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Active diffusion and microtubule-based transport
oppose myosin forces to position organelles in cells
Congping Lin1,2,*, Martin Schuster1,*, Sofia Cunha Guimaraes1,w, Peter Ashwin2, Michael Schrader1, Jeremy Metz1,

Christian Hacker1, Sarah Jane Gurr1 & Gero Steinberg1

Even distribution of peroxisomes (POs) and lipid droplets (LDs) is critical to their role in lipid

and reactive oxygen species homeostasis. How even distribution is achieved remains elusive,

but diffusive motion and directed motility may play a role. Here we show that in the fungus

Ustilago maydis B95% of POs and LDs undergo diffusive motions. These movements require

ATP and involve bidirectional early endosome motility, indicating that microtubule-associated

membrane trafficking enhances diffusion of organelles. When early endosome transport is

abolished, POs and LDs drift slowly towards the growing cell end. This pole-ward drift is

facilitated by anterograde delivery of secretory cargo to the cell tip by myosin-5. Modelling

reveals that microtubule-based directed transport and active diffusion support distribution,

mobility and mixing of POs. In mammalian COS-7 cells, microtubules and F-actin

also counteract each other to distribute POs. This highlights the importance of opposing

cytoskeletal forces in organelle positioning in eukaryotes.
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T
he ability of eukaryotic cells to position and distribute
organelles appropriately is a general characteristic of
cellular organization. Yet, the mechanisms underlying

such distribution in a cell remain elusive. In particular, organelles
that are involved in lipid homeostasis and fatty acid metabolism,
such as peroxisomes (POs) and lipid droplets (LDs), are evenly
positioned. This may support protection against oxidative stress1

and fosters dynamic interaction to transfer and distribute lipids,
exchange metabolites or transduce signals2–4. Both organelles
undergo directed transport (DT) and diffusive motion5–7.
Diffusion (from Latin ‘diffundere’¼ spread out) describes the
spread of molecules through random motion from regions of
high to regions of low concentration. In liquids, larger particles
behave in a similar manner, as first described for pollen grains
in water8. This ‘Brownian motion’ is a consequence of ceaseless
bombardment by the thermal motion of neighbouring molecules,
slowed by the viscosity of the surrounding liquid9,10. In the
living cell, however, Brownian motion of organelles is largely
restricted11. Instead, diffusive motion of organelles can be
enhanced by ATP-dependent activity, such as molecular motors
acting on the cytoskeleton12,13. To account for the mechanistic
difference between thermal-induced and ATP-dependent random
motion over short timescales, such diffusive behaviour of cellular
structures is called ‘active diffusion’ (AD)14,15.

The behaviour of POs and LDs in the filamentous fungi
U. maydis, Penicillium chrysogenum and Aspergillus nidulans
show similarities to mammalian cells. A small population of
fungal LDs and POs undergo DT along microtubules (MTs)16–18,
whereas the majority of the POs and LDs are scattered along the
length of elongate hyphal cells, where they show short-range
motions. DT of POs is also blocked when kinesin-3, or a Hook
motor adapter on early endosomes (EEs) is deleted16,18,19. This is
due to ‘hitchhiking’ of POs on moving EEs18,20. Interestingly, in
the absence of kinesin-3 and hook, POs cluster at the growing
hyphal tip16,18–20. A similar clustering at the tip was described in
dynamin mutants in P. chrysogenum17. The polar clustering of
POs in Ddnm1 has been taken as an indication for the apical
formation of these organelles17. Alternatively, unknown
cytoplasmic forces may act on existing POs and ‘push’ them to
the hyphal tip, when MTs are disrupted.

Here we use the model fungus U. maydis to investigate the
mechanism by which organelles are distributed in the hyphal cell.
We show that F-actin and myosin-5 exert a polar drift (PD) force
that moves POs and LDs to the growth region when MTs
are absent. We further demonstrate that random motion of POs
and LDs depends on MTs and involves bidirectional EE
motility (energy-driven movement), which occurs along laterally
bending MTs. In addition, we present a mathematical model,
which predicts that AD and DT counteract actin-based PD to
(i) distribute the POs, (ii) increase their mobility and (iii) to
support their mixing in the cytoplasm. This suggests that the even
distribution of organelles is an emergent property of these
counteracting forces within the cell. Finally, we show that a
similar balance between such cytoskeletal forces also distributes
POs in mammalian COS-7 cells, suggesting that this may be a
general principle for organelle distribution that is conserved from
fungi to mammals.

Results
POs shift towards the hyphal tip in the absence of MTs. In this
study, we used the fungal model U. maydis to analyse the
mechanism by which POs are distributed and mixed in a
eukaryotic cell. U. maydis hyphae consist of a single elongate cell
that expands at the growing tip and contains a central nucleus
(Fig. 1a). We expressed the fluorescent PO marker GFP-SKL18

and found that POs were scattered along the hyphal cell (Fig. 1b,
Control). At a given moment in time, the majority of the
organelles showed short-range motion, whereas B5% of all
POs underwent directed motility (4.54±2.78%, n¼ 30 cells,
3 experiments, 3,539 POs, mean±s.d.; Supplementary Movie 1).
This is in agreement with findings in mammalian CV1 cells6.

We showed recently that directed motility of POs depends on
MTs18 (Supplementary Movie 2). We disrupted MTs using
the fungal-specific MT inhibitor benomyl, which is effective in
U. maydis21, and observed that POs form apical clusters in the
hyphal cell (Fig. 1b,c). A similar result was obtained when genes
for U. maydis kinesin-3 (kin3) or a hook adapter (hok1) were
deleted (Fig. 1b Dkin3 and Supplementary Fig. 1a,b). Fungal
Hook proteins link motors to EEs and, in their absence, EEs are
immobile19,22, indicating that EEs are involved in PO
distribution. Next we asked whether apical clustering is due to
de novo formation of organelles at the tip or due to a pole-ward
apical shift of existing POs. We tested this by introducing a
photoactivatable PO reporter (paGFP-SKL) into conditional
kinesin-3ts mutants, which are impaired in MT-based transport
at restrictive temperature. This reporter is not visible (Fig. 1d,
pre-activation), until activated with a 405-nm laser pulse (Fig. 1d,
T¼ 0 h). Following 3 h at restrictive temperature (32 �C), when
kinesin-3ts is inactivated23, the previously photoactivated POs
were found to concentrate at the hyphal tip (Fig. 1d, T¼ 3 h after
photoactivation and Fig. 1e). This result suggests that POs drift to
the hyphal tip when MT-based transport is absent.

Myosin-5 is responsible for a slow pole-ward drift of POs. Next,
we set out to gain insight into the mechanism for PD of POs in
the absence of MTs. First, we attempted to determine the velocity
of this PD in cells treated with benomyl. However, drift velocity
was too low to be detected in kymographs. We therefore esti-
mated the drift velocity using the average distribution curves of
Dkin3 mutants (see Supplementary Methods). This revealed an
estimated average PD velocity of 0.00044 mm s� 1, a value B4,000
times lower than motor-based transport recorded in fungi16,24,25.
We asked whether this PD is due to F-actin-related processes that
are masked when MTs are present. To test this idea, we disrupted
MTs and investigated the displacement of individual POs over a
period of 10 s, relative to the position of the hyphal tip. When
MTs were disassembled, significantly more POs moved to the tip
(Fig. 2a, anterograde; Po0.0001; unpaired Student’s t-test with
Welch’s correction). When MTs and F-actin were depolymerized
simultaneously, using benomyl and latrunculinA, which
depolymerises F-actin in U. maydis21, POs did not move
towards the hyphal tip (Fig. 2a, þBen/LatA; P¼ 0.144). In
addition, no PO clustering occurred when MTs and F-actin were
disassembled (Fig. 2b, þBen/LatA). The same result was found
in temperature-sensitive kin3ts mutants that were shifted to
restrictive temperature in the presence of the actin inhibitor
latrunculinA (Supplementary Fig. 1c). These results strongly
suggest that F-actin-based processes drive POs towards the
growing cell tip when MTs are disrupted.

U. maydis cells contain long actin cables (Fig. 2c)21, suggesting
that F-actin-based motor activity, along the axis of the cell, might
drive POs towards the hyphal tip. We tested this idea by
disrupting MTs with benomyl and then determining the extent of
short-range motion of individual organelles, given as the diffusion
coefficient DPO, in the axial and radial direction within hyphal
cells. Indeed, short-range walks of POs were significantly
extended along the axis of the cell (Po0.0001, F-test; Fig. 2d).
We therefore hypothesized that transport along F-actin cables
could exert force on POs. If such a force is unidirectional, it could
account for the F-actin-dependent PD of POs in benomyl-treated
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cells. In fungi, actin-associated myosin-5 is thought to deliver
secretory vesicles towards the growing hyphal tip26–28. We
therefore tested for such anterograde transport by observing a
fusion of 3� green fluorescent protein (GFP) to the native myo5
gene, which encodes the heavy chain of class V myosin in
U. maydis29. Most myosin-5 moved along the cell periphery
towards the hyphal tip (89.6±1.3%, n¼ 3 experiments, 135
signals, 20 cells; mean±s.d.; Fig. 3a and Supplementary Movie 3).
Next we asked whether the fluorescent signals represent single
motors. GFP3Myo5-expressing strain contained a triple-GFP tag
fused to the endogenous myo5. Consequently, all myosin-5 motor
molecules in the cell carry two GFP3 tags (six GFPs). We
measured the fluorescence intensity of the moving GFP3Myo5
signals and compared them with fluorescent nuclear pores, where
each pore contains 16 GFP-Nup107 nucleoporin fusion proteins
(Fig. 3b; individual pore highlighted by arrowhead and in inset).
This internal calibration was used previously to determine motor
numbers in living cells of U. maydis23,30. This analysis revealed
that B70% of the moving GFP3Myo5 signal represent single
myosin-5 motors (Fig. 3c).

The constant movement of GFP3Myo5 towards the cell tip is
consistent with the notion that myosin-5 movement to the
growth region provides the force for PD of POs. We tested this
prediction directly by observing POs in Dmyo5 mutants29 and
found that POs are evenly distributed along the Myo5-deficient

cells (Fig. 3d,e, Control). When MTs were disrupted, however,
POs did not shift to the growing tip (Fig. 3d,e, Benomyl). This
result supports the idea that myosin-5 activity drifts POs towards
the cell pole when MT-based forces are abolished. To investigate
whether GFP3Myo5 directly transports PO, we co-visualized the
motor and mCherry-SKL in hyphal cells. We did not find co-
migration of the motor and POs (Fig. 3f). Finally, we measured
the velocity of GFP3-Myo5 movements. With 1.29±0.51 mm s� 1

(n¼ 162, 3 experiments; mean±s.d.), this velocity exceeds the
estimated drift velocity B3,000 times, again making it unlikely
that the motor moves POs directly. As we have no evidence for a
direct role of myosin-5 in the slow apical drift of POs, we suggest
that continuous myosin-5 transport of secretory cargo towards
the hyphal tip generates an apical flux that drives POs to the apex
when MT-based transport processes are impaired.

Our data indicate that actin-based traffic exerts an intrinsic and
unspecific force on organelles. If correct, other organelles should
also undergo PD when MTs are disrupted. We therefore observed
LDs, labelled with the putative methyltransferase Erg6-GFP18.
Similar to POs, LDs were scattered along the hyphal cell
(Supplementary Fig. 2a). Most LDs displayed short-range
motion, whereas a small proportion underwent DT over longer
distances (4.32±4.05%, n¼ 90, 30 cells, 3 experiments, 1,923
LDs; mean±s.d.), therefore behaving in a manner similar to POs.
When MTs were disrupted, or EE motility blocked in hok1
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Figure 1 | Peroxisomes migrate to the cell tip in the absence of MTs or kinesin-3. (a) Hyphal cell of U. maydis, expressing nuclear nls-RFP (nucleus). The

cell expands at one cell end (growing tip), whereas forming a septum at the other end. The nucleus is positioned near the cell centre. Scale bar, 10mm.

(b) POs in untreated hyphal cells (Control) and cells treated for 5 h with 30 mM benomyl and kinesin-3-null mutants (Dkin3). The organelles were labelled

by GFP-SKL; the cell edge is indicated in blue. Image represents a maximum projection of a z axis image stack. Images were adjusted for brightness,

contrast and gamma settings. Scale bar, 5mm. (c) Fluorescence intensity profiles of GFP-SKL in hyphal cells treated for 5 h with the solvent DMSO

(Control) or 30mM benomyl. Each data point represents the mean±s.e.m. of measurements in 34 cells (Control) and 28 cells (Benomyl) from 2

experiments. The position of the cell tip is indicated. (d) Contrast-inverted images of temperature-sensitive kinesin-3ts mutants that express paGFP-SKL.

Before photoactivation, POs are not visible (pre-activation). After treatment with a 405-nm laser, fluorescent POs appear (T¼0). After B3 h at restrictive

temperature (32 �C), these photoactivated POs accumulate at the hyphal tip (T¼ 3 h). Scale bars, 5 mm. (e) Fluorescence intensity profiles of GFP-SKL in

temperature-sensitive kin3ts cells at permissive temperature (blue profile) and 3 h at restrictive temperature (red profile). Each data point represents the

average of measurements in 20 cells from 2 experiments. The shaded area corresponds to the 95% confidence interval for the fitting, which incorporated

the s.e.m. of the experimental data. It is noteworthy that the slopes of the two curves are significantly different (Po0.0001, unpaired Student’s t-test with

Welch’s correction).
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mutants, LDs also clustered at the hyphal tip (Supplementary
Fig. 2b–d). This aggregation was abolished when F-actin was
disrupted (Supplementary Fig. 2d). We conclude that F-actin
based transport also exerts a pole-ward force on LDs, which is
overcome by MT-associated EE motility. This supports a model
whereby F-actin-based and myosin-driven motility exerts a
nonspecific pole-wards force on organelles.

EEs support AD of POs. In U. maydis, B5% of the POs
displayed directed long-range motility along MTs (Fig. 4a, red
arrowhead), whereas the majority of the organelles showed
short-range motions (Fig. 4a, green arrowhead; Supplementary
Movie 2). POs were found to switch between both states (Fig. 4b).
Short-range motion included occasional directed displacements
(o2 mm; Supplementary Fig. 1d; yellow arrowheads), which were
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slower than long-range DT (0.20±0.01 mm s� 1, n¼ 72;
Po0.0001, unpaired Student’s t-test with Welch’s correction;
mean±s.d.). We asked whether short-range motion show char-
acteristics of random diffusion by analysing individual PO
motions, using mean square displacement (MSD) analysis. This is
a powerful tool that allows one to distinguish directed motility
from various types of random motion15,31,32. The obtained curve
of MSD against time t can be fitted to ta where the exponent aB1
indicates diffusive and random behaviour and aB2 indicates
continuous DT. We found that MSD curves of PO short-range
motions increased approximately linearly, with a¼ 1.11 over 2.5 s
(Fig. 4c, Control) and a¼ 0.86 over 20 s (Supplementary Fig. 1e).
As the MSD of the short-range motions of POs increases
approximately linear with time, we refer to this motion as
diffusive and random.

Work in mammalian cells has shown that random PO motions
are ATP dependent7. We inhibited enzymatic activity in
U. maydis with carbonyl cyanide m-chlorophenyl hydrazone
(CCCP). This drug impairs cell respiration, thereby reducing
cellular ATP levels33, and was used previously to investigate
intracellular motility in U. maydis28 and random PO motion in
mammalian cells34. Under these conditions, random motions
were drastically reduced (Fig. 4d, Control and þCCCP, and
Supplementary Movie 4). Thus, we conclude that random
walking of POs in U. maydis requires ATP.

We determined the diffusion coefficient (DPO) of each
treatment from MSD curves. This revealed that extend of random
PO walking fell by 498% when CCCP was added (Fig. 4e). We
considered it possible that this effect is a consequence of increase
of viscosity, or ‘stiffening’, of the cytoplasm at low ATP levels, as
has been described as being due to the cytoskeletal structure in
other systems35. To test this, we simultaneously treated cells
with CCCP and the cytoskeleton inhibitors benomyl and
latrunculin A. Indeed, by removing the cytoskeleton, PO
diffusion was restored slightly (Fig. 4d, þBen, þ LatA and
þCCCP), with a DPO that reached B9.5% of control (Fig. 4e).
Thus, we conclude that restriction by cytoskeletal elements plays
a relatively minor part in the inhibition of random PO motion
under low ATP levels. This suggests that enzymatic activity
supports AD of POs.

We next tested whether cytoskeleton-associated processes
participate in AD of POs. Indeed, we found random motion of
POs was drastically reduced when MTs are depolymerized
(Fig. 4f,g þBen and Supplementary Movie 4). Disassembling
F-actin and MTs simultaneously further decreased random PO
motion (Fig. 4f,g þBen/þ LatA and Supplementary Movie 4).
However, these data show that MT-associated processes have
the greatest impact on random PO motion. We tested whether
LDs also undergo AD. Indeed, their random motions are also
consistent with diffusion (Supplementary Fig. 3a,b, a¼ 0.911),
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inhibited by CCCP and depend on the presence of MTs
(Supplementary Fig. 3a–c). We conclude that MT-associated
enzymatic activity underlies the diffusive random motions of both
POs and LDs.

To determine which MT-based process enhances random
walking of POs in U. maydis, we observed random motion of POs
in the proximity of GFP-labelled MTs. We found that POs, when
located close to MTs, accelerated into short axial motions
(Supplementary Movie 5; Supplementary Fig. 1d and Fig. 4h,
Control). This suggests that membrane trafficking along MTs
could enhance PO diffusive motions. In hyphal cells of U. maydis,
EEs constantly move along MTs in a bidirectional manner24,30.
We therefore tested whether EEs motility enhance PO random
motion. We made use of Dhok1 mutants, in which motors are not
bound to EEs and thus their motility is blocked22. We found that
random motion of POs was significantly impaired in Dhok1
mutants (Fig. 4h, Dhok1). Indeed, the DPO in Dhok1 mutant was
indistinguishable from that measured in the absence of MTs
(Fig. 4g; P¼ 0.9718, unpaired Student’s t-test with Welch’s
correction). We confirmed a role of EEs in random motion by
monitoring POs in mutants deleted in the small EE-associated
GTPase Rab5a, which is required for EE motility in U. maydis36.
Consistent with a role of EEs in diffusive PO motion, the DPO was
drastically reduced (Fig. 4g). Finally, we investigated a short-term
reaction of cells to inhibition of EE motility in temperature-
sensitive kin3ts mutants. After 30 min at restrictive temperature,
EE motility was fully blocked due to deactivation of kinesin-3
(ref. 23), which resulted in a reduction in random motion of
POs (Supplementary Fig. 4a,b, 32 �C). Collectively, our data
strongly indicate that MT-based EE transport is responsible for
the AD of POs.

Evaluation of mechanisms involved in PO distribution. We
have demonstrated that actin-based PD forces are opposed by
MT-associated processes and have identified bidirectional EE
motility as the underlying mechanism for AD of POs. However,
we have shown recently that EEs are also responsible for DT of
POs, as they move the organelles over long distances along
MTs18. Thus, both AD and DT of POs in U. maydis involve the
same transport machinery. To better understand the relative
contribution of each process to PO distribution and mobility, we
reconstructed the spatial architecture of the hyphal cell (Fig. 5a).
We used published data of numbers and dimensions of MTs in
U. maydis, dimension of LDs from Saccharomyces cerevisiae
(Table 1) and determined the size of POs and EEs in electron
micrographs (Supplementary Fig. 5a,b). We accounted for
the peripheral localization of F-actin cables37 (Supplementary
Fig. 5c), where most GFP3-Myo5 movements occur
(Supplementary Movie 3). In contrast, MTs located more
centrally within the hyphal cell (Supplementary Fig. 5c and
Fig. 5a). However, MTs in U. maydis have been shown to undergo
motor-driven bending of MTs38–40, which most probably
increases the chance of interaction between peripheral
organelles and MT-associated EEs (Fig. 5b and Supplementary
Movie 6). In fruit flies, such behaviour of MTs drives PO
motions31. We tested for such a mechanism in U. maydis, but
co-observation of POs and MTs revealed only rare co-motility of
POs and bending MTs (1.71±1.30%,n¼ 3 experiments, 30 cells;
mean±s.d.). We therefore considered this mechanism of minor
importance in U. maydis.

A mathematical model to describe PO organization. Next,
we developed a partial differential equation model for three
populations of POs along the axis of a single cell (for details on
modelling and used values, see Supplementary Tables 1 and 2,

and Supplementary Methods). Two of the populations represent
POs undergoing long-distance motility on MTs in anterograde or
retrograde direction (DT with a finite average persistency of
B6.5 mm in each direction), respectively. The third population
represents POs undergoing short-range and random motions
within the cytoplasm, driven by a combination of a slow polar
actin-based drift and AD. The model includes transitions between
diffusive PO motions and directed PO transport, as well as
reversals of DT. As the EEs, which drive DT of POs18, are not
observed to typically fall off at the end of MTs or form clusters at
MT tips30, we assume that directly transported POs immediately
reverse direction on reaching the ends of the domain. We
validated the model by comparing the predicted PO distributions,
indicated by fluorescent intensity profiles, with experimental
results from hyphal cells. Our model predicted accurately the PO
distribution that we observed both in control cells (Fig. 5c,
Control) and in hok1-null mutants, in which EEs no longer move
(Fig. 5c, Dhok1). Our model is therefore a valuable mathematical
tool for dissecting the relative contribution of AD and DT to PO
mobility and distribution in the cell.

AD and DT cooperate to mix and distribute POs. We exploited
our mathematical model to identify the relative contribution of
(i) EE-driven enhanced AD, (ii) motor-driven DT along MTs
(DT) and (iii) the actin-based PD to the growing tip, to the spatial
organisation and mixing of POs (for parameters used in this
modelling approach see Supplementary Table 3). The model
predicts an even distribution of organelles (Fig. 6a, ‘Control’),
whereas a ‘block’ in AD and DT led to an increase of POs at the
hyphal tip (Fig. 6a, ‘–DT/–AD’). When PD is removed,
even distribution is restored (Fig. 6a, ‘–DT/–AD/–PD’). This is
consistent with the idea that AD and DT oppose pole-ward
actin-based forces. No PO clustering is predicted in the absence of
PD alone (Fig. 6a, ‘–PD’), suggesting that AD and bidirectional
PO transport are balanced. Finally, we examined the individual
importance of DT and AD. Our model predicts that PO dis-
tribution would not be significantly affected in the absence of AD
(Fig. 6a, ‘�AD’), but with moderate apical clustering of POs
when DT is excluded (Fig. 6a, ‘�DT’). Thus, according to the
model, motor-based transport is more important for distributing
POs than AD. However, when both processes are absent,
severe PO clustering is predicted to occur (Fig. 6a, compare
‘�DT/�AD’ with ‘�DT’), indicating the involvement of both
processes as being essential for even organelle distribution.

Even distribution of POs and LDs allows constant interaction
between these and other organelles, required to perform their
various cellular functions2–4. We observed interaction between
POs in U. maydis, with transient connections formed between
them that may serve to exchange lipids or metabolites2–4

(Supplementary Movie 7). Thus, both long- and short-range
movements are of probable importance for the cell. We therefore
used our model to test whether AD or DT is required for short-
range and long-range mobility of POs. We positioned POs at the
hyphal tip and simulated how long it takes for them to arrive at
various distances behind the tip (first arrival time, FAT).
We repeated these simulations 2,000 times, under control
conditions, and after excluding PD. We found that the average
FAT required to travel 25 mm from the tip is B0.7 h in both
scenarios (FAT25mm, Control¼ 0.662±0.013 h, n¼ 2,000 simu-
lations; FAT25mm, �PD¼ 0.667±0.013 h, n¼ 2,000 simulations;
Fig. 6b, c; curves overlay each other in graphs; all time values
in this experiment are mean±s.e.m. provided). This suggests
that PD does not impair PO movement, when MT-associated
processes are operational. In the absence of AD, the FAT
increases slightly (FAT25mm, �AD¼ 0.751±0.015 h, n¼ 2,000
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simulations; mean±s.e.m.). However, AD became important
for movement over shorter distances, as FAT3mm increases
twofold when AD was excluded from the simulations
(FAT3mm, �AD¼ 0.096±0.002 h, n¼ 2,000 simulations; FAT3mm,
control¼ 0.053±0.001 h, n¼ 2,000 simulations; mean±s.e.m.;
Fig. 6c). Conversely, DT is essential for long-range mobility
of POs and its absence cause a 12-fold reduction in arrival
time (FAT25mm, �DT¼ 8.294±0.213 h, n¼ 1,000 simulations;
mean±s.e.m.; Fig. 6b). However, when both AD and DT are
removed from the model, FAT increases by B200-fold
(T25mm, �DT/�AD¼ 129.017±11.874 h, n¼ 100 simulations;
Fig. 6b; mean±s.e.m.). This substantial increase is largely due

to PD, because removing it reduces the FAT significantly
(T25mm, �DT/�AD/�PD¼ 28.35±2.42 h, n¼ 100 simulation;
mean±s.e.m.; Fig. 6b). This again highlights the importance of
combinatorial activity of AD and DT for PO motility.

When considered together, the predicted variations in PO
mobility from mathematical modelling suggest that AD and DT
contribute to mixing of the peroxisomal compartment. To test
this idea further, we modified our model and simulated the
motion of two PO populations in a finite cylindrical space
(10 mm in length� 2 mm in diameter), where PD is not taken into
account. Consistent with the outcome of our motility simulations
(Fig. 6b), POs show reduced mixing when DT was excluded,
whereas the absence of AD has almost no effect (Fig. 6d and
Supplementary Movie 8). However, PO mixing is dramatically
reduced in the absence of AD and DT (Fig. 6d and
Supplementary Movie 8). This is consistent with the synergy
between the two processes in PO distribution and mobility.

In summary, our simulations suggest that (i) polar actin-based
slow drift of POs provides the force for the clustering of POs at
the growing tip, (ii) DT and, to a lesser degree, AD contribute to
overcome these PD forces, to ensure even distribution, and
(iii) AD and DT support PO mobility over short and long
distances, respectively, and (iv) mobility and mixing of POs
depends largely on both processes.

MTs oppose F-actin to distribute POs in COS-7 cells. To test
the generality of the principles predicted by our mathematical
model and the observation made in hyphae, we investigated PO
positioning in mammalian cells, using COS-7 cells that contain
GFP-SKL-labelled POs41. The organelles were evenly distributed
around the nucleus, but largely excluded from the cell periphery
(Fig. 7a). As in U. maydis, a small portion of the POs showed
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Table 1 | Dimensions and numbers of cytoskeletal elements
and organelles.

Dimension Reference

Hyphal diameter 2.03±0.03 mm (3; 58 cells)* This study
PO diameter 237.01±8.68 nm (45)* This study
EE diameter 187.35±11.4 nm (56)* This study
LD diameter B300 nm Ref. 66
Number of actin cables 4.64±1.36 (11)* This study
Diameter secretory vesicle 30–50 nm Ref. 67
Number of bundles 2 Ref. 23
Number of MTs in bundle 3 Refs 23,38
Diameter of a MT bundle E50 nm Ref. 38
Distance organelle to MT 17±2 nm/B25 nm Refs 68,69
Diameter an actin filament 7–8 nm Ref. 70
Length of myosin E60 nm Ref. 62

EE, early endosome; LD, lipid droplet; MT, microtubule; PO, peroxisome.
*Mean±s.e.m. (sample size).
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DT at a given moment in time (2.40±1.66%; n¼ 90, 18 cells,
3 experiments, 8035 POs; mean±s.d.). It was shown that DT in
COS-7 cells is based on MTs42. POs switched between random
motions and directed motility (Fig. 7b and Supplementary
Movie 9), again behaving as fungal POs. Random motions
show diffusion-like properties (Fig. 7c,d, a¼ 1.06±0.1;
mean±s.e.m.) and were radically reduced when CCCP was
added (Fig. 7c,d and Supplementary Movie 10), confirming
previous reports in CHO cells7. Thus, mammalian and fungal PO
diffusion is based on ATP-dependent biological activity. We next
tested for a role of the cytoskeleton in random motion of
mammalian POs by depolymerizing MTs with the inhibitor
nocodazole and found that PO diffusion was also impaired
(Fig. 7c,d, þNoc). PO motion was further reduced when F-actin
was also disassembled by latrunculinA (Fig. 7c,d). A comparison
of the estimated DPO revealed that MTs have a greater impact on
PO diffusion than F-actin (Fig. 7e). The results are consistent
with our observations in U. maydis, suggesting that the
cytoskeleton supports AD of POs in COS-7 cells.

Finally, we tested whether the disassembly of the cytoskeleton
affects PO distribution. In the absence of MTs, PO clustered near
the cell centre in B35% of all nocodazole-treated COS-7 cells

(Fig. 7f,g, arrowhead; treatment for 6 h). This result confirms
previous reports in mammalian cells6 and reflects our findings in
U. maydis that MTs oppose intrinsic forces to enable even PO
distribution. We next tested whether F-actin is involved in PO
clustering. Interestingly, when both MTs and F-actin were
disrupted simultaneously, significantly fewer PO clusters were
found (Fig. 7f, þNoc/LatA and Fig. 7g; Po0.0001, unpaired
Student’s t-test with Welch’s correction). These clusters also
contained fewer POs, as indicated by significantly reduced
fluorescence intensity after immuno-labelling of the PO protein
Pex14 (Fig. 7h, Po0.0001, unpaired Student’s t-test with Welch’s
correction). We conclude that MT-associated processes disperse
POs, whereas F-actin-related activity induces PO clustering.
This, as well as the motility behaviour of POs, resonates
with observations in U. maydis and the predictions of
our mathematical model. Thus, the fundamental principles
underlying spatial organization of POs in the cytoplasm may be
conserved from fungi to mammals.

Discussion
In mammals and filamentous fungi, POs and LDs are evenly
distributed in the cell, where they undergo short-range random
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motions. This even distribution and local random motion
probably enables frequent organelle–organelle interaction, known
to support their various cellular functions2,43–45. In this report,
we provide evidence that even distribution of POs and LDs is
actually an emergent consequence of these opposing cytoskeletal
forces. We demonstrate that MT-associated EE motility is
required to distribute organelles. In the absence of MTs or EE
motility, POs and LDs cluster at the expanding hyphal tip, as is

consistent with our previous results18. Similar PO aggregation
was described in EE motility-defective mutants in A. nidulans16,19

and in a dynamin mutant in P. chrysogenum, and it was suggested
that POs accumulate due to their apical formation17 and a defect
in retrograde transport. In U. maydis and A. nidulans, MT plus
ends are concentrated at the tip24,46. Consequently, minus-end-
directed dynein motors are expected to remove newly formed
POs from the tip. Indeed, apical PO clustering has been reported
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in dynein mutants in A. nidulans16. However, our data and work
in A. nidulans show that deletion of plus-end directed kinesin-3
also causes polar PO clustering16,18. Here we provide an
explanation for these seemingly conflicting observations. We
show that existing POs and LDs move towards the tip of the
hyphal cell, when MTs are disrupted, and that this PD is F-actin
and myosin-5 based. However, what is the reason for this PD? To
understand this, we need to consider that fungal hyphae are polar
structures that extend by tip growth25. Such polar expansion is
driven by the constant delivery of secretory vesicles to the
apex47,48. We know little about the mechanism that underpins
this vesicle delivery. However, a central role of myosin-5 in fungal
polarized growth has been shown in several fungi25,26, including
U. maydis28,29. One may argue that myosin-5 directly transports
POs to the tip. However, we estimate that PD occurs B3,000-fold
more slowly than the velocity we measured here for myosin-5
transport. Moreover, GFP3-Myo5 and POs do not co-localize. We
therefore propose that F-actin-based trafficking of secretory
vesicles towards the tip provides a perpetual cytoplasmic flux.
Alternatively, very short-lived interactions of myosin-5 and POs,
not time resolvable in our experiments, could cause the slow
pole-ward motion.

Finally, we should consider whether polymerization of MTs or
F-actin could generate the force for apical drift of POs. In
U. maydis, MTs polymerize in anti-polar bundles towards both
cell poles23. Although MT dynamics including polymerization
and lateral bending of MTs could increase AD of POs, the
bidirectional organization of the MT array makes a role in PD of
the organelles unlikely. On the other hand, B90% of myosin-5
movements are directed to the cell tip, indicating that the actin
array is unipolar, with plus ends directed to the hyphal tip.
Therefore, actin treadmilling will create a retrograde flow,
expected to oppose plus-end myosin motors, a scenario that
was described for protein localization in mammalian stereocilia49.
Consequently, cytoskeletal dynamics is not expected to cause the
PD of POs. Taken together, we consider it most probable that
pole-ward motility of myosin-5 generates the drift of POs that,
when unopposed by MT-associated motility, moves POs and LDs
towards the growing tip.

Diffusion in the cytoplasm is enhanced by the activity of
molecular motors12,14,15. Organelles display diffusion-like
random motion, which was suggested to be a consequence
of Brownian thermal motion and, more importantly, random
ATP-dependent ‘fluctuating forces’ (overview in ref. 13). Our
MSD analysis confirms that random motion of POs and LDs in
U. maydis and COS-7 cells has diffusion-like properties (aB1).
Consistent with an important role of active processes, PO
diffusive random motion is largely abolished when ATP levels are
reduced. This is consistent with the idea that enzymatic activity,
rather than thermal Brownian motion, underlies organelle
random motion in both cell types. We also demonstrated that
AD of POs in U. maydis depends largely on MTs. These
cytoskeletal fibres enable constant bidirectional motility of EEs50,
suggesting that endosome trafficking could provide the force that
enhances PO random motion. Indeed, random PO motions are
reduced drastically when EE transport is inhibited in hok1
mutants. In fact, no significant difference in diffusion rates is
found in the absence of MTs or when EE motility is blocked
(P¼ 0.9718). Thus, bidirectional EE motility along MTs is most
likely to be the major force enhancing PO diffusive motion. This
is reminiscent of membrane trafficking in plants, which drives
hydrodynamic flow in the cytoplasm, thereby transporting
molecules, small particles and, indirectly, moving other
organelles51,52. Similarly, vesicle transport along MTs mediates
cytoplasmic streaming in Drosophila oogenesis53 and myosin-5-
based vesicle trafficking exerts force on nuclei in mouse oocytes15.

Thus, a role for membrane trafficking in mixing of the cytoplasm
and embedded organelles is apparently conserved across the
Kingdoms.

We report that B95% of all POs show AD, whereas o5% of
POs in U. maydis and COS-7 cells undergo motor-driven
DT along MTs. Although this latter number is small, our
mathematical modelling suggests that this DT is important for
PO distribution, as well as PO mobility and mixing over long
distances. This confirms previous modelling results, predicting
significant increases in organelle–organelle interactions through
DT54. At first glance, AD appears to be irrelevant for long-
distance movement, PO mixing and establishment of an even
distribution of POs in the hyphal cell. In fact, one could argue
that AD is an irrelevant byproduct of constant EE motility,
required to distribute the protein translation machinery55 and
various organelles18. However, this is clearly not the case. First,
our modelling predicts that AD increases the movement of POs
over short distances (twofold increase of mean FAT to 3 mm from
tip; Fig. 6c). POs interact with each other and increasing
their mobility by AD supports this organelle–organelle
communication. Second, AD adds robustness to long-distance
PO mobility, PO distribution and mixing. Our simulations
demonstrate that simultaneous removal of DT and AD
dramatically affects these parameters. This is best illustrated by
the effect on long-distance retrograde mobility, shown as FAT
over 25mm, which was decreased 12-fold when DT was ignored,
but decreased B200-fold when AD was removed as well.
However, why is AD on its own of little importance for PO
mobility? To understand this, we have to consider that DT is both
dominant and bidirectional; it, alone, is almost enough to mix
and distribute POs in the cell. However, when DT is not
operational, AD is the only process opposing PD. In the absence
of both AD and DT, pole-ward F-actin-based membrane
trafficking induces polar organelle drift and dramatically alters
organelle distribution and retrograde PO diffusion.

We have shown that biological activity is needed to evenly
distribute and mix organelles in the cytoplasm. At first glance,
this finding is surprising. Fick’s law of diffusion postulates that
thermal random motion will reduce gradients and thus, on
average, should evenly distribute organelles in a cell. However,
within the crowded cytoplasm, thermal Brownian motion of
membranous organelles is restricted. This limitation in mobility is
overcome by motor-dependent activity, which enhances random
movement of organelles, a process named AD14,15. In U. maydis,
constant bidirectional EE transport supports AD of POs and most
probably LDs, suggesting that this process increases mobility of
organelles. Indeed, modelling confirms this notion over short
distances. However, the model also predicts that AD alone is not
sufficient to mix POs or to ensure their even distribution in the
cell. In fact, even distribution requires the cooperation of both
AD and rare directed motility. Moreover, MTs need to explore
the lateral space of the cell by motor-driven bending. We report
here that all these motor-driven processes compensate for the
tip-directed F-actin-based flux (Fig. 8). This pole-ward force is a
result of continuous delivery of growth supplies to the expanding
hyphal tip. As apical tip extension is a hallmark of filamentous
fungi, such polar forces are an inevitable emergent phenomenon
of polarized invasive growth. Finally, in COS-7 cells, POs
aggregate when MTs are absent and such clustering is reduced
when F-actin is also disrupted. Thus, myosin-related forces may
act on mammalian POs and are opposed by MT-dependent
transport processes. Alternatively, retrograde treadmilling in the
peripheral actin network could account for PO clustering in COS-
7 cells. Although more mechanistic insight remains elusive, our
results highlight that the fundamental principles underpinning
organelle positioning are common to fungal and mammalian cells.
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Methods
Growth conditions. U. maydis. Liquid cultures were grown at 28 �C, shaking at
200 r.p.m., for 8–12 h in complete medium, supplemented with 1% (w/v) glucose56.
Hyphal growth was induced by transferring the yeast-like cells to nitrate
minimal medium, supplemented with 1% glucose (NMGlu), following published
procedures55. Microscopic observation was started following additional 8–14 h
growth at 28 �C, 200 r.p.m. in NMGlu. Temperature-sensitive mutant strain
AB33Kin3ts_paGSKL or AB33Kin3tsGSKL was grown in CMGlu for 8–12 h. Hyphal
growth was induced in NMGlu at permissive temperature (22 �C) for 8–14 h.
To inactivate Kin3ts, these liquid cultures were transferred to restrictive
temperature (32 �C), and PO distribution and random PO motion were monitored
in permissive and restrictive temperature after 3 h or 30 min, respectively.
The control strain AB33GSKL was treated accordingly.

Mammalian COS-7 cells. COS-7 (ECACC 87021302) and COS-7-GFP-SKL
cells, which stably express GFP-SKL fusion protein41, were maintained in DMEM
medium high glucose (4.5 g l� 1) (Life Technology, Paisley, UK) supplemented with
10% FBS (w/v; Life Technology), 100 U ml� 1 penicillin and 100 mg ml� 1

streptomycin (Life Technology), at 37 �C in a 5% CO2-humidified incubator
(Thermo Fisher Scientific, Waltham,USA).

U. maydis strains and plasmids. Strains AB33paGFP2, AB33GSKL, AB33D
Kin3GSKL, AB33DHok1GSKL, AB33G3MyoV, AB33LifeactG and AB33GT were
described previously18,23,28,55. Strain AB33GTub1GSKL allowed co-visualization of
POs and MTs, and was generated by digestion of poGSKLH (ref. 18) with BglI and
integrated ectopically into AB33GT (ref. 23). The temperature-sensitive strain
AB33DKin3Kin3ts_paGSKL was used to study inactivation of a mutant allele of
kinesin-3 on PO distribution. It was obtained by digestion of plasmid pKin3ts

(ref. 23) with BsrGI, followed by ectopic integration into a kin3-null mutant strain
AB33DKin3Kin3ts (ref. 55). Successful integration was confirmed by studying the
rescue of the morphological phenotype of AB33DKin3Kin3ts at permissive (22 �C)
and restrictive (32 �C) temperatures. This was followed by ectopic integration of
plasmid popaGFP-SKLC, digested with EcoRV. Plasmid ppaGSKLC was generated
by fusing the PO targeting signal 1 (SKL¼ serine–lysine–leucine) to the carboxy
terminus of paGFP (ref. 57), using primers GD112 and GD113 (Supplementary
Table 4). The carboxin resistance cassette was amplified from paGRab5a, using
primers GD110 and GD111 (Supplementary Table 4). Strain AB33G3Myo5GSKL
was generated by ectopic integration of plasmid poCmChSKL (ref. 18), which
was digested with AgeI, into strain AB33G3Myo5 (ref. 28). To generate strain
AB33DRab5aGSKL, the plasmid poCGSKL (ref. 37) was digested with AgeI and
ectopic integrated into strain AB33DRab5a (ref. 36). All fragments were ligated by
yeast recombination58, using S. cerevisiae strain DS94 (MATa ura3-52 trp1-1
leu2-3 his3-111 lys2-801) and confirmed by restriction enzyme digestion. Strain

AB33DMyo5_GSKL allowed the observation of POs in the absence of myosin-5.
It was generated by digestion of poGSKLC (ref. 18) with AgeI, followed by ectopic
integration into AB33DMyoV (ref. 59). For the genotype of all strains, see
Supplementary Table 5. For experimental usage of all strains, see Supplementary
Table 6. U. maydis transformations were performed following published
protocols60. In brief, protoplasts from 50 ml cell suspensions, grown overnight in
YEPS medium (1% (w/v) yeast extract, 25 (w/v) bacto-peptone and 2% (w/v)
sucrose) were generated by incubating with 7 mg ml� 1 Novozyme 234
(NovoNordisk, Denmark) in SCS (20 mM sodium citrate pH 5.81 and 1 M sorbitol)
for B15 min at room temperature. Cells were harvested by low-speed
centrifugation, washed three times with cold SCS and resuspended in 500 ml cold
STC (10 mM Tris-HCI pH 7.51, 100 mM CaCI2 and 1 M sorbitol). Fifty microlitres
of this protoplast suspension were incubated with DNA and 1 ml heparin (stock:
15 mg ml� 1 in water) for 30 min on ice. Five hundred microlitres STC/40%
polyethylene glycol was added, followed by 15 min incubation on ice. The cell
suspension was transferred onto regeneration-agar plates (1.0% (w/v) yeast extract,
2.0% (w/v) bacto-peptone, 2.0% (w/v) sucrose, 18.22% (w/v), sorbitol and 1.5%
(w/v) agar) and incubated for 2 days at 28 �C before further analyses.

Live-cell imaging. U. maydis microscopy was performed as previously described30.
In brief, cells were placed on a 2% agarose cushion and observed using a motorized
inverted microscope (IX81; Olympus, Hamburg, Germany), using a Plan-
Apochromat � 100/1.45 numerical aperture total internal reflection fluorescence
oil objective or UPlan-SApochromat � 60/1.35 numerical aperture oil objective
(Olympus). Fluorescent proteins were excited by 70 mW solid-state lasers, at
488 and 561 nm, controlled by a VS-LMS4 Laser Merge System (Visitron Systems,
Munich, Germany). Photobleaching experiments were performed using a
405-nm/60-mW diode laser, dimmed to 15 mW output power, which was
controlled by a UGA-40 unit (Rapp OptoElectronic, Hamburg, Germany) and
VisiFRAP-2D FRAP control software for Meta Series 7.5.x (Molecular Devices,
Downingtown, PA). Simultaneous observation of mCherry and enhanced GFP
fluorescence was performed using a Dual-View Micro Imager (Photometrics/Roper
Scientific, Ottobrunn, Germany), equipped with a dual-line beam splitter
(z491/561; Chroma Technology Corp., Olching, Germany), an emission beam
splitter (565 DCXR; Chroma Technology Corp.), an ET-Band pass 525/50
(Chroma Technology Corp.) and a single band-pass filter (BrightLine HC 617/73;
Semrock, Rochester, USA). Images were acquired using a cooled charge-coupled
device camera (CoolSNAP HQ2; Photometrics/Roper Scientific). For temperature-
dependent experiments, the objective lenses were cooled or heated using a metal
hull connected to a water bath (Huber, Offenburg, Germany). The microscopic
system control, all image processing and quantitative analysis was done using
MetaMorph 7.5.x (Molecular Devices).

Mammalian COS-7 cells were observed using an Olympus IX81 microscope
(Olympus Optical, Hamburg, Germany), equipped with a PlanApo � 100/1.40 oil
objective and enhanced GFP filter sets (470/40 ET band-pass, beam-splitter T 495
LPXR and a 525/50 ET band-pass filter; Chroma Technology Corp.) and a TxRed
HC filter set (562/40 BrightLine HC, HC beam-splitter BS 593 and a 624/40
BrightLine HC; Semrock). Cells were kept in a closed chamber in glass-bottom
35-mm petri dishes with 20 mm bottom well (Greiner Bio-One, Frickenhausen,
Germany) in HEPES-buffered DMEM without phenol red (DMEM 1� , Gibco,
Life Technology). Temperature was kept at 37 �C, using a temperature control
system and a microscope objective heater (Visitron Systems). Image acquisition
was performed as described above.

Electron microscopy. For immuno-gold labelling, cells were aldehyde-fixed
(0.5% glutaraldehyde in 0.2 M PIPES buffer pH 7.2), sedimented at 17,000 g and
washed in fresh buffer followed by cryoprotection in 2.3 M sucrose in PBS (pH 7.2;
137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4 and 1.5 mM KH2PO4). Eighty-
nanometre cryosections, cut at � 100 �C using a LN ultracryomicrotome (RMC
Boeckeler Instruments Inc., Tucson, USA) were thawed and labelled with a rabbit
polyclonal antibody against GFP (stock: 2 mg ml� 1, diluted 1:200 in fish skin
gelatin/PBS; GFP Tag Antibody A-11122, Life Technologies, Paisley, UK), followed
by 10 nm Protein-A gold (BBI Solutions, Cardiff, UK). Subsequent contrasting was
done with 2% (w/v) methylcellulose and 2% (w/v) uranyl acetate in water.
Quantification of the labelling density was performed by taking 20 micrographs
per sample with a JEOL JEM 1400 transmission electron microscope, operated
at 120 kV and nominal magnification of 80k, equipped with a digital camera
(Gatan ES1000W, Abingdon, Oxon, UK). Gold particles were counted within
structures of interest and in the surrounding cytoplasm and related to area
or membrane boundary length estimated by point or intersection counting,
respectively. Gold particles were categorized as membrane-associated if the particle
was located less than one particle width from a membrane profile. To quantify the
size of POs and EEs, profiles of both organelles were sampled by systematically
scanning the labelled sections and taking images at a nominal magnification
of 150k. The mean diameter of organelles was estimated by averaging the
measurements along the horizontal and vertical axis of the organelle profiles.

Drug treatment. For disruption of MTs or F-actin cytoskeleton in U. maydis,
500 ml of the cell culture was supplemented with 30 mM benomyl (stock: 30 mM in
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dimethylsulphoxide (DMSO); Fluka, Sigma-Aldrich, Gillingham, UK) 20 mM
latrunculinA (stock: 20 mM in DMSO, Life Technologies) or 100 mM of CCCP
(Sigma-Aldrich) and incubated for 30 min in at 28 �C at 200 r.p.m. Control cells
were incubated under identical conditions with 0.5 ml DMSO. Cells were placed on
2% (w/v) agarose cushions, supplemented with 30 mM benomyl, 20mM latrunculin
A or corresponding amounts of their solvent DMSO, respectively. Image series of
100 frames at 150 ms were acquired. The effective depolymerization of MTs or
F-actin was tested in control experiments, using GFP–a-tubulin-expressing strain
AB33GT and Lifeact-GFP-expressing strain AB33LifeactG. Reversibility of CCCP
treatment was confirmed by washing cells, followed by 15–30 min incubation in
fresh medium and monitoring the reappearance of PO movements.

To investigate the effect of cytoskeletal drugs or CCCP on mammalian PO
motility, GFP-SKL-expressing COS-7 cells were grown in glass-bottom dishes
(Greiner Bio-One). Nocodazole (10 mM; stock: 33.2 mM), 300 nM (long-term
incubation) or 20mM latrunculin A (short-term incubation; stock: 20 mM) or a
combination of both, was added to the culture medium for 30 min or 6 h, followed
by microscopic analysis in DMEM without phenol red (DMEM 1� , Gibco, Life
Technology) at 37 �C for no longer than 1 h. To investigate the effect of cytoskeletal
drugs on PO distribution, unlabelled COS-7 cells were grown on glass coverslips
and were treated with 10mM nocodazole, 300 nM latrunculin A, or both drugs
simultaneously for 6 h, followed by fixation in 4% (v/v) paraformaldehyde in PBS
pH 7.4. Cells were permeabilized with 0.2% (v/v) Triton X-100, blocked with 1%
(w/v) BSA and incubated with rabbit polyclonal anti-Pex14 antibodies (kindly
provided by D. Crane, Griffith University, Brisbane, Australia), followed by
incubation with goat-anti-rabbit IgG conjugated to Alexa 488 (Life Technology).
Effective disruption of MTs and F-actin was tested in parallel experiments, staining
F-actin with Phalloidin-A594 (Life Technologies) and MTs with anti-a-tubulin
(Sigma-Aldrich).

Analysis of directed organelle and GFP3Myo5 motility. Directed motility and
run length of POs were analysed in image series and in movies, taken from strain
AB33GSKL. Directed motility was defined as rapid and continuous motility that
lasted 42 mm. The percentage of motility was determined in a 15-s time interval.
To analyse the percentage of POs or LDs, which showed DT at a given moment in
time in U maydis, image series of 150 frames were acquired, using strains
AB33GSKL or AB33Erg6G. Kymographs were generated and the total number as
well as the number of motile POs/LDs were counted at three different time points
(plain 10, 50 and 100). To analyse the percentage of POs, which showed DT at a
given moment in time in COS-7 cells, 100 z-series with a z-distance of 500 nm and
an exposure time of 100 ms were taken. From each z-series, a maximum projection
was generated and out of those a movie was reconstructed. Owing to the size of the
cells, two regions per cell, containing of up to 125 POs, were randomly chosen. The
total number and the number of motile POs (within the 500-ms window) was
counted at three different time points (plain 10, 50 and 80).To measure the flux of
GFP3-Myo5, image series of 150 frames were acquired, using strain AB33G3Myo5,
150 ms exposure time and a 488-nm laser at 90% output power. Kymographs were
generated from these image stacks using MetaMorph 7.5.x, and anterograde and
retrograde flux was measured over 7 s at 5 mm behind the hyphal tip.

For co-localization of GFP3Myo5 and mCherry-SKL-containing POs,
overnight-grown cells of strain AB33G3Myo5GSKL were shifted to hyphal growth
as described above. For an accurate alignment of myosin-5 movements and POs,
data acquisition was performed after calibration of the system, using 0.2 mm
TetraSteck fluorescent microspheres (Thermo Fisher Scientific; diluted 1:10 in
water). To this end, images of the beads in both channels were taken, using the dual
imager (10% output power of 488 and 561 nm lasers, at 150 ms) and the channels
were aligned using the ‘Split View’ function in MetaMorph, using the defined
parameters to align the acquired data. GFP3Myo5 motility events were detected in
one image stack and the region of interest was transferred to the red-fluorescent
image stack. Kymographs of both regions were generated and overlaid using
MetaMorph. Data were compared using unpaired Student’s t-testing, including
Welch’s correction to account for potential differences in variances, using
Prism5.03 (GraphPad, La Jolla, USA).

Estimation of motor numbers in moving GFP3Myo5 signals. The numbers of
motors in distinct and moving GFP3Myo5 signals were estimated by comparison of
fluorescent intensities to GFP-Nup107, a fluorescent nucleoporin. This followed
previously published protocols, used to determine kinesin-3 and dynein motor
numbers in U. maydis30,61. We assumed that myosin-5 motors in U. maydis
contain two myosin heavy chains62, encoded by the myo5 gene in U. maydis29.
As a triple GFP gene was inserted in this native locus, all myosin-5 motors in the
cells contain six GFP. To determine the number of motors in a moving GFP3Myo5
signal, the tip region of GFP3Myo5-expressing hyphae was photobleached and after
5 s short image series were captured. Moving signals were identified and their
fluorescent signal intensity, corrected for the adjacent background, was determined
in the first frame of the image sequence. This fluorescent intensity was compared
with the intensity of individual fluorescent nuclear pores in strain FB2N107G, each
containing 16 GFP-Nup107 molecule30,61. From this comparison, the number of
myosin-5 motor complexes was estimated.

Analysis of PO and LD distribution. To measure PO and LD distribution in
hyphal cells of control, kinesin-3 and hok1-null mutants (strains AB33GSKL,
AB33DKin3GSKL and AB33DHok1GSKL, AB33Erg6G and AB33DHok1mCRa-
b5aErg6G), z axis image stacks were acquired with an exposure time of 150 ms and
200 nm steps in the z-direction. From these stacks, maximum projections were
generated using MetaMorph 7.5.x and the average fluorescent intensity over the
length of individual hyphal cells was measured using the line-scan function in
MetaMorph 7.5.x. The measurements of each hyphal cell were transferred into the
software Excel (Microsoft, Redmond, USA) and the mean intensity was calculated.
Analysis of PO and LD distribution after disruption of the cytoskeleton in control
strain AB33GSKL, AB33DMyo5GSKL and AB33Erg6G was done in an analogous
way. Cells were treated for 5 h in 2–5 ml cultures with cytoskeleton inhibitors
(30 mM benomyl, 20mM latrunculin A or a combination of both) and were
incubated at 28 �C, 200 r.p.m. Subsequently, PO distribution was measured as
described above. The effect of inactivation of kinesin-3 on PO distribution
was investigated in strain AB33Kin3ts_paGSKL. POs in hyphal cells were bulk
photoactivated in a custom-built glass chamber, containing a coverslip, inside
which the cell suspension was placed, and a liquid reservoir to prevent desiccation.
Photoactivation was performed using a � 10 objective (Olympus) and a 405-nm
laser at 100% output power. Successful photoactivation was confirmed by
epi-fluorescent microscopy, using the 488-nm observation laser at 20% output
power. Cells in the custom-built glass chamber were transferred into a 32 �C
incubator for 3 h. Z axis image stacks were acquired at an exposure time of 150 ms
and 200 nm steps in the Z-direction and analysed as described above.

MSD and diffusion rate estimation. To analyse the random motions of POs,
the MSD was calculated according to published methods63. Image series of
GFP-SKL-expressing U. maydis and COS-7 cells were recorded at 150 ms
interval and covering 15–45 s observation time. Random motions of POs were
automatically detected using tracking software that determined the PO centre after
Gaussian filtering (for details, see Supplementary Methods). Trajectory plots were
drawn in MATLAB R2011b (MathWorks, Cambridge, UK), using trajectories that
record 10 s of random motions. MSD calculations were done using MATLAB
R2011b and curve fitting analysis was done in Prism 5.03. Diffusion coefficients
DPO were calculated from MSD of individual trajectories, using MATLAB R2011b
or derived from fitted curves using Prism 5.03. Unpaired Student’s t-testing,
including Welch’s correction to account for potential differences in variances, was
done in Prism5.03. To calculate that axial and radial diffusion rates, the axis of
U. maydis hyphal cells was determined using the image moments64 of the live-cell
imaging data after applying a median threshold. Subsequently, individual
trajectories were oriented according to this spatial information and DPO for
random movements along the axis (axial) and 90� to the axis (radial) was
calculated as described. Nonlinear curve regression and F-tests for DPO comparison
were performed using the software GraphPad Prism 5.03. Further details of MSD
analysis and DPO estimation can be found in the Supplementary Methods.

Mathematical modelling. The mathematical model of PO distribution along the
cell was based on the findings that POs are distributed by (i) anterograde-directed
motility, (ii) retrograde-directed motility, (ii) AD implemented by MT-based
membrane trafficking and (iv) F-actin-based PD. These factors were combined in a
three-population modelling approach65. Our model assumes that three populations
of POs contribute to the entire distribution pattern of POs in the cell. The first two
populations represent POs that bind to EEs and undergo anterograde or retrograde
movements along MTs; switching between these two populations is determined by
the turning of PO motility. The remaining population represents the POs that
undergo AD and slow pole-ward drift. POs can switch between random motion
and DT, thereby allowing transition between all three populations. The directed
motility to random movement switching rate was determined from experimentally
measured PO run lengths. The transition rate from random to directed motility
was obtained from image sequences. To this end, POs were observed at 4.5 s
intervals and the number of POs that switched from random to DT counted. The
switching rate was determined by fitting the proportion of switching events to a
one phase association function. Taking into account that MT bending enhances
lateral interaction of POs with moving EEs, axial DPOs and switching rate to
directed motility were estimated from randomly chosen POs. Model predictions of
PO distributions were calculated numerically in the software Maple 17 (Maplesoft
Europe Ltd, Cambridge, UK). The motility of individual POs and their FAT to a
distance distal from the hyphal tip were simulated in Dev Cþ þ (http://
www.bloodshed.net/devcpp.html). Further details on the mathematical model and
simulations can be found in the Supplementary Methods.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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