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Abstract

The phosphoinositide 3-kinase (PI3K) signaling pathway is a complex and tightly regulated 

network that is critical for many physiological processes such as cell growth, proliferation, 

metabolism and survival. Aberrant activation of this pathway can occur through mutation of 

almost any of its major nodes and has been implicated in a number of human diseases including 

cancer. The high frequency of mutations in this pathway in multiple types of cancer has led to the 

development of small molecule inhibitors of PI3K, several of which are currently in clinical trials. 

However, several feedback mechanisms either within the PI3K pathway or in compensatory 

pathways can render tumor cells resistant to therapy. Recently, targeting proteins of the 

bromodomain and extra-terminal (BET) family of epigenetic readers of histone acetylation has 

been shown to effectively block adaptive signaling response of cancer cells to inhibitors of the 

PI3K pathway, which at least in some cases can restore sensitivity. BET inhibitors also enforce 

blockade of the MAPK, JAK/STAT and ER pathways suggesting they may be a rational 

combinatorial partner for divergent oncogenic signals that are subject to homeostatic regulation. 

Here, we review the PI3K pathway as a target for cancer therapy and discuss the potential use of 

BET inhibition to enhance clinical efficacy of PI3K inhibitors.

Background

PI3Ks are a family of lipid kinases that phosphorylate the 3-hydroxyl group on 

phosphoinositides, generating second messengers that regulate several downstream 

pathways that are central in both normal physiology and disease (1, 2). In mammals, there 

are three classes of PI3Ks that differ in structure and substrate specificity but to date, mainly 

class IA PI3Ks has been implicated in the etiology of various diseases including cancer (3). 

Class IA PI3Ks are heterodimers composed of a p110 catalytic subunit (α, β and δ) and a 

p85/55 regulatory subunit (encoded by three different genes that are subject to alternative 

splicing) that can be activated downstream of Receptor tyrosine kinases (RTKs), G protein-

coupled receptors (GPCRs) and small GTPases (4). Although PI3K was first linked to 

cancer almost thirty years ago when it was associated with the transforming activity of viral 

oncogenes (5), it wasn’t until the early 2000’s that PI3Ks were brought to the forefront of 
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cancer research when PIK3R1 (6) and PIK3CA (7), the genes encoding p85α and p110α 

respectively, were found to be frequently mutated in several types of solid tumors. Since 

then, multiple studies have established that PIK3CA is one of the most, if not the most, 

frequently mutated oncogenes in human cancer. Mutations are mainly clustered in two hot-

spots of the enzyme and can increase p110α activity through a variety of mechanisms (8–
10).

In quiescent cells, p85 binds to p110, stabilizing it and inactivating its kinase activity (Fig. 

1). Following growth factor stimulation, the PI3K complex is activated after binding to 

phosphotyrosines on receptors and adaptor proteins. The primary consequence of PI3K 

activation is the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) into the short-

lived second messenger phosphatidylinositol-3,4,5-trisphosphate (PIP3) on the inner leaflet 

of the plasma membrane. PIP3 recruits proteins to the membrane that contain a pleckstrin-

homology (PH) domain, including AKT and its upstream activators PDK1 and mTORC2. At 

the membrane, PDK1 phosphorylates AKT at T308 (11) and mTORC2 phosphorylates it at 

S473 (12), which results in full activation of the enzyme. AKT acts as a major mediator of 

PI3K signaling by phosphorylating a wide range of substrates that regulate cell cycle entry, 

survival, protein synthesis, RNA translation, glucose metabolism and migration. PI3K 

activity is tightly controlled in cells and can be attenuated by lipid phosphatases, such as 

PTEN (13), INPP4B (14), and SHIP2 (15) that dephosphorylate phospholipids in positions 

3, 4 and 5, respectively, on the inositol ring. PIP3 is also an important signal upstream of 

several pro-oncogenic signals including SGK3 (16, 17) and PREX1/ PREX2 (18, 19).

Overactivation of the PI3K signal is one of the most frequent events in human cancers and 

can be achieved through alterations in most of the major nodes of the pathway (4). 

Activating mutations and/or amplification of the genes encoding the PI3K catalytic subunits 

p110α (7) and less frequently p110β (20), mutations in the p85α regulatory subunit that 

abrogate its p110-inhibitory activity (6, 21) as well as loss of function of the lipid 

phosphatases PTEN (22, 23) and INPP4B (14) can all promote PI3K activity and cellular 

transformation. Mutations in genes acting both upstream of PI3Ks such as RTKs (for 

example EGFR and HER2) and the PI3K activator K-RAS as well as the downstream PI3K 

effectors AKT1–3, PDK1, TSC1/2 and mTOR are variably present in human tumors and 

should also result in aberrant activation of the PI3K pathway.

Clinical-Translational Advances

Given the high frequency of PI3K pathway activation in human cancers, a significant 

amount of effort has been put into the development of drugs targeting several kinases 

throughout the pathway, especially PI3Ks. Several inhibitors targeting all PI3K isoforms 

(Pan-PI3K) are currently in clinical trials but although they have turned out to be reasonably 

well tolerated, they have shown limited efficacy as single agents (24). Partial inhibition of 

the signal due to limitations in the dosing, compensatory feedback mechanisms as well as 

off-target effects could all account for the limited clinical responses that were observed in 

patients treated with Pan-PI3K inhibitors. Recent preclinical studies have highlighted the 

divergent roles of class I PI3K catalytic isoforms depending on the genetic context. For 

example, HER2/Neu- and KRAS-driven tumors have been shown to rely mainly on p110α 
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(25, 26) whereas p110β has been shown to be important in certain PTEN-deficient tumors 

(27–29). In light of these findings PI3K isoform-selective inhibitors have been developed 

and are being tested in clinical trials with the hope to maximize target-inhibitory doses while 

sparing the adverse toxic effects of Pan-PI3K inhibitors. In 2014 Idelalisib (CAL-101) 

became the first p110 isoform-specific inhibitor (against p110δ) that has been approved by 

the FDA for the treatment of chronic lymphocytic leukemias (30) and B cell lymphomas 

(31). Alpelisib (BYL719) is a p110α-specific PI3K inhibitor that has shown some 

encouraging results in early phase clinical trials. As a single agent it resulted in some tumor 

regressions and prolonged disease control in heavily pretreated patients with various tumor 

types carrying a PIK3CA mutation (32). Preliminary results from the combination of 

BYL719 and Fulvestrant, an estrogen receptor antagonist, also indicate an encouraging 

activity in patients with PIK3CA-mutant breast cancer, with 3 patients achieving confirmed 

partial responses (33). GDC-0032, a β isoform-sparing PI3K inhibitor targeting PI3Kα/δ/γ, 

is another example of next generation PI3K inhibitors that has shown promising preliminary 

clinical activity in PIK3CA mutant cancers (34) and is currently being evaluated in solid 

tumors both as a single agent and in combination with endocrine therapies and other 

anticancer therapies. Given these early signals of clinical activity more PI3K inhibitors could 

be FDA approved for the use in human cancer, especially as part of combination therapies. 

As PI3K inhibitors are making their way into trials, it is critical to identify biomarkers that 

will help future selection of patients that are most likely to benefit from these targeted 

therapies.

While Herceptin (Trastuzumab), a monoclonal antibody against HER2, has shown 

remarkable activity in HER2-postitive breast cancer patients, the efficacy of kinase-based 

therapeutics that act downstream has been limited due to a variety of adaptive and 

compensatory responses to the drugs within the cancer cell. Early preclinical studies with 

inhibitors against mTOR identified that blockade of the mTOR-mediated activation of S6 

kinase released inhibition of IRS1, resulting in aberrant PI3K/AKT activation (35). To deal 

with unleashing of this natural break in the pathway several dual PI3K/mTOR inhibitors 

have been developed and are being tested in early phase clinical trials. As these compounds 

exhibit a broad activity profile and significantly higher toxicity, they might be more suitable 

for the treatment of patients with more than one alteration in the PI3K pathway. Multiple 

studies have also shown that feedback activation of the PI3K pathway in response to PI3K 

inhibitors can also be achieved by suppression of the FOXO-dependent activation of 

expression of RTKs (36–38). Blocking PI3K, along with different upstream RTKs has been 

shown to block this adaptive response and resensitize cancer cells (36, 39–41).

PI3K isoforms are able to compensate for each other as well. For example, preclinical 

studies have shown that cancer cells can induce expression of p110β to counteract the 

blockade of p110α and vice versa (42, 43). In an ER+/PIK3CA-mutant breast cancer patient 

treated with the p110α-specific inhibitor BYL719, loss of PTEN expression (which could 

likely switch dependence on the p110β isoform) was present in multiple metastatic lesions 

(44). Markedly, treatment of xenografts derived from the BYL719-resistant lesions with the 

p110β-selective inhibitor AZD6482 was able to restore sensitivity. Concurrent inhibition of 

multiple PI3K isoforms or the use of dual-isoform PI3K inhibitors might be necessary for 

the treatment of tumors that have become refractory to isoform-specific inhibitors. 
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Compounds that would be active against only the mutant PIK3CA should minimize 

increased systemic insulin production that is seen in the clinic upon treatment with p110α 

inhibitors and are highly anticipated in the field. Finally, activation of several compensatory 

pathways has been documented to drive resistance to PI3K inhibitors and could therefore 

inform combinatorial treatments. Clinical trials are currently evaluating preclinical findings 

of synergism between PI3Ki and antiestrogen therapy (45) as well as inhibitors against poly-

ADP-ribose polymerase (PARP) (46), Cyclin-dependent kinases 4 and 6 (CDK4/6) (47) and 

MEK (37, 48).

Within the past year inhibition of BET proteins (BETi) has emerged as a potential 

therapeutic approach to restore sensitivity to kinase inhibitors of the PI3K pathway. The 

BET family of proteins consists of 4 members, BRD2–4 which are ubiquitously expressed 

and BRDT that is only expressed in germ cells. They contain two tandem bromodomains 

(BRDs) located at the N-terminus that recognize and bind acetylated-lysine residues in 

nucleosomal histones to facilitate the recruitment of transcription factors and chromatin 

organizers required in transcription initiation and elongation. Initially, the concept of 

targeting a bromodomain was thought to be challenging because it would involve inhibiting 

a protein-peptide interaction. Moreover there was a lot of skepticism around the concept of 

epigenetic therapy as inhibition of BET proteins which are global regulators of gene 

transcription was expected to impact on the transcriptional activity across all active genes 

and be highly toxic. In 2010 two selective and potent BET protein inhibitors, JQ1 (49) and I-

BET762 (50) were reported to have activity in a NUT midline carcinoma and an 

inflammatory disease model respectively. Mechanistically, BET inhibition was shown to 

result in significant reduction of the transcript levels of only a small number of key genes in 

a cell- and context-specific manner (51, 52). This recent discovery of small molecules 

capable of blocking their lysine-binding pocket is the first successful example of 

pharmaceutical inhibition of epigenetic readers and has sparked intense efforts to develop 

novel BRD antagonists. Several compounds are currently tested in early phase clinical trials 

(Table 1) for solid tumors and hematological malignancies where for example deregulated c-

MYC, a major target of BET proteins in this context, is an important driver of 

tumorigenesis. Most of them share a similar thieno-diazepine scaffold whereas for some of 

them the exact chemical structure has not yet been disclosed (53). Notably, multiple studies 

have recently documented that BET inhibition can effectively block adaptive responses to 

inhibitors of the PI3K pathway that help cancer cells to evade the effects of the drug and 

develop resistance. For example, our group has shown that BET inhibitors can block BRD4 

from binding to regulatory regions of genes encoding several RTKs that are frequently 

induced by treatment with Pictilisib (GDC-0941), a Pan-PI3K inhibitor (Fig. 1). As a result, 

combined PI3K and BET inhibition can prolong blockade of the PI3K signal and induce cell 

death in multiple tumor cell lines (54). BET proteins have also been shown to regulate 

sensitivity of breast cancer cells to treatment with Lapatinib, an EGFR/HER2 inhibitor, by 

blocking the expression/phosphorylation of kinases (55) and/or activation of the FOXO/c-

MYC axis (56). Finally, inhibitors of BET proteins have shown synergism with mTOR 

inhibitors in multiple tumor models (57–59) suggesting that blockade of the epigenetic 

regulation of the PI3K pathway may present an opportunity to overcome resistance to kinase 

inhibitor therapy.
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Several groups have investigated BETi as a potential therapeutic approach to potentiate the 

effect of targeted therapy against oncogenic drivers in other signaling pathways. For 

example, combinations of JQ1 and tyrosine kinase inhibitors such as Imatinib and JAK 

inhibitor I were shown to synergize and induce apoptosis in leukemias and lymphomas 

driven by constitutive STAT5 activation (60). Using an anti-cancer drug library containing 

180 small molecule inhibitors, Jing et al identified that combined BETi/MEKi suppressed 

both cell proliferation and survival in an ovarian cancer model (61). In an ER+/tamoxifen-

resistant breast cancer model, JQ1 induced a strong growth inhibitory effect when it was 

combined with fulvestrant (62). These studies highlight the ability of BETi to synergize with 

inhibition of diverse oncogenic signals which could be due to their unique ability to interfere 

with the adaptive feedback expression of a few relevant genes to restore signaling 

homeostasis depending on the genetic context (Fig. 1). However, it remains to be seen 

whether there will be a therapeutic window for any of the above combinatorial therapies in 

the clinic.

A striking development in BRDi research is the recent finding that BET proteins are 

unanticipated targets of certain widely used kinase inhibitors. The first such report was by 

Martin et al. who discovered that the potent CDK inhibitor Dinaciclib interacts with the 

acetyl-lysine recognition site of the bromodomain testis-specific protein BRDT (63). Soon 

after, two new studies (64, 65) identified more than a dozen kinase inhibitors that possess 

cross-reactivity towards BRD4 with nanomolar potencies, including the JAK2 inhibitor 

TG101209 and the PLK1 inhibitor BI2536 which is in Phase I/II Clinical trials for acute 

myeloid leukemia (AML) and non-small cell lung cancer (NSCLC). This finding has 

triggered the development of more potent dual BET/PLK1 inhibitors using a structure–

activity relationship (SAR) study (66). Notably, LY94002 which has been routinely used to 

block PI3K activity was also recently shown to interact with BRD2–4 (67). The above 

studies provide the framework for the rational design of next-generation dual BET-Kinase 

inhibitors. The simultaneous inhibition of two structurally and functionally unrelated 

proteins by a single drug may provide a new opportunity when the application of 

combination therapies poses significant clinical challenges.

Conclusions

The concept of oncogene addiction described by the dependence of certain tumors for their 

growth and survival on a limited number of mutational events has fueled the development of 

targeted therapies. The PI3K signaling pathway has attracted much interest due to its 

involvement in a large fraction of human tumors and several inhibitors targeting oncogenic 

kinases throughout the pathway are currently being tested in clinical trials. However, 

preclinical studies and past experience with other kinase-based therapies suggest that escape 

mechanisms and drug resistance may eventually limit the efficacy of these compounds as 

monotherapies. Concurrent inhibition of PI3K and BET proteins may provide an alternative 

for durable inhibition of the oncogenic signal and clinical trials could test the safety and 

efficacy of such combinations.
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Figure 1. 
Schematic representation of nodes of therapeutic blockade in the PI3K and other signaling 

pathways that synergize with BET inhibition. PI3Ks are a family of heterodimeric proteins 

that can be activated downstream of RTKs, GPCRs and small-GTPases. They catalyze the 

conversion of PIP2 to the second messenger PIP3 which helps recruit to the membrane 

proteins that contain a PH-domain such as AKT, PDK1, mTORC2 and PREX1/2. PI3K 

activity can be attenuated by several phosphatases including PTEN, SHIP1/2 and INPP4B. 

AKT acts as a major mediator of PI3K signaling by phosphorylating a wide range of 

substrates that regulate cell growth, proliferation, metabolism and survival. Given the high 

frequency of PI3K pathway activation in human cancers several inhibitors targeting kinases 

throughout the pathway are currently being evaluated in clinical trials. However their 

efficacy as monotherapies can be limited due to a variety of mechanisms including the 

unleashing of FOXO- and mTORC1-mediated feedback loops that reactivate the pathway. 

Inhibition of BET proteins has recently been shown to effectively block adaptive signaling 

response of cancer cells to inhibitors of the PI3K pathway and other signaling pathways 
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(shown in red rectangles) suggesting they may be rational combinatorial partners for 

multiple oncogenic signals.
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Table 1

BET inhibitors currently in clinical trials for human cancers

Drug Sponsor Solid tumors or
hematological malignancies

Most advanced
clinical phase

I-BET762 GlaxoSmithKline Both I/II

GSK2820151 GlaxoSmithKline Solid tumors I

TEN-010 Tensha Both I

OTX015 Oncoethix/Merck Both II

BAY 1238097 Bayer Both I

CPI-0610 Constellation Pharmaceuticals Hematological malignancies I

GS-5829 Gilead Both I

INCB054329 Incyte Both I

ABBV-075 Abbvie Both I

BMS-986158 Bristol-Myers Squibb Solid tumors I/IIa

FT-1101 Forma Therapeutics, Inc Hematological malignancies I

Data taken from http://clinicaltrials.gov/.
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