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ABSTRACT As personal genome sequencing becomes a reality, understanding the effects of genetic variants on phenotype—particularly
the impact of germline variants on disease risk and the impact of somatic variants on cancer development and treatment—continues
to increase in importance. Because of their clear potential for affecting phenotype, nonsynonymous genetic variants (variants that
cause a change in the amino acid sequence of a protein encoded by a gene) have long been the target of efforts to predict the effects
of genetic variation. Whole-genome sequencing is identifying large numbers of nonsynonymous variants in each genome, intensifying
the need for computational methods that accurately predict which of these are likely to impact disease phenotypes. This review focuses
on nonsynonymous variant prediction with two aims in mind: (1) to review the prioritization methods that have been developed to date
and the principles on which they are based and (2) to discuss the challenges to further improving these methods.
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DVANCES in sequencing technologies are rapidly mak-

ing whole-genome sequencing of germline or somatic
DNA routinely available for prognostic and diagnostic pur-
poses. During the past decade and more, millions of single-
nucleotide variants have been identified as the most common
type of genetic difference, both among individuals (Interna-
tional HapMap Consortium 2005; Cotton et al. 2008; Abecasis
et al. 2012) and between different somatic cells within an
individual (Cancer Genome Atlas Research Network 2008;
Campbell et al. 2015). Single-nucleotide variants are a sub-
stitution of one DNA base pair for another and may fall with-
in genes (either protein-coding or functional RNA genes) in
gene regulatory regions or in intergenic regions. Substitu-
tions in the coding sequence of protein-encoding genes can be
either synonymous (i.e., they encode the same amino acid due
to redundancy/degeneracy in the genetic code and so have no
effect on the protein product of a gene) or nonsynonymous
(i.e., they change a single amino acid in the protein). Here, we
focus specifically on nonsynonymous genetic variants (NSVs),
of which there are an average number of ~3000 per individual
genome (Abecasis et al. 2012).
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Proteins, either alone or in complex with other cellular
molecules, comprise molecular “machines” that function at
the biochemical level. An NSV by definition changes the se-
quence of a protein. However, only a subset of NSVs have a
damaging functional effect (i.e., affecting the biochemical
activity or regulatory control of a protein), as proteins are
large molecules and their structures can be quite robust to
single-site mutations. Note that the term “damaging” does
not necessarily imply an impairment of a protein’s bio-
chemical activity—in some cases a NSV that increases a
protein’s biochemical activity can have a negative effect
on the protein’s ability to properly serve one of its biolog-
ical roles. In turn, some, but not all, damaging NSVs will be
deleterious, meaning that they result in a phenotype at the
organism level that is subject to natural selection (specif-
ically, negative selection). Disease-causing, or pathogenic,
NSVs obviously have a phenotypic effect, which may be
subject to natural selection but is not necessarily so. Thus path-
ogenic NSVs are very often but not necessarily deleterious in the
strict sense. Finally, most common (high frequency in a popula-
tion) NSVs, and many if not most rare NSVs, have no appreciable
deleterious or pathogenic effect and are called “neutral.”

Thus, the challenge of NSV impact prediction can be stated
simply as a needle-in-the-haystack problem: most NSVs car-
ried by an individual are neutral, so we need ways to predict
the relatively few NSVs that will, upon closer investigation,
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turn out to be deleterious or pathogenic. Of course, genetic
variation outside of protein-coding regions can also have
phenotypic consequence, and with projects such as ENCODE
now generating hypotheses about potential regulatory re-
gions of the human genome (Encode Project Consortium
2012), methods for identification of disease-relevant regula-
tory variants is currently a major focus. Nevertheless, because
of the clear mechanism by which NSVs can impact biological
function and therefore phenotype, NSV prioritization remains
an active area of research in which improvements are still re-
quired to meet the demands of precision genomic medicine
(Fernald et al. 2011; Shendure and Akey 2015).
Computational methodologies for predicting the impact of
NSVs fall into four main categories: sequence conservation-
based, structure analysis-based, combined (including both
sequence and structure information), and meta-prediction
(predictors that integrate results from multiple predictors)
approaches (Figure 1). We first review the foundations of
SNV prediction methods in protein sequence and structure
analysis. We then discuss each of the categories of computa-
tional prediction method in more detail, describing the basic
principles underlying each approach and the differences be-
tween specific computational tools that have been developed
in each area. We try to place particular emphasis on advances
in methodology. Finally, after reviewing how NSV prediction
method accuracy is assessed, we outline remaining chal-
lenges in the field, and prospects for further advancement.

Methods for Predicting Effects of NSVs: Overview
and Background

The theoretical underpinnings of NSV prioritization methods
were arguably developed at the dawn of molecular biology.
Based on the limited structural studies available at the time
on hemoglobin (primarily the peptide segments located near
the heme iron), as well as partial amino acid sequences of
hemoglobins from a number of other mammalian species,
Zuckerkand! and Pauling first proposed the principle that
disease can arise through a change in a protein’s amino acid
sequence that affects its functioning as molecular machine
and the corollary that different amino acids contribute to
that functioning to different degrees (Zuckerkandl and
Pauling 1962). They formulated the hypotheses that now
underlie the two primary approaches to NSV prediction:
that the amino acids of greatest functional importance can
be identified either (1) directly by inspection of the protein
structure or (2) indirectly by comparing the sequences of re-
lated proteins from different species and noting the positions
that display evolutionary conservation. These hypotheses
were borne out, and elaborated upon, by seminal large-scale
protein mutagenesis-fitness studies on HIV-1 protease (Loeb
etal. 1989), T4 lysozyme (Pazdraket al. 1997), and Escherichia
coli lacl protein (Markiewicz et al. 1994). In these studies,
nearly every position in the protein was mutated to multiple
different amino acids, and the relative fitness of organisms
bearing the mutation was measured.
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In protein structure analysis, the effect of a NSV is pre-
dicted from its likely effects on protein stability or function.
As Zuckerkandl and Pauling (1962) observed, a small num-
ber of positions in hemoglobin are in direct physical contact
with oxygen or heme, and, as NSVs at these sites could change
the distribution of electrons critical for catalysis, they would
likely have effects on hemoglobin’s ability to perform its oxy-
gen delivery function. A much larger number of positions were
predicted to play an important role in the stability of the
overall structure of each monomeric subunit as well as the
functional tetramer, which stably positions the few directly
functional sites. Thus most of the effects of NSVs would be
on protein stability. In either case, protein structure analysis
requires consideration of physical mechanisms by which an
NSV might affect its functioning, which would then presum-
ably result in phenotypic effects.

Sequence conservation analysis, on the other hand, begins
with observation of the effects of natural selection, which
operates at the phenotypic level. Evolutionary conservation
among homologs reflects the effects of negative selection
against mutations that reduced the fitness of the individuals
bearing those mutations. In a typical protein family, some
positions in the protein are absolutely conserved among ho-
mologs, while other positions display varying degrees of toler-
ance for different amino acids. In this approach, observations of
substitution patterns over macroevolutionary timescales, in
which sequences typically differ at many different positions,
are used to estimate effects of a single unit of potential
microevolutionary change, a NSV in an individual. The pre-
diction of impact will be accurate only insofar as the effects
are similar on these timescales and population scales (e.g., a
small selective effect can be enough to retain evolutionary
conservation in a large population although the effect in a
single individual lifetime may be difficult to detect).

Early Computational Methods: Quantitating Sequence
Conservation and Rules for Structural Features

With the development of more rapid DNA-sequencing tech-
nologies in the late 1990s, databases began to be compiled
of DNA sequence variation within the human population
(Collins et al. 1998; Buetow et al. 1999; Cargill et al. 1999;
Halushka et al. 1999), as well as between individuals of dif-
ferent species. The rate of discovery of such variants soon
outstripped our abilities to analyze each one manually, and
work began on computational methods. Miller and Kumar
were the first to demonstrate the ability of sequence conser-
vation to statistically distinguish between disease-causing var-
iants and presumably mostly neutral common variants in a
population (Miller and Kumar 2001), while Wang and Moult
showed that structure information can also succeed at that
task (Wang and Moult 2001). Chasman and Adams combined
both sequence and structure information into a prediction
method (Chasman and Adams 2001). The earliest computa-
tional methods available for broad use considered evolution-
ary conservation (Ng and Henikoff 2001; Thomas et al. 2003),



Evolutionary Conservation

Rule based/ Machine learning

structural effects (Wang and Moult 2001), or a combination of
the two (Ramensky et al. 2002). Evolutionary conservation
was treated as quantitative, while structural effects were han-
dled as qualitative features for rule-based prediction.

The early sequence conservation methods borrowed from
earlier work in assigning a probability to a replacement of one
amino acid by another over evolutionary time (Dayhoff et al.
1978; Henikoff and Henikoff 1992; Jones et al. 1992). In this
work, amino acid replacement probabilities were derived
empirically from a database of known protein sequences. Ho-
mologous proteins were aligned to each other, providing one-
to-one correspondences between presumably homologous
amino acids within a group of related proteins, which were
then used to generate statistics for pairwise amino acid sub-
stitutions (often expressed as a symmetric 20 X 20 matrix).
These statistical matrices quickly came to replace earlier em-
pirical methods of estimating amino acid replacement from
physicochemical properties of amino acids, such as the
Grantham scale (Grantham 1974), and reached widespread
use in sequence database searching in algorithms such as
FASTA (Pearson and Lipman 1988) and BLAST (Altschul
et al. 1990). However, the major drawback in these pairwise
matrices is that they estimate an average replacement prob-
ability over all proteins. As observed by Zuckerkandl and
Pauling (1962), and made abundantly clear by mutagenesis
studies (Loeb et al. 1989; Markiewicz et al. 1994; Pazdrak

Rule based/ Machine learning

Figure 1 An overview of methods for predicting effects of
NSVs. “Core” methods based on sequence (evolutionary
conservation) and structure analysis can be combined into
a multi-feature prediction method, or predictions from dif-
ferent individual methods can be used to make an overall
meta-prediction.

et al. 1997), some sites in proteins are apparently tolerant to
mutation, while others are not, and it matters very much not
only what the amino acid change is, but also where in the
sequence it occurs. As protein databases became larger, it
became statistically feasible in many cases to compute prob-
abilities specifically for each position in an alignment, termed
“profiles” (Gribskov 1994). A profile is expressed as an amino
acid probability vector for each position in the alignment, and
pairwise amino acid replacements can simply be derived
from the two relative profile probabilities. Not surprisingly,
position-specific probabilities significantly outperform aver-
age substitution scores at identifying deleterious NSVs (Ng
and Henikoff 2001). All the early conservation-based NSV
prediction methods utilized position-specific profiles, al-
though in somewhat different ways.

The differences among these early methods were in three
main areas. The first was in the construction of alignments,
both in identifying a set of homologs and in the algorithm used
to align them. SIFT used PSI-BLAST (Altschul et al. 1997),
while PANTHER-subPSEC (Thomas et al. 2003) used hidden
Markov models (Barrett et al. 1997). The second difference
was in how amino acid probabilities were determined from
the alignment: SIFT and PANTHER weighted each sequence
equally at all positions in a given alignment (Henikoff and
Henikoff 1994), while PolyPhen used position-specific se-
quence weighting (Sunyaev et al. 1999). In addition, SIFT
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gave more weight to the prior probabilities for amino acids
compared to the weighting scheme used in PANTHER-
subPSEC (Sjolander et al. 1996), potentially leading to larger
differences between these methods when the alignment
contains either relatively few, or relatively closely related
homologs. The third difference lies in how these amino acid
probabilities were used to determine a quantitative substitution
effect score. PolyPhen used the ratio between the proba-
bilities of the wild-type and substituted alleles, PANTHER-
subPSEC used the absolute value of that ratio to focus on the
magnitude rather than the directionality of the change (i.e., an
NSV could be judged deleterious if it dramatically decreased or
increased the probability compared to the wild type), and SIFT
used the ratio between the substituted amino acid probability
and that of the most probable amino acid at that position, in
effect treating the NSV not in terms of change from one amino
acid to another, but rather in terms of the fit between the
observed amino acid and the profile.

Unlike sequence conservation, effects on protein structure
are diverse and cannot be treated in a single unified formalism.
Early methods for variant-effect prediction utilized multiple
general features describing the fit between an amino acid and
itslocal environment within a three-dimensional structure (and
thus affecting protein stability), as well as features describing
specific functional roles for a particular amino acid, such as an
enzyme active site or ligand-binding site (Table 1). An NSV ata
specific functional site is likely to be deleterious, but as dis-
cussed above this applies to relatively few amino acid sites in a
typical protein. These sites—such as enzyme active sites and
individual residues that bind metal ions, other cofactors, or
ligands—can be identified from direct analysis of protein struc-
tures, or, more commonly, from prior analysis results that
are captured in resources such as the Swiss-Prot database
(Boeckmann et al. 2003; UniProt Consortium 2011). Of much
broader applicability are predictions of NSVs that decrease
protein stability by a few kcals/mol, as this can substantially
affect the amount of the correctly folded and functional pro-
tein in the cell. The free energy costs of many perturbations
arising from a particular amino acid change (e.g., increasing
hydrophobic surface area exposed to water or introducing a
charged amino acid in the nonpolar protein core) have been
well studied. These early methods used these costs to ratio-
nally guide the selection of features that are likely to have
significant stability effects on most proteins. To combine the
various features into a prediction of functional effect, empirical
rules were developed. Thus, different structure-based methods
differ in which features they consider, and how they are com-
bined into rules for predicting functional impact.

Further Developments in Evolutionary Conservation-
Based and Structure-Based Methods

Sequence conservation-based methods

Conservation-based methods perform as well as structure-
based methods on benchmarking sets (described in more
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detail below), but can be applied to a much larger number
of human NSVs because they can be used even when there is
no known three-dimensional structure of a homologous pro-
tein. Consequently, extensive efforts have been made to im-
prove conservation-based methods. The MAPP algorithm
(Stone and Sidow 2005) converts an amino-acid-probability
profile into a multidimensional profile of physicochemical
properties and assesses an NSV according to its fit to the
physicochemical profile rather than to an amino acid profile.
The same article also demonstrated the value of creating a
conservation profile based only on orthologous proteins
(Fitch 1970) (i.e., descended from the same gene in their
common ancestor species, like human hemoglobin and horse
hemoglobin) rather than also including paralogous proteins
(i.e., genes that descend from homologous but distinct genes
in their common ancestor species, like human hemoglobin
and human myoglobin). This approach is based on the recog-
nition that duplicated genes are likely to have diverged some-
what in function to become fixed in the genome (Ohno 1970)
and that the functional divergence may arise from adaptive
amino acid substitutions at some positions in the protein se-
quence of one or both duplicates. The PANTHER-subPSEC al-
gorithm was improved by allowing paralogous proteins to be
included in the profile only if they match the profile of orthol-
ogous proteins arising from the same duplication event in a
phylogenetic tree (Thomas and Kejariwal 2004). Thus the
profiles are subfamily-specific if the subfamily displays a
significantly different profile from the entire family.
MutationAssessor (Reva et al. 2011) introduced two ad-
vances: a new method of assessing the impact of a NSV based
on the change in relative entropy of an alignment position
(essentially the weighted diversity of amino acids observed at
that position) upon adding the observed substitution, and a
new way to identify divergent subfamilies within an align-
ment without first distinguishing orthologs from paralogs.
The MutationAssessor impact score combines the subfamily-
based entropy score with the global family-based entropy
score so that both family and subfamily profiles are consid-
ered in the final prediction. The Ancestral Site Preservation
algorithm (Marini et al. 2010; Tang and Thomas 2016) uses a
multiple alignment in a way that is completely different
from other methods. Rather than considering columns of a
multiple alignment, a phylogenetic tree is reconstructed from
the alignment and probabilistic ancestral protein sequences are
inferred (Yang 1997) at each node in the tree, representing all
common ancestors of extant proteins. The “preservation” of an
amino acid is then traced back through its ancestors; the longer
the trace-back, the greater the probability that the preservation
reflects the effects of negative selection. To varying degrees,
these latest developments address the main drawback of using
homologous proteins to infer the effects of NSVs: the assump-
tion that the constraints on amino acid replacement at a given
position remain constant (or “equivalent”) over evolutionary
time. Even close orthologs typically differ in sequence at mul-
tiple positions, and a change at one position can dramatically
alter the probability that a change elsewhere will be tolerated



Table 1 List of structure features used by methods

PolyPhen (Ramensky
et al. 2002)

Structure features

Chasman and
Adams (2001)

SNPs3D (Yue
et al. 2006)

Secondary structure NI

Region of (phi, psi) map NI

Loss of hydrogen bond/stabilizing NI
energy of water bridges

van der Waals force

Overpacking

Hydrophobic burial

Surface accessibility/change in
accessible surface propensity

Crystallographic B-factor

Cavity

Electrostatic repulsion

Backbone strain

Buried charge

Buried polar

Breakage of a disulfide bond

Turn breaking

Helix breaking

Near hetero (nonprotein) atom

Near subunit interface

Sidechain conformational entropy

<<l L k&
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<< <

(Bridgham et al. 2009). This phenomenon is often referred to
as “compensatory mutation” and may be quite widespread
(Kondrashov et al. 2002; Kulathinal et al. 2004; Liao and Zhang
2007). By considering evolutionary change within a family of
related proteins, the methods discussed in this section begin to
address the problem of correctly identifying the constraints on
a particular protein of interest even if they differ from other
related proteins.

Because of the reliance of sequence conservation methods
on a multiple sequence alignment, it seems obvious that
alignment quality would affect the prediction accuracy of
these methods on benchmark tests (Ng and Henikoff 2006;
Thusberg et al. 2011). Karchin suggested that alignment dif-
ferences might partially explain differences in predictions
from different algorithms (Karchin 2009). Hicks et al. tested
these hypotheses by comparing SIFT and PolyPhen-2 on
alignments constructed by four different methods (Hicks
et al. 2011). While SIFT accuracy was slightly decreased by
using the alignment generated by PolyPhen-2, this decrease
was not statistically significant, and only use of an alignment
that is composed of only distantly related homologs (<50%
pairwise identity among all homologs) had a significant ef-
fect on SIFT performance. PolyPhen-2 accuracy, on the other
hand, was unaffected by alignment methods. It is possible
that this increased robustness to alignment differences may
be due to PolyPhen’s use of several additional features other
than conservation. Agreement between the predictions from
SIFT and PolyPhen-2 was not increased regardless of which
alignments were used, suggesting that differences in align-
ments do not contribute appreciably to prediction discrep-
ancies between algorithms. These results also suggest that
the alignments generated by both SIFT and PolyPhen-2 are

generally of high quality and further improvement in this
area may yield limited gains in predictive value. However,
this study was limited to NSVs in four human proteins, and
it is not clear how these conclusions will hold for more com-
prehensive test sets.

Structure-based methods

Further advances in structure-based methods have focused on
predictions of impact on protein stability. Recent reviews have
covered the development of methods in this field (Masso and
Vaisman 2010; Compiani and Capriotti 2013), as well as
assessment of relative performance (Potapov et al. 2009),
so we focus here on the major recent methodological devel-
opments. Stability predictions are based on an explicit or
implicit model of the change in stability (A-A-G or change
in free-energy difference between folded and unfolded
states) upon substitution with a different amino acid. For
the purposes of NSV impact prediction, the main interest is
in mutations that have a relatively large effect on protein
stability and can thus be expected to have an appreciable
effect on the amount of functional protein (i.e., in the confor-
mation required for its function and stable enough to avoid
degradation) present in vivo. Proteins vary in stability, but a
A-A-G in the range of 2 kcal/mol is generally considered to
result in a mutational “hot spot” of sufficient effect. Using this
criterion, Potapov et al. found that the accuracy of predicting
such hot spots was between 72 and 80% across six different
commonly used methods (Potapov et al. 2009). While their
initial assessment of one method, Rosetta (Rohl et al. 2004),
suggested a somewhat lower accuracy, a later study has
shown that this resulted from inappropriate parameter set-
tings (Kellogg et al. 2011).
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Most mutant stability change prediction programs use an
explicit model of the energetics of the folded (requiring a 3D
structure) and unfolded (generally assumed to depend only
on the amino acid substitution) states of the protein. Protein
backbone conformation may be assumed to remain unper-
turbed or to allow small changes upon mutation; sidechains
may be allowed to rotate and repack within varying distances
of the mutated amino acid. Energy functions, also called “po-
tentials,” consist of linear combinations of terms to capture
different interactions or entropic factors (e.g., solvation or
conformational entropy) and can be physics-based or statis-
tical (inferred from observed frequencies). The relative
weights of the terms can derive from experimental measure-
ments or theoretical calculations or can be optimized to solve a
particular task. Fold-X (Guerois et al. 2002) is a mostly physics-
based energy function (or “potential”) that uses a full atomic
description of the structure of the proteins. Terms of the func-
tion were weighted to maximize the fit to experimentally mea-
sured A-A-G values for hundreds of point mutants. Rosetta
(Rohl et al. 2004) computes energies using a potential that
includes numerous terms, both statistical and physics-based,
and can sample both protein backbone and sidechain rotamers
to adjustable degrees. CC/PBSA (Benedix et al. 2009) performs
conformational sampling, computes energies using an all-atom
physics-based potential, and reports an average A-A-G over the
sampled conformations. EGAD (Pokala and Handel 2005) uses
an all-atom physics-based potential with a fixed native state
conformation; however, the unfolded state is modeled explicitly.

Machine learning has also been applied to develop mutant
stability prediction methods. Unlike the approaches based on
explicit modeling of the energetics of folding, these methods
consider only the folded state of the protein and result in an
energy-like scoring that is a nonlinear function of a wide variety
of features. [-Mutant (Capriotti et al. 2005) trained a support-
vector machine (SVM, discussed in more detail below) on a
database of experimentally assayed single substitutions, where
for each substitution the SVM is given the quantitative known
change in stability as well as a feature vector that encodes (1)
the two variant amino acids and (2) the number of amino acids
of each type in a 9A radius within the three-dimensional struc-
ture, in essence allowing the SVM to determine an energy-like
function that depends on the amino acids in a 9A sphere.
AUTO-MUTE (Masso and Vaisman 2010) uses an SVM and
Random Forests (another machine-learning technique that
we discuss more below) using known experimental A-A-G
values with features that include the amino acid substitution
and a “statistical potential” (Sippl 1990) calculated from com-
binations of four residues in mutual physical contact in a da-
tabase of known protein structures.

Combining Sequence Conservation with Structural
Features

PolyPhen (Ramensky et al. 2002) was the first widely available
software to combine sequence conservation with structural
features. As with early structure-based methods (Wang and
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Moult 2001), it used a series of empirical rules to combine
these various features into an overall prediction. These rules
are rational and attempt to capture knowledge about the
forces driving protein stability and function, but arbitrary in
that there are many rational ways to combine the various
features. Machine-learning techniques have been employed
by many new NSV impact prediction tools to better integrate
available features. The general approach is to first collect pre-
determined positive (typically pathogenic NSVs) and negative
(neutral NSVs) examples and “train” a “machine-learning pre-
diction classifier” that effectively distinguishes between the
positive and negative training examples. Training is typically
accomplished by iteratively adjusting a computational repre-
sentation of the input “features” (e.g., sequence conservation
and structural features), so as to separate the positive from
negative training examples to the greatest extent possible.
Parameters of the prediction algorithms are then optimized
using one or more cross-validation sets. Finally, performance
of the prediction algorithm is analyzed on a test set to estimate
its general applicability to new data and compare it with other
methods. The first work of this kind employed a Bayesian
network learning algorithm (Cai et al. 2004), and the subse-
quent decade has seen many variations on this basic theme. A
growing number of machine-learning-based NSV impact pre-
diction tools are now available. They differ from each other
primarily in three ways: the type of machine-learning algorithm
used, the set of input features that are considered, and the sets
of NSVs of known (or inferred) effect that are used as training
and test sets. Table 2 lists the main algorithms that have been
employed and some representative NSV impact prediction
methods that have utilized these algorithms. Table 3 lists rep-
resentative NSV data sets that are used as training or test data
sets of some machine-learning-based methods. The selection of
training set and test set is very important for development of
machine-learning tools and correct assessment of these tools.
Machine-learning methods continue to dominate the re-
cent literature and are the best-performing methods on a
variety of test data sets. In general, many different machine-
learning models perform equally well; for example, the
latest version of SNAP averages >10 different predictors
with similar performance, for which evolutionary conserva-
tion is the only feature in common to all 10 (Hecht et al.
2015). The advantage of machine-learning approaches is that
they can include features of very different types, and poten-
tially a large number of such features that can be combined in
highly complex and nonlinear ways. The main disadvantage
is that it is generally difficult to infer important principles
driving prediction accuracy, such as the relationships of the
most informative features combined. In addition, there is a
possibility of overfitting because a model is typically trained
by maximizing its performance on training data. The model
may therefore be less accurate in predicting new data than
training data. Furthermore, as pointed out by earlier analyses
(Thusberg et al. 2011; Grimm et al. 2015), performance of
some machine-learning methods can be overestimated when
comparing with non-machine-learning methods because



Table 2 Machine-learning algorithms used in NSV prediction and the specific tools developed using each algorithm

Machine-learning
algorithm

Description

Example of NSV
prediction tools
utilizing algorithm

Support vector machine

Maps positive (pathogenic) and negative (neutral) training examples to

PhD-SNP (Capriotti et al. 2006)

a high-dimensional space (a transformation of the input features) in
which the positive and negative examples can be distinguished from
each other; predictions for a new SNV are made on the basis of

where it lies in this space.
Artificial neural networks

Trains a multi-layer network of nodes (“artificial neurons”), including
one layer of input feature nodes and one layer of two output nodes

PMUT (Ferrer-Costa et al. 2005) and
SNAP (Bromberg and Rost 2007)

(pathogenic/neutral) and one or more middle layers, where weights
of input and output edges connecting nodes in adjacent levels are
adjusted to maximize prediction accuracy on training examples.

Random forests

Trains a large number (“ensemble”) of decision trees to distinguish

MutPred (Li et al. 2009)

positive from negative training examples, each tree utilizing a random
set of input features; predictions for a new SNV is derived statistically
from the ensemble of predictions from individual trees.

Naive Bayes classifiers

Probabilistic classifier (i.e., assigns a probability of being damaging or
neutral) that treats each feature as independent of the others;

PolyPhen2 (Adzhubei et al. 2010) and
MutationTaster (Schwarz et al. 2010)

parameters are adjusted so as to maximize the probability of impact
for positive examples and minimize probability for negative examples.

performance assessment data sets contain NSVs on which
some machine-learning methods have been trained. Even if
these estimates are accurate, the performance improvement
of machine-learning methods over non-machine-learning
methods with few features such as SIFT, PANTHER-subPSEC,
and MAPP, while significant, is not dramatic (accuracy im-
provement on the order of a few percentage points). Indeed,
after controlling for two types of circularity (see discussion of
prediction assessment below), Grimm et al. (2015) found
that the improvement of combined and meta-prediction
methods, compared to conservation-based methods, is sub-
stantially less dramatic than originally reported.

In addition to structural features that reflect effects on
protein stability, other biological features have proved useful
inidentifying NSVs that impact protein function. For instance,
including Gene Ontology functional class information in an
SVM classifier SNPs&GO (Calabrese et al. 2009) improved
prediction rates by nearly 5% on the HumVar benchmark.
MutPred (Li et al. 2009) includes a number of “functional”
features that have been mapped to specific amino acids in the
protein sequence, such as sites of post-translational modifi-
cations (e.g., phosphorylation sites), DNA-binding sites, and
catalytic active sites.

Meta-prediction Methods

Because a large number of tools perform quite well on existing
benchmark tests, it is perhaps not surprising that meta-prediction
methods that integrate the scores from multiple prediction
methods have recently been developed. This approach is largely
justified by numerous studies showing that, despite similar
overall prediction accuracy, individual methods can disagree
substantially for the same NSV. CONDEL (Gonzalez-Perez and
Lopez-Bigas 2011) was the first meta-prediction method,

using a linear, weighted average of scores from five different
prediction methods, to produce a final prediction. CAROL
(Lopes et al. 2012) combines the predictions of SIFT and
PolyPhen-2 using a linear, weighted Z-score. But because of
their flexibility in handling multiple and diverse feature
types, machine-learning approaches have become the most
widely applied for constructing meta-predictors. An increas-
ingly common approach has been to (1) evaluate multiple
existing prediction methods, (2) select some number of
top-performing methods relative to a given benchmark data
set and a particular metric of performance, and (3) train a
machine-learning classifier using as features the scores from
each of the top-performing methods. PON-P was the first of these,
integrating a conservation method (SIFT), a structural stability-
based method (I-Mutant), and three combined machine-
learning-based methods (SNAP, PolyPhen-2, PhD-SNP),
using Random Forests to make a final prediction (Olatubosun
et al. 2012). Numerous other studies have since followed
this general approach, such as Meta-SNP (Capriotti et al.
2013a), CoVEC (Frousios et al. 2013), PredictSNP (Bendl
et al. 2014), and Meta-SVM (Dong et al. 2015). Taking the
idea of producing a meta-prediction from multiple individ-
ual prediction algorithms yet a step further, methods such as
CADD (Kircher et al. 2014) treat the output of any NSV
effect-prediction method as simply one type of “annotation”
of a variant and then use an SVM-based approach to make a
meta-prediction from a large list of diverse annotations.

Assessment of NSV Impact Predictions

Assessment of the accuracy of predictions is an increasingly
important issue. Already in 2006, Ng and Henikoff observed
that a wide variety of prediction methods were available,
making it difficult for users such as medical geneticists to
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Table 3 Representative data sets used to evaluate the performance of NSV impact predictions

Data set (reference)

NSVs with impact

NSVs with no impact

HumDiv data set
(Adzhubei et al. 2010)

SP_human data set
(Calabrese et al. 2009)

HumVar data set
(Capriotti et al. 2006)

VariBench
(Thusberg et al. 2011,
Sasidharan Nair and
Vihinen 2013)

Protein Mutant Database
(Kawabata et al. 1999)

SwissVar database
(Mottaz et al. 2010),
also called
HUMSAVAR

MutPred data set (Li
et al. 2009)

SNAP data set
(Bromberg and Rost
2007)

Cancer LSDB data set
(Hicks et al. 2011)

Meta-SVM testing data
sets (Dong et al. 2015)

CADD data set (Kircher
et al. 2014)

SwissVarSelected,
VariBenchSelected,
et al. (Grimm et al.
2015)

Annotated in Swiss-Prot as human disease causing
and Mendelian disease causing and as affecting
protein molecular function

Annotated in Swiss-Prot as human disease causing

Annotated in Swiss-Prot as human disease causing

Annotated in Swiss-Prot as human disease causing
and found in an LSDB [from PhenCode database
(Giardine et al. 2007) or registries in IDbases (Piirila
et al. 2006)] or 1 of 18 other LSDBs

Damaging variants from experiments

Up-to-date Swiss-Prot annotations, disease causing

Somatic mutations in genes resequenced in 22 cancer
cell lines from Sjoblom et al. (2006); somatic kinase
genes resequenced in 210 individual tumors
(Greenman et al. 2007); annotated in HGMD
(Dehouck et al. 2013) as disease causing;
annotated from Swiss-Prot as disease causing

Annotated in PMD as changed in function

Annotated as pathogenic in an LSDB for one of the
following cancer genes: BRCA1, MLH1, MSH2,
TP53

Reported as causing Mendelian diseases in 57 Nature
Genetics publications 2011-2014

Annotated in ClinVar (Baker 2012) as pathogenic

Selected variants from these data sets that do not
overlap with common training sets such as HumVar

Amino acid differences between human proteins and
closely related mammalian homologs

Annotated in Swiss-Prot as neutral, excluding
hypervariable proteins of class | and Il of the major
histocompatibility complex

Human variants in Swiss-Prot not annotated as
disease causing

dbSNP variants with MAF (minor allele frequency)
> 0.01 and observed in at least 49 chromosomes

Nondamaging variants from experiments

Up-to-date Swiss-Prot annotations, polymorphism

Annotated in Swiss-Prot as common polymorphism

Annotated in PMD as no change; substitutions
between pairwise-aligned Swiss-Prot homologs
with same E.C. number (enzyme function)

Annotated as pathogenic in an LSDB for one of the
following cancer genes: BRCA1, MLH1, MSH2,
TP53

Common variants (MAF > 0.01) and rare variants
(singletons) in 900 healthy participants of the ARIC
study (Abecasis et al. 2010)

Common variants (derived allele frequency > 0.05)
from exome sequencing (Fu et al. 2013)

know which methods to use and how to interpret different
predictions for the same NSV (Ng and Henikoff 2006). The
problem has become far greater today. Publication standards
in the field have generally demanded that a new method
must outperform at least the most popular existing methods
on one or more of the widely used benchmark data sets. It is
worth discussing the aims of these benchmarks (Table 3) to
explore how they might be better used to drive progress in
the field. The benchmarks generally fall into two classes:
those that distinguish presumed disease-causing variants
from variants that have been observed but not associated
with disease, and those that distinguish between mutations
with and without effect in an experimental assay. In the first
class, presumed disease-causing variants have been obtained
from comprehensive databases, most commonly Swiss-Prot
(Mottaz et al. 2010), but also OMIM (Hamosh et al. 2005)
and HGMD (Stenson et al. 2003) or from locus-specific data-
bases [LSDBs, typically focusing on only a single human
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gene, are reviewed in (Greenblatt et al. 2008)] such as the
IARC TP53 database (Olivier et al. 2002) and the BIC data-
base on BRCA1 and BRCA2 (Goldgar et al. 2004). Non-
disease-associated variants have been obtained in diverse
ways: from substitutions between closely related orthologs
(Ramensky et al. 2002), from non-disease-associated hu-
man variants reported in Swiss-Prot (Boeckmann et al. 2003),
or from either all or common (e.g., a minor allele frequency
>1% in at least one population) human NSV alleles in a public
resource like dbSNP (Sherry et al. 2001). These sets of non-
disease-associated variants are relatively comprehensive, cov-
ering many genes and variants, but can be expected to have
some degree of error simply because of our ignorance about
the phenotypic effects of most alleles. Consequently, they are
useful for statistical comparisons because they are expected to
contain fewer NSVs with effects compared to the disease-
associated sets, but any given NSV in the unassociated sets
may actually have an impact on function.



Potential biases in these evaluation sets are important to
identify, as they can lead to spurious assessments of the
performance of NSV impact prediction methods. Grimm
et al. (2015) recently characterized two such biases, which
they call “type 1 and type 2 circularity.” Type 1 circularity is
simply that the set of variants (both pathogenic and neutral)
used to train a method can also appear in the evaluation set,
leading to overinflation of prediction accuracy. Grimm et al.
(2015) created filtered data sets for evaluation by removing
variants that overlap with commonly used training sets, to
create, for example, a SwissVarSelected and VariBenchSe-
lected data set that minimizes the impact of type 1 circularity
on prediction evaluation. Type 2 circularity is less obvious:
evaluation sets tend to contain a large proportion of proteins
for which the variants in the set are either all pathogenic or all
neutral. Thus, a simple rule can outperform all existing pre-
diction methods just by “gaming” the system, predicting all
variants in a given protein as either pathogenic or neutral. This
bias explains the large improvement in prediction accuracy
achieved by FATHMM (Shihab et al. 2013) when it includes
(in addition to conservation) a term based on a particular pro-
tein domain. Importantly, the bias leading to type 2 circularity
is much more pronounced for some evaluation sets than for
others: only 5% of variants in VariBenchSelected are found in
proteins having both pathogenic and neutral variants in the set,
while this is true of >25% of variants in SwissVarSelected. This
analysis suggests that evaluations based on SwissVarSelected
are likely to better reflect actual performance in real world
applications, in which nearly all proteins can be expected to
harbor both pathogenic and neutral variants. Taking this a step
further, Grimm et al. (2015) also assess performance on subsets
of SwissVarSelected, where proteins are grouped according to
how well balanced the variants are in both pathogenic and
neutral classes. Finally, this analysis suggests that LSDBs, the
source of many VariBench variants, may suffer from systematic
bias toward pathogenic variants.

The second class of evaluation sets, experimentally assayed
effects of NSVs, is currently available for a very small number of
proteins. These are mutagenesis studies, followed by an assay of
function. The Protein Mutant Database contains a collection
of >200,000 mutations, but unfortunately has not added data
since 2003. Perhaps the most relevant assays are those based
upon a direct fitness measurement, such as the growth of a
microorganism containing either the wild-type or variant
forms of a gene. Even when using such assays the number of
NSVs impacting function may be underestimated: only a single
fixed environment is typically assayed, so it is likely that some
NSVs that are apparently neutral in the assay actually do have
fitness effects under other conditions. Nevertheless such in-
depth experimental studies afford the possibility of close in-
spection of predictions on individual variants to potentially
identify systematic errors. In addition to the classic mutagen-
esis studies mentioned above, a few more recent studies have
been carried out on specific proteins, such as cystathionine
beta synthase (CBS) (Wei et al. 2010; Dimster-Denk et al.
2013) and methylenetetrahydofolate reductase (Marini et al.

2010). Wei et al identified eight mutations—of the >200
NSVs that they tested in CBS—that were consistently incor-
rectly predicted by six different methods (Wei et al. 2010),
suggesting a systematic overprediction of effects arising from
NSVs that involve mutation of a cysteine residue. For a differ-
ent set of CBS mutants, Dimster-Denk et al. (2013) found that
predicted A-A-G changes of >4 kcal/mol from Rosetta
(Kellogg et al. 2011) were predictive of loss of function, but
for moderate changes no correlation was found between pre-
dicted values and functional assay results.

Several authors have previously suggested that the field
could benefit greatly from the assessment of truly blinded
predictions at regular intervals, similarly to the Critical Assess-
ment of Structure Prediction experiments (Moult et al. 2014)
that proved their utility in the field of protein structure pre-
diction from primary amino acid sequence. The Critical Assess-
ment of Genome Interpretation (CAGI) experiment, first held
in 2012-2013, included a challenge for interpretation of genet-
ic variants. Unfortunately; this first experiment has had limited
impact on the field to date, with no general publication de-
scribing its results and few articles referencing it (a rare exam-
ple is Chen et al. 2014), but a new CAGI experiment was just
completed in February of 2016 (https://genomeinterpretation.
org). While results were not available at the time of press, the
experiment certainly holds promise in this area.

It is also important to consider which metrics are applied to
assess accuracy on a given benchmark. As Cline and Karchin
(2011) pointed out, the optimal comparisons use a method like
the Receiver Operating Characteristic (ROC), which considers
equally both true positive (sensitivity or recall) and false positive
(specificity or precision) prediction rates and considers all pos-
sible thresholds in a quantitative manner. ROC analyses have
dominated the field since its early days, with area under the
curve (AUC) becoming the most common metric for the accu-
racy of predictions. It might be even more informative to follow
the practice of other prediction fields that have focused on AUC
for low false-positive rates [e.g., <20% as in (Gribskov and
Robinson 1996)] rather than the entire ROC curve, as these
are the predictions that are most likely to be used in real world
applications. Other accuracy measures such as the Matthews
Correlation Coefficient and Balanced Error Rate are also useful
but can depend on the threshold employed (Wei et al. 2010).
Finally, it is important to avoid conflating absence of a prediction
with a prediction of absence of a functional effect. Nearly all
prediction methods are unable to make predictions for some
NSVs, and this number can vary widely between methods.
While it is certainly useful to compare the prediction coverage
for different methods, these comparisons should be kept distinct
from the accuracy of predictions (e.g., Thusberg et al. 2011;
Shihab et al. 2013) rather than included in a quasi-ROC analysis
(e.g., Dong et al. 2015).

Conclusions and Prospects

Despite a growing interest in other types of genetic variation,
predicting the impact of NSVs remains an area of active
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research and continual improvement (Capriotti et al. 2012).
We have focused here on evolutionary conservation methods,
combined methods using both conservation and structural
features, and meta-prediction methods that make a unified
prediction from multiple conservation, structural, or com-
bined methods. These three classes are the most important
for biomedical applications because they can be applied to a
much larger number of SNVs, given that many human pro-
teins currently have neither an experimentally determined
structure nor a close homolog from which to build a model.
Furthermore, in methods using both conservation-based
and structure-based features, conservation has been repeat-
edly found to be the single most informative feature
(Ramensky et al. 2002; Bromberg and Rost 2007; Li et al.
2009). Recent efforts to overcome the limitations of previ-
ous conservation-based metrics, such as considering amino
acid physico-chemical similarity (Stone and Sidow 2005),
subfamily-specific conservation (Thomas and Kejariwal 2004;
Reva et al. 2011), and evolutionary reconstruction (Marini
et al. 2010) have shown that further improvement in this ap-
proach is still possible. Incorporation of other potential im-
provements, including but not limited to modeling
lineage-specific selection, may hold further promise. Com-
bined and meta-prediction methods have a large space of po-
tential combinations of features, and even development of
novel feature types, yet to explore. Incorporation of the more
recent conservation-based methods as a feature in machine-
learning-based predictors would also be a natural next step.

In addition to methodological improvements, the field
would benefit from advances in at least three more areas.
The first area is reliable access to accurate predictions from
multiple methods, which becomes increasingly important
as the demand for variant interpretation grows. One could
envision an integrated variant resource to address this
need. Databases such as dbNSFP (Liu et al. 2011), SNPdbe
(Schaefer et al. 2012), and the PON-P server (Niroula et al.
2015) have begun to make progress in this area by including
predictions for an increasing number of methods on an in-
creasing number of variants. An integrated variant data re-
source would also help to prevent problems in properly
running each software package in a local environment, as
well as issues with using an out-of-date version of a given
software package. For example, we ran the PANTHER-
subPSEC package locally on the same data set as reported in
Shihab et al. (2013) and found that, surprisingly, the predic-
tions for many variants did not match, possibly due to a bug or
local installation problem with the software version used for
the publication. Stable, shared data resources with persistent
identifiers and versioning of predictions could have a dramatic
effect on the accessibility, reproducibility, and utility of variant-
effect prediction methods in biomedical applications.

The second area is further work on benchmark data sets,
which are essential for accurate evaluation of prediction
methods. As in nearly all domains of science, positive exam-
ples are easier to establish than negative examples, but gold
standard sets of both pathogenic and neutral variants are
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required. The recent work of Grimm et al. (2015) represents a
significant step toward developing such sets, but filtering out
biased variants necessarily reduces the size and statistical
power of the evaluation set. A focused effort in producing
additional benchmark data sets, particularly those based on
experimental mutagenesis under multiple conditions, could
potentially address this issue. As described above, some more
recent data sets of this kind have been generated (Marini et al.
2010; Dimster-Denk et al. 2013) but a more comprehensive set
of mutations in a larger number of proteins is needed.

The third area is supporting more systematic approaches
to new method development: developers of new prediction
methods attempt, whenever possible, to critically assess why
performance is improved over previous methods. This could
entail comparing the performance of a new method to a
baseline for that method that keeps all other variables fixed,
such as the set of training examples, multiple alignments, etc.
For machine-learning methods, this could also entail an effort
to report and, ideally, standardize training sets and test sets.
Several recent articles have demonstrated this principle par-
ticularly well. For example, for SNPs&GO (Capriotti et al.
2013b) the same learning procedure was followed with and
without the additional Gene Ontology information (Ashburner
et al. 2000) to quantitate the improvement in prediction accu-
racy from this one additional data source. SNAP2 (Hecht et al.
2015) reported results for multiple different machine-learning
methods using the same set of features. The FATHMM article
(Shihab et al. 2013) reported the performance of their method
before and after incorporating protein domain-specific patho-
genicity weights. There are numerous other cases in the litera-
ture, and consistent adherence to such systematic analyses will
help drive further improvements, and even suggest fruit-
ful combinations of existing methods. For example, the un-
weighted sequence, conservation-based method used by
FATHMM performed worse than other conservation-based
methods, suggesting that the same weighting (notwithstand-
ing circularity issues discussed above) could be added to these
other conservation-based methods to produce even better
overall prediction rates.

Finally, it should be noted that the work on NSV impact
prediction has paved the way for development of similar
methods that emerged later, and are continuing to emerge,
for treating variation in noncoding regions of the genome.
Evolutionary conservation at the nucleotide level can be
computed using methods such as GERP (Cooper et al. 2005),
phyloP (Pollard et al. 2010), and phastCons (Siepel et al
2005). Analogously to (and in addition to) protein structure
features for NSVs, biochemical features such as transcription-
factor-binding sites [either predicted (Macintyre et al.
2010; Zhao et al. 2011) or from experiments (Encode Proj-
ect Consortium 2012)], open chromatin or DNA methyl-
ation (Barenboim and Manke 2013), and microRNA genes
(Barenboim et al. 2010) are being used to develop machine-
learning-based combined methods (Kircher et al. 2014). And
all of these predictions are being incorporated as prior knowledge
into larger statistical frameworks for prioritizing potentially



causal variants in human disease (Lewinger et al. 2007; O’Fallon
et al. 2013; Deo et al. 2014). The medical genetics applications
envisioned in the early days of NSV prediction are only just
beginning, and further improvements in prediction accuracy
and availability will be required to help realize their full
potential.
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