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INTRODUCTION

Tissue engineering involves the development of growth and re-
generation techniques for connective tissues or organs using a 
combination of cells and a scaffold to produce a functional or-
gan [1]. These engineering techniques therefore begin with the 
implantation of artificial materials, providing a proper environ-
ment for cells or tissues to be grown and functionalized [2]. The 
scaffolds are often formulated with a biodegradable polymer, 
extracellular matrix (ECM), and growth factors, serving as a 
skeleton to be filled up with cells, and eventually grow into 
3-dimensional tissues. Given the importance of intercellular 
connections in the field of tissue engineering, considerable ef-
forts have been made to design an artificial ECM composed of 
proteoglycan (PG) and fibrous proteins in vitro. It is particularly 

important to achieve an architecture of a 3-dimensional net-
work and determine the effective ingredients in its chemical 
composition. Among the essential noncellular components, the 
ECM is a heterogeneous, connective network composed of fi-
brous glycoproteins, PGs, and small molecules that coordinate 
in vivo to provide the physical scaffolding, mechanical stability, 
and biochemical cues necessary for tissue morphogenesis and 
homeostasis. 
  The overview and importance of the ECM has been well-
summarized in a review by Frantz et al. [3] and references there-
in, which mainly focuses on the ECM molecular composition, 
ECM and tissue homeostasis, ECM and tissue aging, tensional 
homeostasis, and fibrosis, and the challenges related to natural 
and synthetic engineered ECMs. In this review, we focus on se-
lected aspects of the roles of the ECM that have been recently 
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The extracellular matrix (ECM) is a heterogeneous, connective network composed of fibrous glycoproteins that coordinate in 
vivo to provide the physical scaffolding, mechanical stability, and biochemical cues necessary for tissue morphogenesis and 
homeostasis. This review highlights some of the recently raised aspects of the roles of the ECM as related to the fields of bio-
physics and biomedical engineering. Fundamental aspects of focus include the role of the ECM as a basic cellular structure, for 
novel spontaneous network formation, as an ideal scaffold in tissue engineering, and its essential contribution to cell sheet 
technology. As these technologies move from the laboratory to clinical practice, they are bound to shape the vast field of tissue 
engineering for medical transplantations. 
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put forth in the fields of biophysics and biomedical engineering, 
which have not yet been generally addressed, in order to shed 
light on the most suitable biological ECM materials that can be 
utilized as key materials in tissue engineering.

BIOMEDICAL CONTEXT OF THE 
EXTRACELLULAR MATRIX 

Interaction Between the ECM and Cytoskeleton
One of the most important aspects is to obtain a detailed un-
derstanding of how the ECM network interacts with cytoskele-
tal networks in cells. The cytoskeletal network in most eukary-
otic cells is also a combinatorial form of polymeric networks 
made of actin filaments, microtubules, and intermediate fila-
ments [4,5]. These networks play an essential role in determin-
ing not only the shape and mechanics of a cell but also, and 
more importantly, cell motility. In particular, the orchestrated 
movement of cells in particular directions to specific locations 
is an essential requirement during natural tissue development 
[6]. These cellular migrations are often explained using a cyto-
skeletal model; the spontaneous cycling of the polymerization 
and depolymerization of cytoskeletal filaments leads to cellular 
motility at the front of a cell that forms a tight interface with the 
extracellular network. 
  In order to understand the cytoskeletal mechanism in a cell, 
the concept of symmetry breaking was introduced. For exam-
ple, individual actin filaments and microtubules are structurally 
and kinetically polarized to generate pushing forces and pulling 
forces, reflecting the asymmetric nature of the filament organi-
zation in cytoskeletal networks [7]. The mechanical properties 
(i.e., rigidity and elasticity) of the external network are known 
to influence the polarized organization of cytoskeletal fibers in 
the target cells. Therefore, development of an optimized ECM-
based scaffold, from a simple supporting scaffold to a more 
complex dynamic bioactive environment, requires consider-
ation that the internal cytoskeletal fibers may respond differ-
ently against the given extracellular matrices, both biologically 
and physically. Hence, the effectiveness of the scaffold in terms 
of both cellular growth (chemical response) and cellular migra-
tion (physical response) should be reassessed.  

Spontaneous Formation of ECM Networks
As described in the Introduction, the ECM is a heterogeneous, 
connective “network” that is coordinated in vivo to provide a 
physical scaffolding for cells and tissues [8]. To maintain the 

structure of the network in nature, polyanionic PGs such as 
chondroitin sulfate and heparin sulfate, with sulfonic acids as 
functional groups, coordinate and couple with glycoproteins 
while stabilizing the tissue mechanics [9-11]. Several attempts 
have been made to explain how the ECM protein fibrillogenesis 
is initiated via external mechanical forces or electrostatic sur-
face charges in vitro [12-24]. For example, Ulmer et al. [13] ob-
served that an external shear-force on hydrophobic micropat-
terned pillars could induce unfolded fibronectin (FN) mole-
cules, driving the formation of an FN network. Feinberg and 
Parker [25] developed highly ordered FN nanofabrics, and sub-
sequent work suggested that the conformational unfolding of 
FN fibrils could be induced using microcontact printing onto 
thermosensitive polymer substrates, and the release of these 
patterns led to fibrillogenesis [12]. Alternatively, instead of me-
chanical forces, Pernodet et al. [14] used highly charged poly-
mer surfaces, with charge densities equivalent to or higher than 
the cell’s surface charge (0.10 C/m2), to initiate FN molecular 
unfolding and spontaneous fibrillogenesis. More recently, Ball-
ester-Beltran et al. [15,16] showed that exposing FN molecules 
to specific surface chemistries also induced FN fibril assembly. 
In contrast to previous results obtained under applied external 
forces, the surface-triggered FN networks were limited to ran-
domly organized physiological networks [17-19].
  Although considerable research effort has been devoted to 
manufacturing fibers and fabrics composed of fibrous ECM 
proteins using mechanical or biochemical cues, little is known 
about how the protein conformation affects fibrillogenesis with 
respect to the local distributions of PGs. FN, laminin (LAM), 
and elastin (ELAS) all contain secondary structures rich in 
β-strands (accounting for 47%, 15%, and 36% of the total sec-
ondary structures, respectively) [26-28], whereas collagen 
(COL) contains a secondary structure rich in α-helices (ac-
counting for 40% of the total secondary structures) [29,30]. FN 
and LAM form networks through receptor-triggered self-as-
sembly, whereas ELAS and COL form fibers via cross-linking 
[31-34]. Moreover, FN and COL are present throughout the 
body, whereas LAM and ELAS are localized primarily in the 
basement membrane and connective tissue, respectively [32,35-
37].
  Recently, Ahn et al. [38] developed a method to guide the 
spontaneous polymerization of ECM glycoproteins along PG 
mimetic patterns, which were used to recruit, stabilize, and po-
lymerize fibrillar ECM proteins. They showed that this process 
could effectively mimic the FN assembly model in vivo (Fig. 
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1A); essentially, binding of FN molecules to integrin induces 
FN unfolding, thereby spontaneously promoting FN–FN inter-
actions and fibril assembly.  Using the FN assembly model, they 
hypothesized that FN on the receptor-like domain’s pattern can 
self-assemble into networks, and found that these precisely con-
trolled ECM connections provide a flexible, transferable sub-
strate that can be customized for use as tissue-engineered cardi-
ac scaffolds (Fig. 1B and C). First, FN binding to highly charged 
domains (polystyrene sulfonated acids, PSS) induces protein 
unfolding due to a strong electrostatic interaction with the sul-
fonic groups exposed from the PSS. Second, an increase in the 
concentration of FN near the unfolded FN at the PSS spots 
leads to molecular assembly, which forms a cluster of fibrillated 
FN molecules and becomes a node for the FN network. Third, 
once a fibril is formed, other FN molecules in the FN solution 
are sequentially connected to it in a process of energy-depen-
dent nucleation. Finally, during the postincubation step, the ad-
sorbed FN film is ruptured at the substrate and connected to 
the fibrillated FN domains. As shown in Fig. 1D, the in vivo-like 
FN networks were successfully generated. In addition, cells 
could be grown and aligned through the PG mimetics-induced 
FN networks, thus demonstrating the biocompatibility of the 

networks (Fig. 1D). Neonatal rat ventricular myocytes selec-
tively contracted in response to topological cues from the net-
works, whereas the cardiac cells on isotropic FN surfaces were 
found to be randomly distributed. The interplay between the 
hanging networks and cardiac cells revealed that a concurrent 
contraction with a minimal anchoring junction serves as an ef-
ficient cell patch system [38]. These networks can be released 
from the substrate as films and then used as substrates for the 
cultures of various primary cultured cells. Thus, further at-
tempts to mimic the assembly of the native ECM may provide 
insights into the assembly of mechanically and biochemically 
robust fibers for applications in tissue engineering.

ECM as a Native Scaffold
Tissue engineering relies on the proper use of a combination of 
cells, scaffolds, and cell-growth stimuli factors to effectively re-
construct damaged tissues for regenerative wound-healing pur-
poses [39]. In general, tissue engineering requires a scaffold, 
which is typically made of engineered biocompatible polymers 
or naturally existing ECM proteins, providing the structural 
support for cell attachment and subsequent tissue development. 
Since most cells in nature develop into tissues while residing in 

Fig. 1. Spontaneous network formation of fibronectin (FN). (A) Schematic model of FN assembly on a cellular membrane: (a) recep-
tors on the membrane, i.e., integrin, recruit the FN molecules; (b) the unfolded FNs at integrin promote FN–FN interactions and fibril 
assembly. (B) Spontaneous FN network formation of a proposed mechanistic model on the patterned surface: (a) FN is collected near 
the charged domains and consecutively propagates networks to (b). (C) Schematics of the FN network cultured with cells through (a) 
and (b). (D) Confocal microscope images of (a) FN network on polystyrene sulfonated acid islands, scale bar is 100 μm; (b) FN net-
work (green) cultured with neonatal rat ventricular myocytes (NRVMs), stained for the nucleus (4ʹ,6-diamidino-2-phenylindole), a-
actinin (red). Scale bar is 50 μm. PBS, phosphate-buffered saline. Adapted from Ahn et al. Adv Mater 2015;27:2838-45 [38].
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a matrix, the scaffold used in tissue engineering applications 
must have the following functions [1,2]: 
 � (1) Structural support for cells: cells must adhere onto a solid 

surface, and grow, migrate, and proliferate until they func-
tion normally in a manner similar to the surrounding tissues 
and organs. 

 � (2) Provide a mechanical environment to cells: scaffolds have 
to provide adequate mechanical properties, similar to the 
matrix native to the implanted sites. Depending on the ana-
tomical sites, the mechanical properties, i.e. toughness, rigid-
ity, and elasticity, will vary for the required functions.

 � (3) Biodegradability for the formation of functional micro-
vascular networks and remodeling: in practice, the role of the 
scaffold is temporary, and is required only until the patient’s 
own ECM can replace the implanted structures. In addition, 
the degradable scaffolds provide room, over time, for neo-
vascularization and remodeling in response to tissue forma-
tion.

 � (4) Biocompatibility and bioactivities: engineered scaffolds 
often induce a foreign body reaction, resulting severe inflam-
mation due to immunologic responses; therefore, a scaffold 
must induce a negligible immune reaction to the residing 
cells. More actively, the scaffolds may provide bioactive cues 
and growth factors to regulate the cellular activities.

  Unfortunately, the use of engineered scaffolds made of non-
native materials often fails to produce intact cell-cell junctions 
owing to the unnatural cellular textures, thereby isolating the 
cell-bunches from the surroundings [40,41]. To overcome this 
challenge, instead of biodegradable polymeric scaffolds, the use 
of ECM in native tissues or scaffolds synthesized from natural 
ECM proteins can provide the ideal features listed above in en-
gineered tissues. For example, COL, which is the most common 
protein in the body, can provide adequate mechanical rigidity 
and structural stability, depending on the bundling thickness 
and directional order [36,42]. ELAS is highly elastic, being re-
sponsible for the stretching or contracting of tissues, and is thus 
often used to reinforce the mechanical properties of COL-based 
scaffolds [24,37,43]. LAM is a major component of the basal 
lamina, influencing cell differentiation, migration, and adhe-
sion [23,32,44]. FN is responsible for the binding of other ECM 
components such as COL, fibrin, and heparin sulfate, as previ-
ously reviewed [11,17,18,31,35]. There are numerous types of 
ECM in tissues, and a specific tissue is composed of multiple 
ECM components. Hence, the ideal scaffold for regenerative 
medicine will be one with the ECM architecture of the target 

tissue in its native state; however, accurately mimicking the na-
tive ECM for engineered tissues remains a challenge given the 
current technology [8]. 
   
Challenges in Tissue Engineering: Cell Sheet Technology
Most approaches used in regenerative medicine can be general-
ly categorized into 3 techniques: (1) autotransplantation, which 
is the transplantation of proteins, cells, or tissues (so-called au-
tografts) from one part of the body (i.e., the tooth [45] or heart 
[46]) to another in the same patient; (2) allotransplantation, 
which is the transplantation of cells, tissues, or organs (so-called 
allografts) to a recipient from genetically nonidentical donors 
of the same species [47,48]; and (3) xenotransplantation, which 
is the transplantation of living cells, tissues, or organs (so-called 
xenografts) from one species to another [49,50]. In addition to 
ethical issues [51], significant potential problems have limited 
the use of transplantations with allografts and xenografts for 
medical treatments, including immunologic responses, xeno-
zoonosis, and genetic alterations [52]. Hence, achieving wound 
healing via autografts remains an ideal, yet challenging ap-
proach [53].
  As an alternative approach, Yamato and Okano [54] devel-
oped the field of so-called “cell sheet engineering,” which enables 
the formation of multiple single-cell layers without requiring any 
polymeric scaffolds. Cells cultured on a sacrificial layer secrete 
ECM, forming tight cell-cell junctions. A confluent cell layer is 
detached and then overlaid on top of another confluent cell lay-
er, resulting in a thicker tissue-like architecture after repeated 
processes, such as the cornea [55,56], cardiac muscles [57,58], 
liver lobule, and kidney glomeruli [59]. They named these archi-
tectures as cell sheets, which have now been applied in various 
forms in several clinical trials. Based on their clinical application, 
this cell sheet engineering approach appears to be a feasible op-
tion for achieving scaffold-free tissue formation [60]. Numerous 
reports have shown the successful use of multilayered corneal 
epithelial cell sheet transplantation and regeneration, periodon-
tal ligament cell sheet transplantation and regeneration, and 
bladder augmentation with urothelial cell sheets [61]. A recent 
report further hinted at the possibility of using cell sheets for 
3-dimensional heart tissue formation to create a cardiac patch to 
repair impaired hearts [62]. It has been noted that one of the 
major advantages of cell sheet technology is the use of the native 
ECM between the single cell sheets, providing intact cell-cell 
junctions. Ironically, one of the disadvantages of this method is 
that constructing ECM-rich tissues from cells showing limited 
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ECM secretion can be difficult in some contexts. 

SUMMARY AND PERSPECTIVES

The ECM provides the physical and functional microenviron-
ment in which cells exist. Therefore, the aim of scaffold design 
in engineered tissues is to closely mimic the ECM architecture 
of target tissues as much as possible, with respect to both struc-
ture and function. Fundamentally, researchers have been able 
to understand the unique roles of the ECM in tissue growth 
and regeneration, and have used this knowledge to realize the 
design of artificial ECMs and develop associated techniques 
and materials to implement their use. As these technologies 
move from the laboratory to clinical practice, they are bound to 
shape the vast field of tissue engineering for medical transplan-
tations. Given the positive impact of these technologies on the 
quality of life of patients, ECM-based regenerative technology 
should be continuously reassessed and explored from both a 
perspective of gaining fundamental understanding and in clini-
cal application.
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