Skip to main content
. 2016 Jun 7;16:79. doi: 10.1186/s12886-016-0232-2

Table 8.

“Selected gender effects adjusted for by body height”

Variable under investigation Statistical significant difference male (m) versus female (f) Regression analysis Variable after adjustment for body height based on regression model
men: n = 108
women: n = 110
Mean anterior corneal radius (CCRant) m: 7.87 (SD 0.25); f: 7.77 (SD 0.26); p = 0.003 CCRant = 6.37 + 0,00837 Height m: 7.82 (SD 0.24); f: 7.83 (SD 0.26); p = 0.701
Mean posterior corneal radius (CCRpost) m: 6.51 (SD 0.24); f: 6.43 (SD 0.25); p = 0.014 CCRpost = 5.26 + 0,00699 Height m: 6.46 (SD 0.23); f: 6.48 (SD 0.24); p = 0.591
Central corneal thickness (CCT) m: 558.7 (SD 32.3); f: 548.7 (SD 32.0); p = 0.023 CCT = 532 + 0.128 Height m: 557.3 (SD 32.3); f: 549.2 (SD 32.2); p = 0.064
Anterior chamber depth (ACD) m: 2.92 (SD 0.35); f: 2.74 (SD 0.38); p < 0.001 ACD = 1.25 + 0,00912 Height m: 2.86 (SD 0.35); f: 2.81 (SD 0.38); p = 0.314
Anterior chamber volume (ACV) m: 171.6 (SD 39.2); f: 148.9 (SD 36.7); p < 0.001 ACV = − 43.0 + 1,17 Height m: 163.9 (SD 38.6); f: 157.8 (SD 36.8); 0.235
Axial length (AL) m: 24.16 (SD 1.01); f: 23.44 (SD 0.97); p < 0.001 Axial length = 17.0 + 0.0393 Height m: 23.88 (SD 0.97); f: 23.72 (SD 0.98); p = 0.219
Central foveal subfield thickness (CFST) m: 284.6 (SD 20.3); f: 273.9 (SD 19.4); p < 0.001 CFST = 182 + 0.562 Height m: 280.4 (SD 20.3); f: 277.7 (SD 19.2); p = 0.324
Men: n = 103
Women: n = 103
Minimal retinal thickness (CRTmin) m: 233.4 (SD 20.1) median 232.0; f: 229.8 (SD 19.7) median 228.0; p(MW-U) = 0.162 CRTmin = 194 + 0,216 Height m: 232.1 (SD 20.1) median: 230.6; f: 231.4 (SD 19.5) median 229.4; p (MW-U) = 0.903
Men: n = 103
Women: n = 103

Caption: Mean data stratified by gender for men (n = 108) and women (n = 110) for corneal radii, CCT, ACD, ACV, AL and retinal thickness measured as CFST and CRTmin. All but CRTmin presented with statistically significant gender effects

Association of respective variables with body height was investigated and adjusted based on a regression model where variable_new = variable_old –regression function + mean (variable_old). After adjustment for body height, all investigated variables presented with no gender effects, therefore differences in stature between men and women may explain some of the differences in the biometric data reported