema in regenerating limbs. Fu-
ture studies may determine the mechanisms whereby tsp-1
influences these traits and whether they may be involved in
tissue homeostasis or regeneration. These future studies will
be enabled by the breeding of the mosaic animals to cre-
ate stable genetic lines of axolotls harboring variant alleles
of tsp-1.
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