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Abstract

The life span of individuals that are sero-positive for human immunodeficiency virus (HIV) has 

greatly improved; however, complications involving the central nervous system (CNS) remain a 

concern. While HIV does not directly infect neurons, the proteins produced by the virus, including 

HIV transactivator of transcription (Tat), are released from infected glia; these proteins can be 

neurotoxic. This neurotoxicity is thought to mediate the pathology underlying HIV-associated 

neurological impairments. Cocaine abuse is common among HIV infected individuals, and this 

abuse augments HIV-associated neurological deficits. The brain regions and pathophysiological 

mechanisms that are dysregulated by both chronic cocaine and Tat are the focus of the current 

review.
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Introduction

Since the beginning of the acquired immunodeficiency syndrome (AIDS) epidemic, there 

has been a strong link between human immunodeficiency virus (HIV) and drug abuse [1]. 

Recreational use of psychostimulants, including cocaine, increases the likelihood that the 

user will engage in impulsive and unsafe behaviors such as risky sexual practices. These 

risky behaviors increase the chance of exposure to HIV and other diseases [2]. Cocaine is 

also used to self-medicate for mental health stressors [3], and recent users (i.e., self-reported 

to have used cocaine within 6 months) and former users (i.e., self-reported to have ever used 
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cocaine) report more depressive symptoms that non-users [4]. Upon learning that they are 

HIV+, many individuals experience depression-like symptoms including fear, anguish, and 

thoughts of suicide [5], and these stressors may serve to promote cocaine abuse. Regardless 

of the original motive for abusing drugs, chronic exposure to these drugs can exacerbate 

HIV-related disease progression. For example, cocaine increases viral replication [6] and 

accelerates loss of CD4+ T-cells [7] in the HIV+ individual. This review focuses on the 

brain, and mechanisms that may contribute to enhanced vulnerability and/or exacerbated 

neuropathology that can occur during HIV/AIDS and cocaine abuse co-morbidity.

HIV and cocaine in the brain

HIV-associated neurocognitive disorders (HAND) include impaired concentration, memory 

deficits, and motor impairment [8,9]. These symptoms reflect neuronal damage subsequent 

to HIV-infection; however, the virus does not directly infect neurons. Damage is inflicted by 

HIV-infected monocytes, which readily cross the blood-brain barrier (BBB), [10] and 

subsequently release toxic viral proteins within the central nervous system (CNS) [11,12]. 

CNS damage occurs early during infection; HIV-1 RNA can be detected in cerebral spinal 

fluid (CSF) as early as 8 days after the estimated introduction of the virus into the human 

host [13]. Combination antiretroviral therapies (cART) do not readily cross the BBB, which 

reduces efficacy for suppressing HIV infection within the CNS [14]. Accordingly, HAND 

are reported in up to 50% of HIV+ patients, even with cART-controlled viral replication 

[8,15–17]. The neurocognitive deficiencies associated with HIV are augmented in those that 

are cocaine abusers [4,18], as cocaine use disrupts BBB integrity and facilitates HIV 

penetration into the CNS [19,20]. Thus, in spite of cART-controlled infection, the brain of 

cocaine-abusing HIV+ individuals may be particularly vulnerable to the destructive features 

of virus.

Regions of the brain that show an accelerated pathology in the co-morbid condition include 

the hippocampus, striatum, and frontal cortex (including the prefrontal cortex, PFC) [21]. 

Cocaine addicts (that were not screened for HIV infection) exhibit hypo-activation of the 

PFC [22]; atrophy and tissue thinning also occurs in the PFC of HIV+ individuals [23,24]. 

HIV+ men exhibit deficits in attention and executive function during tasks that involve the 

PFC [25]. Another study conducted with women revealed that blood oxygen level-dependent 

(BOLD) functional magnetic resonance imaging (fMRI) during verbal learning tasks 

correlates with severe cognitive impairment and both current and former cocaine using HIV+ 

women demonstrate reduced PFC activation compared to HIV+ non-users [26]. These 

outcomes likely reflect a convergence of neuronal dysregulation within the co-morbid brain. 

Understanding the common sites of action for, and/or maladaptations to, HIV-1 infection and 

cocaine abuse within the PFC would help decipher the underpinnings of these co-morbid 

consequences.

Neurological consequences of Tat

Following entry into the CSF/CNS, HIV-1 spreads from monocytes and macrophages to the 

astrocytes and the resident immune cells of the brain, microglia [10,27]. Microglia and 

astrocytes play key roles in brain innate immunity and mediate the neuroinflammatory 
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response to HIV [28,29]. The turnover rate for these cells is relatively slow, which provides 

a potential resevoir for HIV-1 in the brain [30]. HIV-1 expresses at least nine toxic proteins 

that can be released from infected immune cells, and some of these proteins impair the 

biochemical and physiological mechanisms of neurons, resulting in dysregulation [11]. Of 

these proteins, one that is known to be neurotoxic and has been extensively studied is a 

transactivator of transcription (Tat). Tat is a small, intrinsically flexible and highly basic 

protein of ~80–103 amino acids (14–16kD) that can bind with high affinity to a large 

number of diverse partners (proteins or lipids), to form complexes with a wide range of 

action [31]. Tat drives replication of the HIV-1 via transactivation of the promoter region of 

the viral genome [32]. Tat also can inhibit proteolysis [33–35], and even a transient exposure 

to Tat is sufficient to dysregulate neurons [36]. Moreover, the pathological consequences of 

Tat can persist long after the protein itself is degraded [37], reflecting the ability of Tat to 

induce the expression of a large variety of cellular genes, interact with cellular proteins and 

to promote production of pro-inflammatory cytokines and chemokines [38,39]. These 

characteristics also underlie the ability of Tat to exert its effects far from its site of release 

[40]. Extracellular Tat can be transported into neurons via the low density lipoprotein 

receptor (LRP)-mediated endocytotic pathway [41]. Intracellular Tat can disrupt cytoplasmic 

Ca2+ concentrations either by inducing release from intracellular stores (i.e., disrupting 

function of 1,4,5-triphosphate receptors) or by enhancing influx of extracellular Ca2+ via 
voltage- and ligand-gated channels (i.e., voltage-gated Ca2+ channels and N-methyl-D-

aspartate receptors (NMDAR)) on the plasma membrane [42,43]. Thus, Tat-induced 

consequences (including neurotoxicity) are dependent on extracellular Ca2+ influx [44]. The 

Tat-induced rise in cytoplasmic Ca2+ is followed by mitochondrial Ca2+ uptake and 

generation of mitochondrial reactive oxygen species (ROS) [45]. Accumulation of ROS can 

lead to oxidative stress and induce signaling cascades for neuronal apoptosis [45,46]. In 

addition to direct effects on neurons, Tat also alters the function of glial cells that then 

contribute to neuronal pathology. HIV-1 Tat promotes reactive gliosis and secretion of pro-

inflammatory cytokines. This action reduces neuronal synaptic densities to simplify synaptic 

connections, leading to neuronal injury [40,47–54]. Tat concentrations in the CSF of HIV+ 

patients range from 10–1000nM [55–57]. These concentrations of Tat in vitro can be 

neurotoxic [36]. Accordingly, Tat-induced neurotoxicity is thought to be a major contributor 

to HIV-related neuropathogenesis.

Neurological consequences of chronic cocaine

Cocaine binds to monoamine, (i.e., serotonin, dopamine and norepinephrine) transporters on 

nerve terminals and prevents the re-uptake of the respective neurotransmitters from the 

synapse. As a result, synaptic concentrations of neurotransmitters are dramatically increased, 

enhancing the activation of synaptic and peri-synaptic receptors. The chronic presence of 

cocaine decreases the sensitivity of postsynaptic neurons to monoamines (i.e. dopamine in 

the nucleus accumbens (NAc)) and increases the sensitivity of dopamine auto-receptors, 

resulting in a functional loss of dopamine in the synapse [58,59]. During periods of repeated 

drug exposure, reduced neurotransmitter production, receptor internalization, and synaptic 

simplification can occur in order to compensate for the exaggerated activation of the 
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mesocorticolimbic system. These maladaptations endure long after terminating cocaine 

exposure.

The mesocorticolimbic system is critically involved in the motivational aspects of drug 

abuse including reward, and salience attribution to drug-associated cues. Neurons in the 

medial prefrontal cortex (mPFC) provide excitatory input to the NAc [60], ventral pallidum 

(VP) [60,61], and ventral tegmental area (VTA) [60,62], key brain regions involved in 

addictions. Chronic cocaine increases the excitatory drive from the mPFC and enhances 

activity of dopaminergic cells, which are linked with reward-associated, cue-elicited 

behaviors [63–65]. Specifically, projections from the infralimbic (IL) and prelimbic (PrL) 

subregions of the mPFC terminate within the NAc shell and NAc core, respectively [60]. 

Activation of the PrL to NAc core projections promotes drug-seeking, whereas activation of 

IL to NAc shell projections inhibits drug-seeking behaviors [65,66]. Cocaine, but not food, 

engages projections originating in the PrL mPFC and increases glutamate levels in the NAc 

core, to stimulate reinstatement of responding in rats [66]. These findings suggest that the 

cocaine-induced rise in NAc core glutamate levels is abnormal rather than physiological. 

Rats that self-administer cocaine in the presence of discrete cues show drug-seeking in the 

presence of these cues during periods of withdrawal [67,68] likely reflecting persistent 

molecular neuroadaptations in the mPFC [69,70]. Functional imaging performed on 

abstinent cocaine addicts reveal hyper-reactivity of the mPFC that is strongly correlated with 

self-reports of craving for cocaine during the presentation of cocaine-associated cues 

[22,71]. Therefore, mPFC-associated circuitry is thought to underpin the abnormally 

enhanced reactivity to drug-associated cues experienced by addicted individuals during 

periods of drug abstinence.

Common pathways for cocaine and Tat effects in mPFC

The high prevalence of cocaine abuse in HIV+ individuals and the ability of cocaine 

addiction to exacerbate HAND indicates that chronic cocaine and HIV-1 toxic proteins may 

present overlapping neuropathological events in brain regions that govern HAND and 

reward-motivated behaviors. Using Tat as a prototype, we overview here current evidence 

for such an overlap, and explain the mechanisms that contribute to the neuropathological 

convergence.

Indirect effects of Tat and cocaine on neurons

In a healthy CNS, astrocytes outnumber neurons five-fold. Astrocytes envelope neuronal 

synapses to aid many essential neuronal functions that are critical for normal synaptic 

transmission [72], including the maintenance of fluid, ion, pH, and transmitter homeostasis 

of the synaptic interstitial fluid [73,74]. Insults to the CNS induce reactive astrogliosis, a 

process which has become a pathological hallmark for numerous neurological diseases [73]. 

Activated astrocytes lose the capacity to maintain synaptic homeostasis of glutamate, 

resulting in excessive glutamate-induced calcium influx which when excessive can be 

neurotoxic [74].

Tat exerts a powerful and persistent influence on astrocytes. In vitro studies revealed that 

astrogliosis can occur within 7 days of exposure to Tat [50]. Extending these studies to the 
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mammalian brain, we assessed astrogliosis in the mPFC after Tat administration [75]. Glial 

fibrillary acidic protein (GFAP) is a structural protein in astrocytes, and increased GFAP 

expression signifies astrogliosis. GFAP expression was increased in the mPFC 14 days after 

a single intracerebroventricular (i.c.v.) injection of Tat [75]. Tat up-regulates GFAP 

expression through direct interaction with the enhancer elements activator protein 1 (AP1) 

and specificity protein 1 (SP1). The transcription factor early growth response-1 (Egr-1) 

regulates p300 transcription, and deletion of the Egr-1 cis-transacting element within the 

p300 promoter abolishes Tat-induced GFAP expression [76]. Though the mechanisms are 

less clear for cocaine, the psychostimulant is known to increase GFAP immunoreactivity in 

the PFC (and nucleus accumbens) following repeated administration and 3 weeks of 

withdrawal [77]. Astrogliosis caused by cocaine would diminish the capacity of astrocytes to 

support neuronal health and in so doing, enhance neuron vulnerability to the detrimental 

consequences of Tat.

Direct effects of Tat and cocaine on neurons

The ability of cocaine to bind to and block the dopamine transporter (DAT) is well 

established. Recent studies have revealed that Tat also can bind directly to DAT [78,79]. Tat 

binding to DAT inhibits the reuptake of dopamine released from activated neurons [78] and 

promotes DAT internalization [80]. Tat-induced conformational changes in DAT also 

increase the affinity of cocaine for the transporter protein [78]. Thus, Tat has the capacity to 

significantly enhance extracellular concentrations of dopamine through multiple 

mechanisms [81]. Excessive extracellular dopamine over-actives dopaminergic receptors and 

drives the reward-motivation known to underlie cocaine-mediated behaviors. Recent studies 

indicate that a similar outcome occurs following exposure to Tat, which can potentiate 

behaviors mediated by cocaine reward [82].

In the frontal cortex and striatum of rats, acute or repeated administration of cocaine alters 

mitochondrial complex I subunits (i.e. nicotinamide adenine dinucleotide-4) to decrease 

oxidative phosphorylation and increase ROS production [83]. These cocaine-mediated 

effects occur without the loss of neurons. The absence of neuronal death may reflect ROS 

buffering as cocaine causes a concomitant increase in the production of antioxidant enzymes 

which prevents the activation of cellular apoptotic signaling cascades [83]. In contrast, Tat 

induces ROS production that can result in death of cultured neurons; cocaine enhances this 

effect [84]. These reports indicate that cocaine may enhance the Tat-induced rise in 

cytoplasmic Ca2+ and mitochondrial Ca2+ uptake leading to the generation of mitochondrial 

ROS, and that excessive intracellular Ca2+ may be a common mechanism by which cocaine 

abuse accelerates HIV+ associated neuropathology.

Evaluations of Ca2+ function in neurons indicate that this mechanism is a site of 

convergence for chronic cocaine and Tat. Removal of extracellular Ca2+ decreases Tat-

induced Ca2+ influx and toxicity of cultured rat cortical neurons [44,85]. Enhanced Ca2+ 

influx is regulated, at least in part, by NMDAR [42,86,87] and voltage-gated Ca2+ channels 

(likely the L-type Ca2+ channels) [88]. Tat (1–500 nM) dose-dependently induces a fast, 

transient increase of Ca2+ influx in cultured rat cortical neurons, which is not blocked by 

inhibition of NMDAR [85]. In contrast, blockade of the L-channels significantly reduces 
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Tat-induced Ca2+ influx and neurotoxicity in cultured human fetal microglia and monocytes 

[89,90]. Tat increases neuronal excitability in mPFC pyramidal neurons, and this increase 

can be inhibited by diltiazem, an L-type Ca2+ channel blocker (Fig 2). Physiological low 

nanomolar concentrations (~15–20nM) of Tat delivered via i.c.v. injection enhances L-

channel expression in the mPFC of rats as compared to vehicle injected controls (Fig. 3). 

The major advantage of using the i.c.v. injection is that a known concentration of Tat can be 

introduced into the brain, bypassing the BBB. The resulting CSF concentrations in these rats 

are within the range of the Tat CSF concentrations detected in humans [55–57]. Tat-induced 

upregulation of these channels could abnormally increase Ca2+ influx and intracellular Ca2+ 

levels, enhancing reactivity of mPFC pyramidal cells to membrane depolarization. This 

phenomenon is present for up to 14 days after Tat administration, and it overlaps with the 

time-course of L-channel plasticity during cocaine withdrawal [91]. After a prolonged (2–3 

weeks) withdrawal from repeated, experimenter administered cocaine, surface expression of 

the L-type Ca2+ channels has been shown to be significantly increased in the mPFC [91].

We recently reported that in vitro application of Tat, while recording mPFC pyramidal 

neurons from rat brain slices, dramatically increases firing and NMDAR-independent Ca2+ 

influx through L-type Ca2+ channels [88]. Tat enhances Ca2+ influx at concentrations 

between 10–40nM, the magnitude of which correlates with Tat concentration. Elevated 

intracellular Ca2+, under normal conditions, will bind to calmodulin to inactivate L-type 

Ca2+ channels. Recovery from inactivation occurs as the membrane becomes re-polarized or 

hyperpolarized [92]. Tat can bind calmodulin [93] and inhibit Ca2+-dependent inactivation 

of the channel, which would allow for excessive influx of Ca2+ into the neuron. A history of 

repeated, non-contingent cocaine treatment (i.e., cocaine administered by the experimenter) 

increases neuronal firing that is augmented by 40nM Tat (Fig.4A). Additionally, cocaine 

treatment enhances Ca2+ influx, and acute exposure to 10nM Tat enhances this effect (Fig.

4B). Rats that self-administer or self-titrate their dose of cocaine (similar to the human 

scenario) exhibit pyramidal neuron firing that is greater than that recorded from saline-yoked 

(SAL-Yoked) controls [94]. Pyramidal neurons from rats that self-administered cocaine 

(COC-SA) exhibit Tat-induced increases in firing at much lower concentrations of Tat (e.g., 

5nM) [94], and these neurons are more easily driven to over-excitation, wherein firing 

neurons become inhibited with low Tat concentrations (Fig 5). The neurons recorded in 

these studies [94] were in cortical layers 5/6, had a pyramidal morphological profile, 

prominent apical dendrite, and exhibited regular firing patterns. These characteristics are 

consistent with glutamatergic pyramidal neurons [95]. GABAergic interneurons typically 

feature multiple small apical dendrites and exhibit irregular firing patterns [96]. While 

literature on L-type Ca2+ channel expression in prefrontal GABAergic interneurons is 

limited, hippocampal interneurons have been shown to express L-type Ca2+ channels [97]. 

However, it is important to note that any effect of Tat-induced upregulation of L-type Ca2+ 

channels on mPFC interneurons is overridden by the increased excitability of the pyramidal 

neurons. Thus, L–type Ca2+ channels may be one of the common pathways for cocaine- and 

Tat-induced neuroadaptations in mPFC pyramidal neurons, and this convergence may 

explain how cocaine can accelerate the onset and increase the severity of neurocognitive 

impairment in HIV+ individuals.
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The consequences of cocaine and Tat on L-type Ca2+ channels in the mPFC appear to be 

synergistic. When both cocaine and Tat are present, the effects are greater than additive and 

this is confirmed by interaction statistics [88]. Cocaine itself is not lethal to neurons, but 

cocaine does alter neuronal function and responses from glia. The consequences from 

exposure to low nanomolar concentrations of Tat also occurred in the absence of a 

significant loss of neurons [75], suggesting that Tat has not yet produced the neurotoxicity 

that is observed in other studies. However, these same concentrations of Tat (that normally 

would be subthreshold for evoking neuronal pathology of pathophysiology) may become 

toxic in the presence of cocaine.

Conclusion

In summary, we extend in vitro work with Tat and cocaine to in vivo work and demonstrate 

that the changes may be long lasting even if Tat is no longer present. These changes reflect 

alterations to glial cells, which may set the stage for a hostile environment and increase the 

vulnerability of neurons to become damaged or dysfunction. We identify that alterations to 

L-channel expression and function as common mechanism between the pathophysiology 

arising from exposure to the Tat protein and cocaine. The neuroadaptations that occur in 

pyramidal neurons within the mPFC as a result of repeated cocaine exposure may potentiate 

the acute effects of Tat, including upregulated L-channel function and increased neuron 

excitability. In addition, rats that self-administer cocaine appear to be more sensitive to the 

enhanced excitability induced by cocaine and the acute effects of Tat. Taken together L-

channels are a mechanism that may contribute to an enhanced vulnerability and/or 

exacerbated neuropathology during HIV/AIDS and cocaine abuse co-morbidity.
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Fig. 1. 
Tat up-regulates GFAP expression in the rat mPFC. Shown is GFAP staining from 

representative brain sections taken 14 days after a single intracerebroventricular injection of 

Tat (80μg/20μl) (bottom) or the PBS vehicle (20μl) (top). Left are brain sections containing 

the medial prefrontal cortex (mPFC) and motor cortex (MC) photographed at 1.25× (scale 

bar=1mm). Right are representative 20× magnification images of the mPFC and the location 

for which are indicated with a box on the 1.25× images (scale bar=100μm). Reprinted with 

permission from Wayman et al. Neuroreport. 3 October 2012-Vol 23-Issue 14-p825–829. 

Wolters Kluwer Health Lippincott Williams & Wilkins©.
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Fig. 2. 
Tat increases evoked firing of rat mPFC pyramidal neurons in a Ca2+-dependent manner. 

Curves illustrate the number of action potentials (spikes) evoked by depolarizing current 

pulses at pretreatment baseline (SAL-BlCtr; open circles) is significantly increased 

following exposure to 40nM of recombinant Tat (SAL-Tat; filled circles) and this effect was 

blocked by co-perfusion with an antagonist of open state L-Type Ca2+ channels, diltiazem 

(40nM; SAL-Tat/Dilt; filled squares). Two-way rmANOVA; p<0.01 for treatment history 

effect, current effect, and the interaction with post hoc Newman-Keuls *p<0.025, **p<0.01. 

SAL refers to the ip injections of saline that these rats received prior to killing and 

harvesting the brain slices. Reprinted with permission from Napier et al. JNIP. 1 June 2014-

Vol 9-Issue 3-p354–368. Springer US©.
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Fig. 3. 
Tat increases Cav1.2-α1c immuno-reactive cells in the rat mPFC. Shown is staining from 

representative brain sections taken 14 days after a single intracerebroventricular injection of 

Tat (80μg/20μl; bottom) or PBS (20μl; top). Left are brain sections containing the mPFC and 

MC photographed at 1.25× (scale bar=1mm). Right are representative 20× magnification 

images of the mPFC and the location for which are indicated with a box on the 1.25× images 

(scale bar=100μm). Examples of Cav1.2-α1c immuno-reactive cells are indicated by the 

arrows. Reprinted with permission from Wayman et al. Neuroreport. 3 October 2012-Vol 23-

Issue 14-p825–829. Wolters Kluwer Health Lippincott Williams & Wilkins©.
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Fig. 4. 
Repeated non-contingent administration of cocaine to rats enhanced Tat-induced firing and 

Ca2+ potentials recorded from mPFC pyramidal neurons ex vivo. (A.) Curves illustrate that 

the number of action potentials (spikes) evoked by depolarizing currents is markedly greater 

in a mPFC pyramidal neurons from cocaine (COC)-treated rats (open squares) than that 

recorded from saline (SAL)-treated rats (open circles). BlCtr, baseline control. Bath-applied 

Tat (40nM) facilitated the evoked firing in both neurons from SAL-treated rats (filled 

circles) and COC-treated rats (open squares). Data are presented as mean ± S.E.M. Two-way 

rmANOVA, p<0.05 for treatment histry effect, current effect, and the interaction. Post hoc 
Newman-Keuls illustrated as follows: *p < 0.025 and **p < 0.01, compared to SAL-BlCtr; 

#p < 0.025 and ##p < 0.01, compared with SAL-Tat; ^p < 0.025, compared to COC-BlCtr. 
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(B.) At baseline, the duration of Ca2+ potentials were remarkably prolonged in an mPFC 

pyramidal neuron from a COC-treated rat (COC-BlCtr) as compared to a neuron from a 

SAL-treated rat (SAL-BlCtr). Bath-applied Tat (10nM) enhanced the Ca2+ potential duration 

in a neuron from a SAL-treated rat (SAL-Tat) and exaggerated the enhanced Ca2+ potential 

observed in the neuron from a cocaine-treated rat (COC-Tat). Reprinted with permission 

from Napier et al. JNIP. 1 June 2014-Vol 9-Issue 3-p354–368. Springer US©.
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Fig. 5. 
The ability of Tat to excessively activate neurons is greater in rats that self-administer 

cocaine. Shown is the number of pyramidal neurons that exhibited a Tat-induced 

“excitotoxicity” as defined by an abnormal action potential profile associated with a 

reduction in spike number during membrane depolarization. Two cocaine administration 

profiles were compared, non-contingent and self-administration (SA). Chi-square test 

revealed that the pyramidal neurons from adolescent rats that received experimenter 

delivered cocaine were less sensitive to 40nM Tat than adult COC-SA rats were when 

exposed to 10nM Tat (χ2
(1)=8.03, p<0.005). This indicates that SA (and/or the adult brain 

state) makes mPFC pyramidal neurons more sensitive to the toxic effects of Tat.
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