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Abstract

Generating a detailed description of human T cell repertoire diversity is an important goal in the 

study of human immunology. The circulation is the source of most T cells used for studies in 

humans. Here we use high throughput sequencing of TCR BV19 transcripts from CD8 T cells 

derived from unmanipulated PBMC from an older HLA-A2 individual to provide a quantitative 

and qualitative description of the clonotypic CDR3 nucleotide and amino acid composition of the 

TCR β-chain from this subset of circulating CD8 T cells. Aggregated samples from six time points 

spanning ~ 1.5 years were analyzed to smooth possible temporal fluctuation. BV19 encompasses 

the well studied RS-encoding clonotypes involved in recognition of the M158–66 epitope from 

influenza A in HLA-A2 individuals. The clonotype distribution was diverse, complex and self-

similar. The amino acid composition was generally skewed in favor of glycines and there were 

specific amino acids observed at higher frequency at the NDN start position. The motif repertoire 

distribution was also diverse, complex and self-similar with respect to CDR3 length, NDN start 

and length.

INTRODUCTION

Infancy and childhood are characterized by the development of adaptive immune memory to 

environmental pathogens, eliminating the need for innate based responses and the 

inflammation that accompanies them. In the case of T cells, the generation of adaptive 

memory proceeds to such a point that an individual can become functionally athymic post-

puberty and maintain general good health. The memory T cell repertoires that are developed 

during the early period are complex and finely tuned to surveillance for recurring exposures. 

They most likely represent a complexity and optimization that approaches that of the 

nervous system. However, memory T cell repertoires are still poorly understood and not 

extensively studied.
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With the advent of next-generation sequencing it became important to analyze repertoires ex 
vivo and a number of researchers have done so (1–3). However, a detailed quantitative and 

qualitative analysis of a subset of the repertoire which contains a well studied pathogen 

epitope would be useful. While a true repertoire analysis at the clonotype level would 

include sequencing both TCR chains from the CD8 cells, current single cell approaches are 

not yet compatible with large scale analyses. Therefore, we analyzed the BV19 β-chain 

repertoire as a proxy for a full clonotype analysis. The choice of BV19 expressing CD8 T 

cells stems from our interest in CD8 T cell memory to influenza. In antigen experienced 

HLA-A2 individuals, the recall response to the influenza epitope, M158–66, predominantly 

involves CD8 T cells expressing the BV19 β-chain gene (4,5) and a restricted number of α-

chain genes (6). We went on to show that the recall repertoire (7) and functional T cells 

therein are polyclonal (8). This includes the subset of CD8 BV19 cells that bind HLA-

A2:M158–66 tetramer (8). Rank frequency analysis of the repertoire or various subsets 

thereof show power law-like distributions, and thus the repertoire can be considered a self-

similar fractal (8, 9). The complexity of the repertoire in part reflects the complexity of a 

pathogen encounter, and different clonotypes may be invoked at different stages of pathogen 

density (10). The repertoire is also relatively cross-reactive with ~ 50% of clonotypes 

capable of recognizing a substituted epitope with the extent of cross-reactivity (number of 

substituted epitopes recognized) also showing a power law-like distribution (11).

We expected that the complexity and self-similarity of the flu-specific subset of the BV19 

repertoire will extend to the BV19 entire repertoire, both at the clonotype (nucleotide 

sequence) and amino acid motif levels. Therefore, BV19-specific amplification emulsion 

PCR and pyrosequencing was used to generate the BV19 clonotype data. After cleaning the 

data we generated both a quantitative and qualitative analysis of circulating CD8 T cells. 

After a basic clonotypic description we analyzed the amino acid composition of the 

repertoire as well as the distribution and complexity of the amino acid sequence motifs 

contributed by the NDN region. The distribution of the motifs was analyzed over a series of 

motif lengths.

METHODS

The human research conducted here was authorized by Institutional Review Board of 

BloodCenter of Wisconsin under BC 05–11, “Generation and Decay of Memory T Cells in 

Older Populations,” which is still open for data analysis. Written consent was obtained.

PBMC corresponding to six different time points (8/21/06, 10/16/06, 2/5/07, 4/2/07, 9/24/07, 

and 3/17/08) spanning ~ 1.5 years, were thawed and CD8 positive cells were isolated using 

Dynal CD8 positive isolation kit, and mRNA isolation used Dynal Oligo (dT) Beads 

according to the manufacturer’s instruction (Invitrogen, Carlsbad, CA). cDNA was prepared 

using Poly T primer and M-MLV reverse transcriptase (Invitrogen) and used as template for 

amplification. The amplification was done using βV19 coded primers and Fam labeled βC 

coded primers (see below). The PCR products were purified using AMPure PCR purification 

kit according to manufacturer’s instructions. The concentration of purified PCR products 

was measured using NanoDrop-1000 spectrophotometer and 6 to 12 purified PCR products 

were mixed to obtain a total of 2500 ng. The samples were further amplified and prepared 
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for high throughput sequencing at the Human and Molecular Genomic Center (HMGC) 

Sequencing Facility (www.hmgc.mcw.edu) of Medical College of Wisconsin. Sequence data 

was generated by emulsion-based PCR in which the initial PCR products have a linker 

sequence which allows attachment to beads at low concentrations so that each bead only 

binds on average one molecule. The beads are suspended in a PCR buffer and an emulsifier. 

Each bead is covered by thin buffer solution and separated from the other beads by the 

emulsifier. Additional cycles of PCR generate a clonally expanded population of molecules 

on the bead with one strand attached to the linker on the bead and the other available to 

continue to hybridize to available linkers. The beads are then washed and placed in their own 

well of a sequencing plate and subject to multiple rounds of additive sequencing. In this way 

the emulsion PCR replaces bacterial plasmid subcloning in previous approaches and 

provides a clonal sequence. The number of beads with the same sequence can be used to 

provide quantitative information about the repertoire. The sequencing was performed on the 

Roche GS-FLX Genome Sequencer using a two chamber gasket. Samples were coded by 

identifier sequences embedded in the primers. After decoding, sequences derived from each 

sample were downloaded in fasta format and analyzed using our proprietary “CDR3Reader” 

software, which assigns clonotype names according to the naming convention described by 

Yassai et al (12). These names can be used to reverse translate the amino acid sequence to 

the clonotypic nucleotide sequence.

Data were downloaded from CDR3Reader and analyzed using Microsoft Excel. Clonotype 

is used to refer to the unique CDR3 nucleotide sequence of the TCR β-chain gene. 

Clonotype data consists of the CDR3 sequence and its translation, the length of the CDR3 

region (L), and the number of observations/sequences (M). Repertoire characteristics are the 

number of clonotypes (N), a simple estimate of abundance defined as observations per 

clonotype (M/N), the highest number of observations of a clonotype(s) which define the 

maximum rank (Rmax), the number of singleton clonotypes, i.e. observed once (S), and a 

simple clonotype diversity measure (Dc), that incorporates the abundance and distribution, 

Dc=(N/M * Rmax)-1. These have been defined previously (13, 14). Rank-frequency plots of 

the log transformed clonotype data were generated as described (9). Trend lines for rank-

frequency summaries were generated by least squares fit of data subsets to maximize the R2 

value of the first component of the plots. Shannon diversity of the first order was estimated 

for each studied composite of clonotype data (15). The Shannon diversity measure (Ds) was 

adapted to the rank frequency data and was estimated as the inverse product of the number 

of clonotypes NRi encoding the motifs at rank Ri corrected for the total number of 

clonotypes encoding the motifs Ni at rank Ri, so for Pi=(NRi/Ni), Ds= Πi(Pi)RiPi.

Rearrangement analysis (Spectratyping)

CDR3 length analysis was performed by amplification of the BV19 CDR3 region using 

cDNA as template and BV19 and Fam-labeled CB specific primers (16).

BV19 primer; 5’ CCAAAAGAACCCGACAGCTTTC

Fam-labeled BC primer; 5’ Fam-GCTTCTGATGGCTCAAACACAG

1–2 ul of amplified products were combined with 9 ul of Formamide/Liz 500 (900 ul 

Formamide + 50 ul Liz standard). Samples were heat denatured at 90°C for 3 minutes and 
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then loaded on ABI 3130XL Gene Analyzer (Applied Biosystems). GeneScan software 

(Applied Biosystems) was used for the collection of the data. The files were analyzed using 

proprietary software which gives the relative frequency of each CDR3 length. The relative 

frequency of each CDR3 length was generated for each of the six PBMC samples and an 

average and the standard deviation calculated.

RESULTS

Description of sample source

UPN204 was 68 years old at time of enrollment. PBMC samples were obtained at multiple 

times. Unmanipulated samples of CD8 T cells were prepared for sequence analysis 

separately from six time points spanning ~ 1.5 years and the BV19-specific PCR products 

generated. The data from multiple sample times were combined to provide a global 

description irrespective of temporal variation. We chose an older subject because the age-

based focusing of the CD8 repertoires could help facilitation of identifying highly selected 

CDR3 amino acid motifs corresponding to pMHC recognition elements.

Clonotype-based repertoire characteristics

The sequences generated were initially analyzed by estimation of the error rate. This was 

accomplished by using a number of high frequency clonotypes as benchmarks. The number 

of highly similar sequences observed that constituted obvious errors due to transitions, and 

less frequently transversions, were counted. These could result in a different encoding of the 

same amino acids, a change in amino acid sequence, or read-through into the J region. 

Insertion and deletion errors were less common and result in out-of-frame J region 

translation products. An example of the error analysis is shown in Supplementary Figure 1. 

In this manner we estimate that the average error rate for the dataset was ~2%. An 

alternative approach examined the error rate in the V region which should be identical in all 

sequences. This gave an estimated error rate of ~1%. The stricter 2% error rate implies that 

for any hundred sequences two would be false, independent of how these sequences are 

distributed among clonotypes. This interpretation led to disallowing one of any paired 

clonotypes where one of the pair differed by one bp from the other and the ratio was four 

observations of the former to one of the latter. If the count of the more frequent of the two 

was nine or less, its frequency would be increased by the number of exemplars of the 

clonotype with the presumed error. Sequences whose translation resulted in a chain-

termination were eliminated from consideration.

The total number of sequences was 203185, and these identified 12269 clonotypes. The 

most frequent clonotype was observed 5782 times (2.85% of all observations) and 1835 

clonotypes were only observed once (15.00% of clonotypes). The number of observations 

per clonotype, a simple measure of abundance, was 16. 56. The diversity, Dc, was 348. The 

complete cleaned sequence data used for the analyses, in the form of the clonotype name 

(12) and number of observations is available as Supplemental Table 1.

The overall shape of the repertoire can be best described by rank and rank frequency 

analysis of the clonotypes. Plotting the loge of the rank and of the rank frequency simplifies 
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the repertoire description. In our previous analyses of BV19 recall repertoires such an 

approach yields single or multiple power law-like descriptions (8, 9,14). Most commonly the 

plot is hockey stick-like; with a power law-like component starting at with the lowest rank 

(clonotypes observed once) and decreasing until the data shows single clonotypes at high 

ranks. The second component represents a continuation of many single clonotypes at higher 

ranks. Previous large scale sequencing studies of PBMC have also shown power law-like 

components in the clonotype distribution (1). The rank – rank frequency plot of the BV19 

data is shown in Figure 1. The ex vivo data is more complex than that observed for 

influenza-responsive in vitro recall repertoires. There is an initial component constituted of 

low ranks, for which a slope of −0.49 and an R2 of 0.97, a middle portion with a slope of 

−2.40 and an R2 of 0.92, and a large component of high ranking clonotypes, generally with 

one or occasionally two clonotype per rank.

We use a definition of the CDR3 as the amino acids starting immediately after the conserved 

cysteine in the V region and extending to the amino acid immediately before the conserved 

phenylalanine-glycine in the J region. The observed CDR3 lengths spanned from 2 to 23, 

however CDR3 lengths representing cumulatively 99% of observations spanned from 9 to 

18. The frequency of observations per CDR3 length was bimodal with lengths 11 and 13 

most frequently observed (Fig 2, black bars). The frequency of clonotypes at each CDR3 

length is more symmetric with the highest fraction of clonotypes at L13 (Figure 2, white 

bars). For comparison, the average BV19 CD8 spectratype data generated fromCD8 cells 

from the same samples is included. These data represent amplicons from the total cDNA and 

therefore are equivalent to the M data set.

Deconvoluting the CDR3 length distribution on the basis of J region use, shows that the L13 

skew is predominantly a function of J2s1, 1s5 and 1s2. The L11 skew is predominantly due 

to clonotypes expressing J2s7 and J1s1 (Fig 3A). The skews observed for J2s1, J2s7, J1s1, 

and J1s2 do not represent an underlying change in repertoire shape. This is shown by 

examining the log-transformed rank – rank frequency plots for these J and L based subsets. 

In the three cases where the number of clonotypes examined was greater than 500, the rank 

frequency plots were similar to that of the entire repertoire (Fig 3B). The outliers at L18 

J2s2 and L10 J2s6 are due to one expanded clonotype, with one clonotype providing ~99% 

of the observations at L18 J2s2 and another providing ~96% of the observations at L10 J2s6. 

Skewing by such clonotypic expansion is expected in repertoires of older individuals 

(17,18).

CDR3 analysis

The CDR3 represents three genetic components; that derived from the V region, that from 

the D region, and that from the J region. In addition the CDR3 contains untemplated 

nucleotides flanking the D region. These are added by terminal transferase and perhaps 

polymerase mu (N-nucleotides), and less frequently by hairpin loop resolution (P-

nucleotides); hence the name NDN region. For any V - J pair, the amino acids from these 

two components are fixed, with the diversity being a function of the NDN component.

The portion of the CDR3 derived from the NDN generates the most diversity in the TCR, 

but the length of the CDR3 is not fixed. We therefore examined the relation between CDR3 
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length and NDN length by plotting the number of clonotypes with each possible 

combination of values (Sup Figure 2). In general, the NDN length with the largest number of 

clonotypes corresponded to CDR3 lengths that were 7±1 amino acids longer. The clonotype 

distributions are distributed relatively equally in the CDR3 length dimension (row) and NDN 

length dimension (column).

Another variable in CDR3 structure is the CDR3 position at which the NDN region starts. 

This corresponds to the rearrangement position. We examined the relation between the NDN 

length, CDR3 length, and the starting position of the NDN. BV19 can completely encode 

four amino acids after the cysteine (CASSI) and can encode the first two bases of either Asp 

or Glu. Thus, the NDN can start from CDR3 position 1 to 5. In the former case, the CDR3 is 

NDN encoded immediately after the Cys (C-NDN) and contains no V-region component. In 

the latter case all four V-region amino acids are included in the CDR3 and the NDN starts 

after the V-region component (CASSI-NDN). Interestingly, none of the clonotypes 

sequenced had an NDN start at CDR3 position 1. For each NDN start we examined the 

clonotype distribution as a function of CDR3 length and NDN length (Figure 4). The same 

relation between NDN length and CDR3 length (7±1 amino acids) is maintained but the 

NDN length decreases as the start position increase. Irrespective of CDR3 length, slightly 

more than half of NDN regions start at CDR3 position 4. Only 16.3% of NDN regions start 

at CDR3 Position 5.

NDN amino acid sequence distributions

The amino acid composition of the NDN region of the TCR is of some importance as the 

specificity of the various BV19 clonotypes is determined by these residues, and a long term 

goal in immunology is to understand the details of TCR recognition of peptide-MHC. The 

measurements at this point are related to the number of clonotypes that encode the amino 

acid, and not simply the number of sequences in which the amino acid was observed. The 

percentage of clonotypes that encode the various amino acids at each CDR3 position is 

shown in Figure 5A, with the values highlighted to reflect relative frequency, with the 

highest as red and the lowest as white. Gly was the most frequent amino acid observed in the 

NDN (21.1%). It could be observed at all positions examined, but was especially frequent at 

positions 5 to 8. In general the frequency distribution of the amino acids across the CDR3 

positions was highest at the central CDR3 positions (5 – 7) and dropped off at either edge. 

This is shown on the lowest row which sums the values at each position. There are some 

evident outliers; with S, T, or R at position 2, and P, I, or M at position 3.

The amino acids expected from the V region at each position are boxed and they generally 

are among the most frequent at their corresponding position. This can be seen more readily 

if the amino acid frequency is examined as a function of NDN start position (Figure 5B). 

The NDN amino acids are ranked in the same order as in the total dataset for ease of 

comparison, but the relative frequency is calculated with respect to only those clonotypes 

where the NDN starts at the position identified. The data are only for the amino acid usage at 

the starting position itself. The entire amino acid utilization dataset for each NDN start 

position is provided in Supplementary Figure 3.
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For NDN starts at position 2, there was a strong preference for Ser, Thr or Gly at the start. 

While this was seen to some extent in the overall data (Fig 5A), the effect was washed out by 

the relatively small number of clonotypes with NDN regions that start at position 2. 

Clonotypes encoding these three a.a. accounted for just over 80% of amino acids when the 

NDN starts at this position. A number of amino acids (D, E, Y or M) were never observed at 

this start position, and others were infrequent (L, P, Q, F, W, H or K). The high frequency of 

Ser at is due in part to rearrangements at the third codon position. Ser encoded as AGC, in 

lieu of the AGT encoded in the genome, constitutes 5.4% of the a.a. at position 2. However, 

selection on the amino acid itself also plays a role as Ser that are encoded as TCx (0.7%) are 

only surpassed at this position by Thr (6.19%), Gly (1.04%) and Arg (076%). The encoding 

of Arg, which is the other amino acid encoded by a third base change, is split relatively 

evenly between the AGA and AGG codons (20 vs 21 clonotypes). This equal encoding is 

expected if rearrangement was random and the selection was on the amino acid.

The same logic can be extended to the rearrangements at second base of the Ser codon; in 

this case G, changing to the other three possibilities. Rearrangement at the position 

equivalent to the second base of the codon would encode Asn or Lys, if the new base was A, 

Ile or Met if the base was T, and Thr if a G (Fig 5A). Ile and Asn are both represented at ~ 

0.5% (Fig 5B). If we take this as the normal rate for rearrangement beginning at this 

nucleotide position, then the low values for Lys and Met indicate a negative selection and the 

high value for Thr could indicate a positive selection.

The data for starts at position 3 (Fig 5B, second column) resemble those for starts at position 

2, which is not surprising since the V gene encodes a Ser with the same AGT codon at this 

position. Arg is now more frequent (3.24%) although not yet approaching the level of Ser 

(5.56%). Asn and Lys are present at similar levels (~1%). Ile is present in the same 

proportion as in position 2 starts but Met is increased to 0.3%. There is still a high level of 

Thr at this start (3.45%). Gly, Ala and Val are the other more frequent i.e. positively selected 

amino acids.

Ile is the most frequent amino acid at start position 4 (Fig 5B, third column) as would be 

expected since two of the three possible third base codon changes would encode Ile and the 

third change would encode Met, which is about half as prevalent (2.22%). If rearrangement 

took place at the second base of the codon, Ser, Arg, Asn, Lys and Thr are possible amino 

acids that would be generated, of which only Ser and Thr are observed at elevated levels. 

Interestingly Pro is third most frequent amino acid at this start.

Asp and Glu would be expected as preferred amino acids at position 5 since the last two 

bases of the V gene would encode one or the other. Asp expression is indeed elevated and is 

the second most frequent amino acid at start 5, with only Gly expressed more frequently. 

However, Glu is observed less frequently than Asp.

After position 5 the NDN sequence is a function of D-region and random addition. The 

amino acid usage in the central portion of the CDR3, positions 5 to 8 is relatively consistent 

(Fig 5A).
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These data indicate that the V-encoded SSI sequence is favored at these positions when they 

are part of the NDN. After the initial four positions there is a relatively even usage of nine 

amino acids, with Gly being most frequent. As described above, NDN start and CDR3 

position and NDN length have an effect on each other, so we examined the aa utilization 

independently for L11 to L15. Most of the above observations are CDR3 length independent 

(data not shown).

Distributions of NDN-encoded amino acid motifs

The NDN amino acid analysis presented above describes the CDR3 at a simple level. 

However, defining the combination of amino acids that generate the secondary structure 

needed for peptide-MHC recognition is the key reason for detailed CDR3 analysis. As 

described above, the focus on the BV19 repertoire was driven by the role of BV19 TCR 

chains in the HLA-A2 restricted response to the M158–66 epitope from influenza A. The 

major conserved NDN motif is the Arg–Ser doublet at CDR3 positions 5 and 6, in the 

context of CDR3 L11. This is the core of a more extended motif comprising one more amino 

acid on either side.

There are only 400 possible doublet motifs, which allows for a comprehensive description. 

Our dataset included examples of all but 13 of these (96.8%). The distribution of the doublet 

motifs is not easily described. Figure 6A shows the motifs ordered by the number of 

clonotypes in which they were observed. There are 39 motifs (~10%) that are observed in 

301 to 2212 clonotypes (28602 total) represented by the red portion of the curve. The 

remaining 348 motifs (shown in green) are observed in 300 or less clonotypes. We assume 

that flexibility in the CDR3 can allow different arrangement in terms of contact with the 

pMHC. Thus an NDN region 3aa long can define two different doublet motifs, one 4aa long 

can define 3 doublet motifs, etc. This maps more than one doublet motif to one clonotype.

The rank-frequency plot for the overall doublet motif data is not well behaved (Sup Fig 4A). 

Based on the relation between the number of possible motifs per clonotype and the 

CDR3/NDN length, we asked if the doublet data would generate a power law-like 

description when subsets based on CDR3 length are considered. The rank-frequency plots 

can be fit to a power law-like distribution for CDR3 lengths of 11 (Fig 6B), 12 (Fig 6C), and 

14 (Fig 6E), all with R2 ≈ 0.8, but show a marginal fit for CDR3 L13 (Fig 6D, R2 = 0.7). 

The approach of analyzing subsets was extended to include the effect of NDN start position 

on the motif repertoire distribution. The distribution for the L11 to L14 doublet repertoires is 

shown in Supplemental Figure 4B-E. The problematic L13 subset (Supp Fig 4D) 

fractionated on this basis shows a better fit to a multi-component power law-like distribution 

(avg R2 ≈ 0.8).

If triplet motifs are considered the possible number of motifs is 8000, of which 4309 are 

represented in our data set (53.9%). These different triplet motifs were observed in 40700 

clonotype exemplars. The rank-frequency of the entire dataset shows a good fit to a power 

law-like distribution, R2 = 0.94 (Fig 6F). As would be expected of a self-similar system, if 

the distributions are examined on the basis of CDR3 length the fit is also very good, average 

R2 = 0.94±0.02 (not shown). The 3aa motif distribution is beginning to approach the 
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composite distribution (“hockey stick”) that we observe in recall responses to the M1 

peptide.

Extending the motif length to 4aa increases the possible motifs to 160000 of which only 

12004 (7.5%) are represented in the dataset. The 4aa motif distribution in the circulating 

repertoire (Fig 6G) shows an excellent fit for the power law like component, R2 ≈ 0.97. The 

same is true for 5 aa motifs (Fig 6H). As the motif length increases, our data represent less 

of what is possible, with the 12474 identified pentamer motifs representing 0.4% of the 

possible 3.2 × 106 motifs. However, the number of clonotype exemplars of the motifs drops 

from 40700, to 28700 to 17600 for the three, four and five a.a. length motifs respectively. 

Interestingly the loss of motif exemplars does not greatly change the number of motifs 

represented by only one clonotype, (y-intercept in Figs 6, F, G, and H). The change is seen 

in the slope of the rank frequency data, representing the rapidity with which the higher 

ranking component is reached.

Summary of repertoire measures, characteristics and diversity

An experimental description of the repertoire is based on the measurements made and a 

number of calculated characteristics. Table 1 provides a summary of the measures and 

characteristics for the data set analyzed. In addition to the more straightforward 

characteristics we include three diversity parameters describing the power law-like 

component of the repertoires as well as a log-transformed Shannon diversity measure based 

on the rank frequency distribution of the clonotypes or motifs.

DISCUSSION

The TCR BV19 CDR3 sequence data analyzed here describe a circulating repertoire that is 

the culmination of a long period of adaptive responses that relied on pre-existing T cells. We 

have smoothed out short term temporal fluctuations by pooling cells collected at six time 

points over a period of ~1.5 year. The repertoire was characterized both at the clonotype 

level and at the amino acid level in terms of individual amino acid usage at each CDR3 

position and in terms of distributions of combinations of amino acids referred to as motifs.

The specific recognition of pMHC by the TCR is a function of the CDR3 length and 

sequence. Fine specificity is provided by the NDN-region contribution to the CDR3 in the 

case of the β-chain and the N region in the case of the α-chain. While the CDR3 lengths can 

vary from 2 to 23, lengths of 10 to 15 represented 5% or more of the clonotypes, with L11 to 

L14 accounting for ~ 80% of clonotypes. This short length is compatible with the CDR3 

shortening reported during the positive selection step of thymic maturation (20) and the 

overall flat nature of the TCRαβ-pMHCI interface.

The variables in CDR3 structure also incorporate the point at which the NDN region starts in 

the context of the overall CDR3 length. Interestingly, the most frequent NDN start occurs at 

CDR3 position 4 (~51%), which formally could be a V-encoded position. Around 31% of 

the NDN starts occur at positions 2 or 3 and ~18% occur at position 5. The significance of 

the high number of clonotypes with NDN starts at CDR3 position 4 is under further study.
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The analysis of amino acid utilization on the basis of NDN start and CDR3 length showed 

that for NDN starts internal to the end of BV19 V-gene, there is a propensity to encode the 

same or a related amino acid sequence as would be encoded for by the V gene. This argues 

that the 3’ V gene sequences have been selected to be useful in the pMHC recognition 

process. This constraint could prove helpful in modeling TCR-pMHC recognition. Glycine 

was the most common amino acid observed at most positions independent of NDN start and 

CDR3 length. There were certain increases in amino acid frequency that indicated possible 

selection.

Even though the repertoire analysis was of an older subject the repertoire was still diverse. 

This was observed for the overall repertoire as well as J-defined subsets and was evidenced 

using our simple diversity measure as well as by the highly correlated Shannon diversity 

measure (Table 1). The clonotype rank frequency analysis showed a three component plot 

with an extended range of single high-ranking clonotypes that are an expected outcome of a 

longer life (17, 18). The remaining clonotype components represent a large portion of mid-

rank frequency clonotypes and a smaller low-frequency component. Both these components 

fit well to a power law-like distribution. The distribution represented by these two 

components bears a strong resemblance to our previous modeling of repertoire generation 

and selection in silico (Fig 10 in ref 14). The fit of the corrected clonotype data into a 

reasonable mathematical description that fits with expected scenarios of generation and 

selection is welcome as it indicates that the analysis platform is generally well-behaved, and 

that quantitative measurements can be made. We have made extended use of describing 

recall repertoires in the context of power law-like components in the analysis and modeling 

of repertoire changes between middle-aged and older individuals (20). Previous next-

generation sequencing analyses of TCR repertoires had shown that the repertoires have 

distributional components that can be described as power law-like (1) and self-similar (21). 

Our more detailed analysis of the BV19 CD8 repertoire shows the same self-similarity in 

repertoire subset definitions as we first observed for the recall repertoires indicating the 

validity of this approach. Our argument for power law-like distributional behavior in recall 

was based on responder population assumptions incorporating expansion capabilities linked 

to a range of TCR avidities (9, 14). If the circulating repertoire in an older individual 

represents the history of similar in vivo expansions linked to a long and complex history of 

exposures, it should not be surprising that the overall circulating repertoire is similar to the 

recall repertoire for a particular peptide.

The diversity extends to the amino acid motifs encoded by the clonotypes. We define a motif 

as any serial combination of amino acids two or longer. Interestingly, the analysis revealed a 

relationship between the lengths of the NDN encoded motif and the ability to elegantly 

describe the diversity. The combined dimer motif dataset showed a poor fit to a power law-

like distribution. Since dimers represent a very small set, 400 possibilities, we reasoned that 

the data were saturating the system. This was remedied in part by examining the dimer 

distributions as a function of CDR3 length, or CDR3 length and NDN start. Three and four 

amino acid-long motifs showed a very good fit to power law-like distributions. We propose 

that the ability to define the longer motifs in terms of a power law-like distribution is related 

to the optimum length of the NDN region for selection on pMHC and enrollment in the 

memory repertoire.
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The repertoire analysis presented here presents an examination and enumeration of CDR3 

amino acids and the distributions of CDR3 amino acid motifs. The data indicate a complex 

distribution of CDR3 motifs, that can be described in part as power-law like. The high-

frequency component of the motif repertoire was populated by CDR3 that maintain amino 

acids that would be V-region encoded, and that are glycine rich. Arguing on the basis of the 

self-similar characteristic of the repertoire, we hypothesize that the observations made here 

for BV19 will generalize to the other BV genes in the CD8 repertoire.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Rank frequency distribution of BV19 clonotypes
The data is plotted as the natural log of both components and treated as a three component 

distribution. The first two components low and mid ranking clonotypes show a good fit (R2 

> 0.9) to a line, which would be expected of a power law like distribution. The third 

component represents high ranking (frequency) clonotypes, with generally only one 

clonotype per rank.
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Figure 2. CDR3 length distribution of the BV19 clonotypes
The percent of clonotypes (open bars) or observations (closed bars) are shown for CDR3 

lengths representing more than 1% of the data. Spectratype data from the same samples was 

averaged and shown as grey bars with standard deviations. The number of observation data 

is equivalent to a virtual spectratype .
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Figure 3. J region analysis
A. Frequency of observations of different J regions as a function of CDR3 length. The Y-

axis (vertical) shows the number of clonotypes for each J region at each CDR3 length. J 

regions are colored differently and identified on the X-axis in order of decreasing frequency. 

CDR3 lengths are identified on the Z-axis. B-D. Loge rank vs loge rank frequency 

distribution of clonotypes expressing the three most frequent J regions. B. 2s1. C. 2s7. D. 

1s1
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Figure 4. Clonotype distribution as a function of CDR3 length, NDN start position and NDN 
length
The CDR3 lengths are identified across the top of each set of four columns. The NDN starts 

are identified for each length. The NDN lengths are identified in the first column. The data 

are shaded to provide a relative heat map, with white being a minimum and red a maximum 

for each CDR3 L dataset. The sum and relative frequency for each NDN start are shown 

below each column, and the sum and percent are shown for each CDR3 L below each CDR3 

length-based group
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Figure 5. Amino acid usage in the NDN region
A. Amino acid usage is presented for each CDR3 position independent of NDN start. The 

amino acids identified by the one letter code are shown in the first column. The data are 

shaded to show relative frequency (white = 0, yellow = mid-frequency, red = maximum). 

The amino acids that would be encoded by the V gene are boxed. The sum of the values at 

each CDR3 position is shown in the bottom row with shading to indicate relative frequency. 

B. Amino acid usage at each NDN start position. The entire amino acid use data for each 

NDN start is given in Supplementary Figure 3. The data are shaded relative to the data in 

Supplementary Figure 3.
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Figure 6. NDN motif distributions
A. Plot of the various doublet motifs in descending frequency. The names of the motifs have 

been omitted for readability. B-E. Plot of the natural log of the rank vs that of the rank 

frequency data for the doublet motifs fractionated by CDR3 length. B = L11, C = L12. D = 

L13, and E = L14. F-H. Plot of the natural log of the rank vs rank frequency data for longer 

CDR3 amino acid motifs. F. Triplet. G. Quadruplet, H. Pentuplet. B-H. A line was fit to the 

data optimizing the R2 value. The R2, slope, and intercept are given for each graph.
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