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ABSTRACT Testing for genetic association with multiple traits has become increasingly important, not only because of its potential to
boost statistical power, but also for its direct relevance to applications. For example, there is accumulating evidence showing that some
complex neurodegenerative and psychiatric diseases like Alzheimer’s disease are due to disrupted brain networks, for which it would
be natural to identify genetic variants associated with a disrupted brain network, represented as a set of multiple traits, one for each of
multiple brain regions of interest. In spite of its promise, testing for multivariate trait associations is challenging: if not appropriately
used, its power can be much lower than testing on each univariate trait separately (with a proper control for multiple testing).
Furthermore, differing from most existing methods for single-SNP–multiple-trait associations, we consider SNP set-based association
testing to decipher complicated joint effects of multiple SNPs on multiple traits. Because the power of a test critically depends on
several unknown factors such as the proportions of associated SNPs and of traits, we propose a highly adaptive test at both the SNP
and trait levels, giving higher weights to those likely associated SNPs and traits, to yield high power across a wide spectrum of
situations. We illuminate relationships among the proposed and some existing tests, showing that the proposed test covers several
existing tests as special cases. We compare the performance of the new test with that of several existing tests, using both simulated
and real data. The methods were applied to structural magnetic resonance imaging data drawn from the Alzheimer’s Disease Neuro-
imaging Initiative to identify genes associated with gray matter atrophy in the human brain default mode network (DMN). For genome-
wide association studies (GWAS), genes AMOTL1 on chromosome 11 and APOE on chromosome 19 were discovered by the new test to
be significantly associated with the DMN. Notably, gene AMOTL1 was not detected by single SNP-based analyses. To our knowledge,
AMOTL1 has not been highlighted in other Alzheimer’s disease studies before, although it was indicated to be related to cognitive
impairment. The proposed method is also applicable to rare variants in sequencing data and can be extended to pathway analysis.
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ALZHEIMER’S disease (AD) (MIM 104300) is the most
common neurodegenerative disease, and every 67 sec,

someone in the United States develops AD (Alzheimer’s

Association 2015a). Currently there is no cure for AD, and
most cases are diagnosed in the late stage of the disease. It is
projected that the number of Americans of age 65 years
and older with AD will increase from 5.1 million in 2015 to
13.5 million in 2050, a growth from an estimated 11% of the
U.S. senior population in 2015 to 16% in 2050, costing.$1.1
trillion in 2050 (Alzheimer’s Association 2015b). To advance
our understanding of the initiation, progression, and etiol-
ogy of AD, the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) was started in 2004 and continues to the present,
collecting extensive clinical, genomic, and multimodal imag-
ing data (Shen et al. 2014). Many other genetic studies have
been conducted, identifying multiple common and rare vari-
ants, shedding light on pathogenic mechanisms of AD (Marei
et al. 2015; Saykin et al. 2015). In particular, the APOEe4 allele
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has been consistently shown to be associated with AD. How-
ever, only 50% of AD patients carry an APOEe4 allele, suggest-
ing the existence of other genetic variants contributing to risk
for the disease (Karch et al. 2014). A recent study indicates
that 33% of total AD phenotypic variance is explained by com-
mon variants; APOE alone explains 6% and other known
markers 2%, meaning .25% of phenotypic variance remains
unexplained by known common variants (Ridge et al. 2013).
Hence, as for other common and complex diseases and traits,
many more genetic factors underlying late-onset AD are yet to
be discovered. One obvious but costly approach is to have a
larger sample size. Alternatively, more powerful analysismeth-
ods are urgently needed. For example, in contrast to the
popular single single-nucleotide polymorphism (SNP)-based
analysis, novel gene- and pathway-based analyses may be
more powerful in discovering additional causal variants. As
demonstrated by Jones et al. (2010), jointly analyzing func-
tionally related SNPs sheds new light on the relatedness of
immune regulation, energy metabolism, and protein degrada-
tion to the etiology of AD. The reason is due to the well-known
genetic heterogeneity and small effect sizes of individual com-
mon variants, as observed from published genome-wide asso-
ciation study (GWAS) results (Manolio et al. 2009). To boost
power in identifying aggregate effects of multiple SNPs, it may
be promising to conduct association analysis at the SNP-set (or
gene) level, rather than at the individual SNP level.

Another strategy is to use multiple endophenotypes, in-
termediate between genetics and the disease, for their poten-
tial to have stronger associations with genetic variants. In
addition to boosting power, the use of intermediate pheno-
types may provide important clues about causal pathways to
the disease (Maity et al. 2012; Schifano et al. 2013). A recent
GWAS demonstrated the effectiveness of the strategy: some
risk genes such as FRMD6 were first identified to be associ-
ated with some neuroimaging intermediate phenotypes (e.g.,
hippocampal atrophy) (Shen et al. 2014) and then were later
validated to be associated with AD (Hong et al. 2012; Sherva
et al. 2014). A possibly useful but underutilized intermediate
phenotype is the brain default mode network (DMN), con-
sisting of several brain regions of interest (ROIs) remaining
active in the resting state. Brain activity in the DMN may
explain the etiology of AD (Metin et al. 2015) and is a plau-
sible indicator for incipient AD (Damoiseaux et al. 2012;
Greicius et al. 2004; He et al. 2009; Jones et al. 2011;
Balthazar et al. 2014). Since there is growing evidence that
genetic factors play a role in aberrant default mode connec-
tivity (Glahn et al. 2010), it may be substantially more pow-
erful to detect genetic variants associated with the DMN, a
set of multiple intermediate phenotypes, than with AD.

Here we discuss gene-based multitrait analysis, aiming at
discovering genes associated with multiple traits such as the
DMN. To date, several but not many methods have been
proposed for gene-based multitrait analysis (Maity et al.
2012; Guo et al. 2013; Van der Sluis et al. 2015; Wang
et al. 2015). The simplest way is to use the minimum P-value
(minP) test based on the most significant single-SNP–single-

trait association, which, however, may lose power in the pres-
ence of multiple weak associations between multiple SNPs
and multiple traits. Some methods, such as that in Van der
Sluis et al. (2015) and M-TopQ25Stat (Guo et al. 2013),
utilize only a few top association signals among the pairwise
single-SNP–single-trait associations. Somemethods based on
principal components analysis (PCA) or principal compo-
nents of heritability (PCH), originally proposed for multiple
SNPs and a single trait (Wang and Abbott 2007; Klei et al.
2008), may be also applied. However, these methods and
canonical correlation analysis (CCA) (Tang and Ferreira
2012) make use of only one or a few top components, and
thus they share the same weakness of power loss in the pres-
ence of multiple associations; furthermore, the number of
principal components (PCs) may be difficult to determine
(Aschard et al. 2014). Another extreme is the burden test
(Shen et al. 2010; Guo et al. 2013; Mukherjee et al. 2014),
which is powerful in the presence of a dense association pat-
tern, in which most SNP–trait pairs are associated with al-
most equal effect sizes and directions; otherwise, e.g., when
the association directions of some SNP–trait pairs are differ-
ent, it does not perform well (as is well known for analysis of
rare variants). A compromise between the above two ex-
tremes is a variance-component test (Maity et al. 2012;Wang
et al. 2013), which is more robust to association density/
sparsity and varying association directions. Nevertheless, as
shown in the context ofmultiple rare variants and a single trait
(Pan et al. 2014), it may still suffer from power loss in the
presence of more sparse association patterns (i.e., when there
are fewer associated SNP–trait pairs). A fundamental chal-
lenge in multivariate analysis is the lack of a uniformly most
powerful test: nonadaptive test may be powerful in some sit-
uations, but not in others. Nevertheless, we aim to construct an
adaptive test such that it can maintain high power, not neces-
sarily highest power, across a wide range of scenarios. In par-
ticular, the proposed test is adaptive at both the SNP and trait
levels. Its key feature is the use of a weighting scheme to yield
robust statistical power no matter whether the true and un-
known association pattern is dense or sparse (or in whatever
directions), and the weight is determined data adaptively. In
addition, some chosen weights correspond to several existing
tests, including a burden test and a variance-component test.
Therefore, the high power range of the proposed test covers
those of the burden test and the variance-component test.
Moreover, the proposed test is based on the general framework
of the generalized estimating equations (GEE), and hence it is
flexible with the capability to incorporate covariates and var-
ious types of traits (Liang and Zeger 1986). It also avoids a
difficulty in correctly specifying a joint multivariate distribu-
tion or likelihood for a set of multiple traits. Furthermore, we
extend the proposedmethod to pathway analysis, in which it is
adaptive to possibly varying gene-level associations.

We compare the performance of the new test with that of
several existing tests, using both simulated and real data. The
methods were applied to structural magnetic resonance im-
aging (MRI) data drawn from the ADNI to identify genes
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associated with the DMN. In the GWAS, 277,527 SNPs were
mapped to 17,557 genes, among which genes AMOTL1 on
chromosome 11 and APOE on chromosome 19 were discov-
ered by the new test to be significantly associated with the
DMN. Notably, gene AMOTL1 was not detected by single
SNP-based analyses. We also illustrate the application of
the methods to the ADNI whole-genome sequencing (WGS)
data, although no significant genes were identified, presum-
ably due to a relatively small sample size.

In the following, we briefly review GEE and an existing
method before introducing the new test in Materials and
Methods. In Results, the new and several existing methods
are compared with applications to the ADNI data and simu-
lated data mimicking the ADNI data. We end with a short
summary of the conclusions.

Materials and Methods

Review

Generalized estimating equations: Suppose for each individ-
ual i¼ 1; . . . ; n;we observe k traits Yi ¼ ðyi1; . . . ; yikÞ9; q cova-
riates zi ¼ ðzi1; . . . ; ziqÞ9; and a set of SNPs xi ¼ ðxi1; . . . ; xipÞ9;
with xij 2 f0; 1; 2g: Denote Xi¼ I5xi9 and Zi ¼ I5ð1; z9iÞ;
where I is a k3 k identity matrix, and 5 represents the Kro-
necker product. We model the mean of the phenotypes
EðYijXi; ZiÞ ¼ mi; using a marginal generalized linear model

gðmiÞ ¼ Ziuþ Xib ¼ Hiu (1)

with Hi ¼ ðZi   XiÞ; parameters u ¼ ðu9;b9Þ9; and a link
function gð:Þ: The regression coefficients b¼ ðb11; . . . ;

bp1; . . . ;b1k; . . . ;bpkÞ9 are a pk3 1 vector, in which bjt
represents the effect of the jth SNP on the tth trait,
while the element ust of u ¼ ðu11; . . . ;uðqþ1Þ1; . . . ;
u1k; . . . ;uðqþ1ÞkÞ9 is the effect size of the sth covariate on
the tth trait. Liang and Zeger (1986) proposed estimating f

and b by solving the GEE

Uu¼
Xn
i¼1

D9i V21
i ðYi 2miÞ ¼ 0 (2)

with Di ¼ @mi=@u9 and Vi ¼ fA1=2
i RwðaÞA1=2

i ; where f is a
dispersion parameter, Ai ¼ diagfvðmi1Þ; . . . ; vðmikÞg models
the variances with a variance function vðmiÞ; and RwðaÞ is a
working correlation matrix with possibly some unknown pa-
rameters a. Specifically, for quantitative traits (Yi) with the
identity link function (or more generally, for any generalized
linear model with a canonical link function), the score vector
Uu and its variance–covariance matrix CovðUuÞ are

Uu ¼
�
U9u;U9b

�
9 ¼

Xn
i¼1

ðZi   XiÞ9R21
w ðYi 2miÞ;

CovðUuÞ ¼
Xn
i¼1

ðZi   XiÞ9R21
w ðYi 2miÞðYi2miÞ9R21

w ðZi   XiÞ:

The covariance matrix can be partitioned according to the

score components for u and b: CovðUuÞ ¼
�
V11 V12

V21 V22

�
For

convenience, the working independence model is often used
with Rw as an identity matrix Ik3 k; as done in this article
unless specified otherwise.

Our primary concern is to test for overall genetic effects
with H0 : b ¼ 0; while treating u as nuisance parameters. To
perform the score test, we evaluate Equation 1 under H0:

Under H0; we have gðmiÞ ¼ Ziu; and the estimate of u,
denoted as û; is the solution to the generalized score equa-
tion Uu;b¼0 ¼Pn

i¼1Z9iðYi 2miÞ ¼ 0: The marginal mean is es-
timated by m̂i ¼ gðZiûÞ21:

For testing SNP-set effects, we consider the subcompo-
nents of the score vector for b:

Ub ¼
Xn
i¼1

X9iðYi 2 m̂iÞ: (3)

Ub asymptotically follows a multivariate normal distribution
MNð0; ~SbÞ under H0; where ~Sb ¼ V22 2V21V21

11 V12: Ub can
be written as Ub ¼ ðU11; . . . ;Up1; . . . ;U1k; . . . ;UpkÞ9: Each
element Ujt measures the association strength between SNP
j and trait k for j ¼ 1; . . . ; p and t ¼ 1; . . . ; k and is asymptot-
ically proportional to bjt in Equation 1. bjt ¼ 0 implies there is
no association between SNP j and trait k; similarly Ujt ¼ 0 (or
small) indicates no (or weak) association between SNP j and
trait k.

For testing H0; the GEE-Score test statistic is defined by

GEE-Score ¼ U9b~S
21
b Ub:

Under H0, the GEE-Score statistic asymptotically follows
a central chi-square distribution with pk degrees of free-
dom. When pk is large, this standard score test loses
power for large degrees of freedom. Another way to draw
inference, especially convenient when combining the
score test with other tests as discussed later, is to simu-

late UðbÞ
b � MNð0; ~SbÞ for b ¼ 1; . . . ;B and obtain the null

statistics GEE  -  ScoreðbÞ ¼ UðbÞ9
b

~S
21
b UðbÞ

b : The P-value can be cal-

culated as PScore¼
PB

b¼1IðGEE-Score#GEE-ScoreðbÞÞ=ðBþ 1Þ;
where Ið�Þ denotes the indicator function.

For ease of notation, we suppress b and take U ¼ Ub and
V ¼ ~Sb hereafter.

An adaptive association test for a single SNP: Zhang et al.
(2014) proposed a class of sum of powered score (SPU)
tests for testing association between an individual SNP and
multiple traits, along with its data-adaptive version (aSPU).
The SPU tests are a family of association tests based on the
(generalized) score vector in the GEE framework, aiming for
at least one of them to be powerful in any given situation.
With only a single SNP j, then the score vector reduces to
U ¼ ðUj1; . . . ;UjkÞ9: The association between the SNP and k
traits can be quantified with a test statistic
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SPUðgÞ ¼
Xk
t¼1

ðUjtÞg;

where a candidate integer g$1 is chosen from a preselected
parameter set G; e.g., G ¼ f1; 2; . . . ; 8;Ng The statistical
power of an SPU(g) test depends on the choice of g 2 G:

When g is an odd integer, the SPU(g) test sums up the asso-
ciation signals across all the traits, retaining high power if all
or most of the multiple traits have an almost equal effect size
in the same association direction. A special case is g ¼ 1;
giving a burden test commonly used for rare variants. With
an even g, the SPU(g) test will be more powerful when some
traits have different association directions. In particular, the
SPU(2) test is the same as the sum of squared score (SSU) test
(Pan 2011), closely related to multivariate distance matrix
regression (MDMR) (McArdle and Anderson 2001), kernel
machine regression (KMR) (Liu et al. 2007), and variance-
component tests (Tzeng et al. 2011). Furthermore, as g in-
creases, the SPU test upweights the more strongly associated
traits, while reducing theweights on other ones. In particular,
when g/N (as an even integer), only the maximum com-
ponent of the score vector is used and the test statistic is
defined as SPUðNÞ ¼ maxkt¼1jUjtj: The SPUðNÞ test is similar
to the UminP test (when the variances of the score compo-
nents are almost equal). To compute the significance of an
SPU test, Monte Carlo (MC) simulations (or alternatively,
permutations) are used; for b ¼ 1; . . . ;B; the null score
UðbÞ ¼ ðUðbÞ

j1 ; . . . ;UðbÞ
jk Þ9 is generated from MNð0;VÞ; from

which the null statistics SPUðgÞðbÞ ¼Pk
t¼1ðUðbÞ

jt Þg can be
obtained for each g. Then the P-value can be calculated as
pg ¼ ½PB

b¼1IðSPUðgÞ# SPUðgÞðbÞÞ þ 1�=ðBþ 1Þ:
However, it is not clear how to choose an optimal g a priori

for given data. Hence, Zhang et al. (2014) proposed an aSPU
test to extract association evidence from multiple SPU(g)
tests. The statistic of the aSPU test is the minimum P-value
of SPUðgÞs for some candidate values of g,

aSPU ¼ min
g2G

pg;

where pg is the P-value of SPUðgÞ: By MC simulations (or
permutations), the P-value of aSPU, along with those of all
SPU(g) tests, can be efficiently calculated based on the same
set of the null statistics in a single layer.

Existing gene-based tests: We compare the proposed test
with several existing gene-based tests for multiple traits, in-

cluding multivariate analysis of variance (MANOVA), MDMR
with the Euclidean distance (McArdle and Anderson 2001),
multivariate KMRunder linear kernel (Maity et al. 2012), and
a multivariate functional linear model (MFLM) (Wang et al.
2015). We note that KMR can be derived based on a random-
effects model while MFLM is built on a fixed-effect model.
For implementation, the R package vegan was used for
MDMR; R code for KMR and MFLM was downloaded from
the authors’ websites, http://www4.stat.ncsu.edu/�maity/
software.html and https://www.nichd.nih.gov/about/org/
diphr/bbb/software/fan/Pages/default.aspx, respectively. Since
KMR (Maity et al. 2012) was computationally slow, it was
excluded from the simulation studies.

New methods

An adaptive test: We introduce a novel gene-based adap-
tive sum of powered score test for a set of multiple traits,
denoted as aSPUset, by extending the single SNP-based
test of Zhang et al. (2014). Suppose that there are p
SNPs in a gene and k traits of interests. Recall that
U ¼ ðU11; . . . ;Up1; . . . ;U1k; . . . ;UpkÞ9 is the generalized score
vector of length pk in GEE, and V is the pk3 pk covariance
matrix of the score vector; each element of the score, Ujt

quantifies the association between SNP j and trait t. In
practice, the true and unknown association patterns across
multiple SNPs and multiple traits are complex: some SNPs
may be associated with some traits, but not with other
traits; different SNPs may be associated with different sub-
sets of the traits with varying association strengths and
directions. Since the use of nonassociated SNPs and traits
in a test statistic could reduce the power of the test, we may
want to give higher weights to more likely associated SNPs
and traits. However, how much to optimally overweight
these likely associated SNPs and traits depends on the true
association pattern, which is unknown. The aSPUset test
employs two positive integer parameters, g1 and g2; to con-
trol the degrees of weighting over the SNPs and over the
traits, respectively, and the two parameters are chosen data
adaptively. A larger g1 puts more weights on the SNPs more
likely to be associated with a given trait, while a larger g2

upweights the traits more strongly associated with the
SNPs.

Webuild the test statistic as follows. For each trait t,Sðg1; tÞ
quantifies the association between the single trait and multi-
ple SNPs, and then SPUðg1; g2Þ combines the single trait-
based statistics:

Table 1 P-values of the gene-based association tests for the DMN with the ADNI-1 data

GEE

Gene region No. SNPs Chr Position Score aSPUset aSPUset-Score MANOVA MDMR KMR MFLM

AMOTL1 6 11 94,121,155 94,269,566 1.18e0-4 1.0e-08 1.0e-08 7.73e-05 3.48e-07 0.451 7.73e-05
APOC1 4 19 50,089,760 50,134,446 6.14e-04 1.0e-08 1.0e-08 3.45e-04 4.42e-08 0.342 2.30e-04
APOE 6 19 50,080,878 50,124,490 1.27e-03 1.0e-08 1.0e-08 7.93e-04 2.21e-07 0.268 5.97e-04
TOMM40 10 19 50,066,316 50,118,786 0.023 1.0e-08 1.0e-08 1.86e-02 6.99e-06 0.569 1.04e-03

Chr, chromosome.
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Sðg1; tÞ ¼
 Xp

j¼1

ðUjtÞg1

!1=g1

;

SPUðg1; g2Þ ¼
Xk
t¼1

ðSðg1; tÞÞg2 :

(4)

Here candidate integers g1 $ 1 and g2 $ 1 are chosen
from two preselected parameter sets G1 and G2: We used
G1 ¼ G2 ¼ f1; 2; . . . ; 8;Ng; due to the good performance in
our numerical studies.

In Sðg1; tÞ; ðUjtÞg1 can be rewritten by an alternative form
ðUjtÞg1 ¼ Ug121

jt Ujt ¼ wjtUjt: wjt ¼ Ug121
jt is a weight for each

score element, which reflects the association strength (and
direction) between SNP j and trait t of the given data. With
g1 ¼ 1; the SPU test weights each SNP equally and yields the
highest power if all the SNPs are associated with the trait
t with similar effect sizes and association direction (i.e.,
all positive or all negative). When the subsets of SNPs
are associated with the trait t, or their association direc-
tions are different, SPU(g1 ¼ 2; g2) is often more powerful.
As g1 increases, SPU(g1; g2) puts heavier weights on the
SNPs that are more strongly associated with the trait t.
At the end, as the parameter approaches N (as an even
integer), it considers the only most significant SNP; i.e.,
SPUðg1 ¼ N; g2Þ ¼

Pk
t¼1ðmaxpj¼1jUjtjÞg2 :

Similarly, g2 controls howmuch to upweight the traits that
are more likely to be associated with SNPs. SPUðg1; g2 ¼ 1Þ
weights all traits equally and performs best when each trait

is equally associated with the SNPs. Similarly, as g2 in-
creases, the SPU test overweights larger trait-based statis-
tics Sð:; tÞ; in an extreme case, as g2/N; we define
SPUðg1; g2 ¼ NÞ ¼ maxkt¼1jSðg1;   tÞj: If one ismore interested
in themost significantly associated single-SNP–single-trait pair,
SPUðg1 ¼ N; g2 ¼ NÞ ¼ maxj;tjUjtj can be considered. Using
various combinations of g1 and g2; one can target and fit dif-
ferent association patterns across multiple SNPs and multiple
traits, including their varying sparsity levels. As a result, the
SPU(g1; g2) tests cover several existing tests as special cases as
will be shown.

The aSPUset test chooses (g1; g2) data adaptively by tak-
ing the minimum P-value of SPU(g1; g2)s as the test statistic
for candidates g1 2 G1 and g2 2 G2;

aSPUset ¼ min
g1;g2

pg1;g2
:

To assess the significance of all the SPUðg1; g2Þs and the
aSPUset test, we use either permutations or MC simulations
in a single layer to obtain their P-values. The permutation-
based method is useful when the covariance matrix (V) is not
easy to estimate (e.g., in a high-dimensional setting) or when
the usual Normal asymptotics may not hold (e.g., n is not
large compared to pk); in contrast, the simulation-based
method is more restrictive but computationally more effi-
cient. For the permutation-based method, residual terms
resi ¼ Yi 2 m̂i in Equation 3 are permuted to generate resðbÞi
for b ¼ 1; . . .B; from which the null score vector UðbÞ is

Table 2 P-values of the single SNP-based association tests for the DMN for the significant gene regions (620 kb) with the ADNI-1 data

GEE

Gene Chr aSPUset SNP Position Score SPU(2) SPU(N) aSPU MANOVA MDMR

AMOTL1 11 1.0e-08 rs1367505 94,186,285 8.0e-05 2.4e-07 2.8e-05 5.1e-07 5.1e-05 2.1e-07
rs10501816 94,187,396 0.417 0.151 0.237 0.158 0.432 0.186
rs2033367 94,195,356 1.2e-04 8.0e-07 6.5e-05 1.6e-06 9.1e-05 3.01e-07
rs2241667 94,203,379 8.0e-04 1.6e-06 1.3e-04 3.9e-06 1.8e-04 8.0e-06
rs333027 94,225,561 5.0e-04 1.6e-05 9.5e-05 3.1e-05 4.6e-04 6.9e-05
rs333025 94,227,040 0.02 0.025 0.030 0.045 0.015 0.022

APOC1 19 1.0e-08 rs8106922 50,093,506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50,100,676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50,106,291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50,103,781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08

APOE 19 1.0e-08 rs157580 50,087,106 3.1e-03 1.4e-04 8.8e-04 9.0e-05 3.1e-03 3.9e-4
rs2075650 50,087,459 9.0e-04 3.8e-06 2.2e-03 1.2e-06 2.9e-04 1.5e-05
rs8106922 50,093,506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50,100,676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50,106,291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50,103,781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08

TOMM40 19 1.0e-08 rs2075642 50,069,307 0.842 0.711 0.471 0.629 0.840 0.662
rs387976 50,070,900 0.073 0.031 0.036 0.040 0.068 0.067
rs11667640 50,071,631 0.262 0.034 0.012 0.021 0.265 0.035
rs6859 50,073,874 0.728 0.076 0.299 0.057 0.729 0.072
rs157580 50,087,106 3.1e-03 1.4e-04 8.8e-04 9.0e-05 3.1e-03 3.9e-4
rs2075650 50,087,459 9.0e-04 3.8e-06 2.2e-03 1.2e-06 2.9e-04 1.5e-05
rs8106922 50,093,506 0.236 0.116 0.212 0.183 0.244 0.128
rs405509 50,100,676 0.420 0.156 0.207 0.186 0.422 0.184
rs439401 50,106,291 7.0e-04 2.3e-06 1.2e-05 3.1e-06 4.1e-04 2.2e-05
rs429358 50,103,781 1.0e-05 4e-08 8.3e-06 1.0e-08 2.1e-06 1.25e-08
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computed as UðbÞ ¼Pn
i¼1X9i res

ðbÞ
i : Alternatively, for the simu-

lation method, we simulate the null score vectors indepen-
dently from the null distribution: UðbÞ � MNð0;VÞ for
b ¼ 1; . . .B:

In either case, the null statistics SPUðg1; g2ÞðbÞ can be cal-
culated from the null score vectors UðbÞ for b ¼ 1; . . . ;B: Be-
cause all SPU(g1; g2) tests are based on the same null score
vectors UðbÞ; we just need to simulate one set of null scores
and efficiently compute the null statistics, SPUðg1; g2ÞðbÞ tests
simultaneously for candidate g1; g2’s. Then the P-value of
SPUðg1; g2Þ is

pg1;g2
¼

1þPB
b¼1

�
I
����SPUðg1; g2ÞðbÞ���$ jSPUðg1; g2Þj

�
Bþ 1

:

We can also simultaneously and efficiently compute the
P-value of the aSPUset test based on the same set of the
null statistics being used for the SPU tests. Note that
for each SPUðg1; g2ÞðbÞ; we can calculate its P-value

as pðbÞg1;g2
¼ ½Pl 6¼bðIð

���SPUðg1; g2Þl
���$ ���SPUðg1; g2ÞðbÞ

���Þ þ 1�=B:
Denote its minimum as pðbÞ ¼ ming1;g2

pðbÞg1;g2
: Then the signif-

icance of the aSPUset test is obtained as

PaSPUset ¼
PB

b¼1I
���pðbÞ��# jaSPUsetj�þ 1

Bþ 1
:

Extensions: As shown by Zhang et al. (2014), in some but not
all situations, the GEE-Score test may perform better than the
aSPU test for a single SNP and multiple traits; the opposite is
true too. Hence, to take advantage of both tests, we combine
them by taking their minimum P-value to form a new test
statistic,

aSPUset-Score ¼ minðPaSPUset; PScoreÞ: (5)

Its P-value can be calculated using simulations or permuta-
tions as for aSPUset. The null statistic GEE-Score(b) is obtained
from the same score UðbÞ that is used for SPUðg1; g2ÞðbÞ:Hence
the null statistics for SPUðg1; g2ÞðbÞ and GEE-Score(b) can be
computed simultaneously.

We can also consider a variance-weighted version of the SPU
andaSPUset tests, called theSPUwandaSPUw-set, respectively.
Eachdiagonal element of the covariancematrix (V) corresponds
to the variance of the individual score element Ujt; denote the
variance of Ujt as Vjt: The SPUw test is defined with the statistic

SPUwðg1; g2Þ ¼
Xk
t¼1

"Xp
j¼1

�
Ujt

. ffiffiffiffiffiffi
Vjt

p �g1

#1=g1

8<
:

9=
;

g2

:

The aSPUw-set test statistic is defined as the one taking
the minimum P-value of the multiple-SPUwðg1; g2Þ tests in
the same way as that for aSPUset and SPUðg1; g2Þ: The SPUw
and aSPUw-set tests are invariant to the scale of each trait
and hence may be useful when it is unclear how to standardize
multiple traits that are in different scales.However, standardizing
the traits (such that their sample variances are all equal to one)
mayormaynot bebeneficial; often, thepower of theunweighted
SPU tests and that of the weighted ones are similar as shown
before in other contexts (Pan et al. 2014; Zhang et al. 2014).

Relationships with other methods: The SPU tests are closely
related to some existing tests, covering some as special cases.
Guo et al. (2013) proposed a set of nonparametric methods
for gene-based multiple-trait association analysis, called
M-MeanStat, M-MaxStat, and M-TopQ25Stat. Each of
the methods of Guo et al. (2013) is built on a generalized

Figure 1 LocusZoom for two loci (A AMOTL1 and B APOE) identified by aSPUset and MDMR. LD structure in each locus and P-values obtained from the
single SNP-based aSPU test are presented.
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Kendall’s t, which quantifies the pairwise association between
a single SNP and a single trait. Comparing two sets of statistics,
M-MeanStat vs. SPUwð2; 2Þ and M-Max vs. SPUwðN; 1Þ, we
see their equivalence as described in Appendix A.

It is obvious that the SPU(1,1) test is a burden test, which is
optimal if its implicit assumption that each SNP–trait pair is

equally associated (with the same association direction)
holds. The SPU(2,2) test has connections to several other
tests. Zhang et al. (2014) showed that when testing on a
single SNP, the SPU(2,2) test under the GEE working inde-
pendence model is equivalent to MDMR with the Euclidean
distance. However, for testing multiple SNPs, the equivalence

Figure 2 P-values of the associa-
tion tests for the DMN and SNPs
for genes AMOTL1 and APOE. (A,a
and B,a) Univariate test for single-
SNP–single-trait association; (A,
b and B,b) aSPU test for single-
SNP–multitrait association; (A,c
and B,c) aSPUset test for gene–
multitrait association.
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does not hold (Appendix B). KMR with the linear kernel has
the same test statistic as SPU(2,2) if the working correlation
matrix Rw of the latter in GEE is correctly specified as the true
correlation matrix of Yi [i.e., Rw ¼ CorrðYijH0Þ]; see Appendix
C for derivation. This illustrates the flexibility of our proposed
test under GEE, in contrast to the stronger modeling assump-
tion in KMR. Since KMR can be derived based on a random-
effects model while the burden test is formulated based on a
fixed-effects model, our proposed method can be regarded as
combining results from both fixed- and random-effects models.

As is shown in our numerical studies, the GEE-Score test
andMANOVAperformedsimilarly;weestablishtheequivalence
between the GEE-Score test and MANOVA with the Pillai–
Bartlett trace (Appendix D). Muller and Peterson (1984) dis-
cussed the close relationships among four versions ofMANOVA
(i.e., with the Pillai–Bartlett trace, Hotelling–Lawley’s trace,
Wilk’s l, and Roy’s largest root), each of which can be written
as a function of generalized canonical correlations (CCA).Hence
the GEE-Score test is directly related to MANOVA and CCA.

Pathway analysis: We extend the adaptive test for associ-
ation analysis of a single trait and a pathway (i.e., a set of
genes) (Pan et al. 2015) to that of multiple traits and a
pathway. The main idea is to allow adaptive weighting at
the gene level, in addition to at the SNP and trait levels.
Given a pathway S with jSj genes and a single trait t, we
partition the score vector according to the genes in S as
U ¼ ðU91t; . . . ;U9jSj;tÞ9 with a subvector for gene g (with hg
SNPs) as Ugt ¼ ðUg;1;t; . . . ;Ug;hg;tÞ9: Denote SPUðg1;   g;   tÞ
and SPUpathðg1; g2; tÞ as the gene-specific SPU and the
pathway-based SPU test statistics for a single trait t, respec-
tively. Define a new test statistic GEE-SPUpathðg1; g2; g3Þ as
the pathway analysis for multiple traits,

SPUðg1;w1; g; tÞ ¼
 Xhg

j¼1

�
w1;g; jUg; j;t

�g1


hg

!1=g1

;

SPUpathðg1; g2;w1;w2;  tÞ

¼
 XjSj

g¼1

�
w2;gSPU

�
g1;w1;g; g; t

��g2

!1=g2

;

GEE-SPUpathðg1; g2; g3;w1;w2Þ
¼
Xk
t¼1

ðSPUpathðg1; g2;w1;w2; tÞÞg3 ;

where the three scalars g1; g2; g3 . 0 are specified to control
the degrees of weighting the SNPs, genes, and traits, respec-
tively; w1 ¼ ðw91;1; . . . ;w91;jSjÞ9 gives gene-specific weights
for the SNPs in gene g as w1;g ¼ ðw1;g;1; . . . ;w1;g;hgÞ9; and
w2 ¼ ðw2;1; . . . ;w2;jSjÞ9 gives gene-specific weights for each
gene in the pathway S. These weights are specified based
on some prior knowledge on the importance of the genes
and SNPs; without prior knowledge, we can simply use an
equal weight 1 on each gene and each SNP, as used in our
later simulations. We employed g1 2 G1 ¼ f1; 2; . . . ; 8g and
g2; g3 2 G2 ¼ G3 ¼ f1; 2; 4; 8g in later simulations.

Finally, a new adaptive test for pathway analysis, denoted
the GEE-aSPUpath test, is defined as

GEE-aSPUpath ¼ min
g12G1;g22G2;g32G3

pg1;g2;g3
;

where pg1;g2;g3
is the P-value of the GEE-SPUpathðg1; g2; g3Þ

test. The simulation or permutation procedure for generating
the null statistics and calculating P-values for all the
GEE-SPUpath and GEE-aSPUpath tests is similar to that for
the GEE-aSPUset test.

Due to the limited space, we will not discuss the pathway-
based tests in the sequel; some simulation results are pre-
sented in Supplemental Materials, File S4.

Data availability

The authors state that all data necessary for confirming the
conclusions presented in the article are represented fully
within the article. The R code for the proposed tests and
simulations is available in Supplemental Materials, File S5.
An R package GEEaSPU is to be uploaded to CRAN.

Results

Real data example

ADNI data: Data used in the preparation of this article were
obtained from the ADNI database (adni.loni.usc.edu). The
ADNIwas launched in 2003by theNational Institute onAging
(NIA), the National Institute of Biomedical Imaging and Bio-
engineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies, and nonprofit
organizations, as a $60 million, 5-year public–private part-
nership. The primary goal of ADNI has been to test whether

Table 3 P-values of the gene-based association tests with the ADNI-GO/2 and ADNI-1/GO/2 data

Data
Gene
region

No.
SNPs Chr

GEE

Position Score aSPUset aSPUset-Score MANOVA MDMR MFLM

ADNI-GO/2 AMOTL1 13 11 94,481,507 94,629,918 0.723 0.896 0.940 0.698 0.716 0.638
APOE 13 19 45,389,277 45,432,652 0.083 0.042 0.056 0.097 0.366 0.974

ADNI-GO/2 with identical
SNP sets of ADNI-1

AMOTL1 6 11 — 0.639 0.552 0.576 0.638 0.918 0.638

APOE 6 19 — 0.308 0.019 0.024 0.292 0.065 0.292
ADNI-1/GO/2 with identical

SNP sets of ADNI-1
AMOTL1 6 11 — 1.0e-08 1.0e-08 1.0e-08 1.0e-08 1.0e-08 1.0e-08

APOE 6 19 — 1.0e-08 1.0e-08 4.45e-06 1.0e-08 1.0e-08 4.45e-06
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serial MRI, positron emission tomography (PET), other bio-
logical markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild
cognitive impairment (MCI) and early AD. Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. The Principal Investigator
of this initiative is Michael W.Weiner, VAMedical Center and
University of California, San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of aca-
demic institutions and private corporations, and subjects
have been recruited from .50 sites across the United States
and Canada. The initial goal of ADNI was to recruit 800
subjects but ADNI has been followed by ADNI-GO and
ADNI-2. To date these three protocols have recruited .1500
adults, ages 55–90, to participate in the research, consisting
of cognitively normal older individuals, people with early or
late MCI, and people with early AD. The follow-up duration
of each group is specified in the protocols for ADNI-1, ADNI-2,
and ADNI-GO. Subjects originally recruited for ADNI-1 and
ADNI-GO had the option to be followed in ADNI-2. For up-to-
date information, see www.adni-info.org.

GWAS with ADNI-1 data: One objective of ADNI is to elu-
cidate genetic susceptibility to AD. We conducted a gene-
basedmultitrait analysis forADNI-1data, byusinggraymatter
volumes in the 12 ROIs corresponding to the DMN as inter-
mediate phenotypes. The DMN is a network of brain regions
that are active when an individual is at wakeful rest, which
includes inferior temporal, medial orbitofrontal, parahippo-
campal, precuneus, and posterior cingulate ROIs (Greicius
et al. 2004). Importantly, DMN activity distinguishes cogni-
tively impaired patients such as with Alzheimer’s, attention
deficit hyperactivity disorder (ADHD), or bipolar disorder from
healthy controls (Greicius et al. 2004; Buckner et al. 2008;
Meda et al. 2014; Metin et al. 2015). The gray matter volu-
metric measures related to the DMN were extracted from the
ADNI-1 baseline data.

We included all SNPs with minor allele frequency
(MAF) $ 0.05, with genotyping rate .90%, and surviving
the Hardy–Weinberg equilibrium test at a significance thresh-
old of 0.001. After all rounds of quality control, 519,286 SNPs
remained, among which 277,527 SNPs were mapped to
17,557 genes. To consider SNPs in promoter or regulatory
regions for each gene, we included SNPs upstream and down-
streamwithin 20 kb of each gene. Subjectswith.10%missing
genotypes were excluded, and only non-Hispanic Caucasians

whose 12 gray matter volumes in the DMN were all measured
at baseline were included, resulting in 144 patients with AD,
311 subjects with MCI, and 180 healthy elderly controls. For
covariates, gender, years of education, handedness, age, and
intracranial volume (ICV) measured at baseline were included.

To demonstrate the applicability and power of our ap-
proach, we applied MANOVA, MDMR (McArdle and Anderson
2001), KMR (Maity et al. 2012),MFLM (Wang et al. 2015) and
GEE-based tests, GEE-Score, and aSPUset and aSPUset-Score
tests. The number of MC simulations or permutations for each
methodwas set at B ¼ 103 at the beginning, butwas increased
to B ¼ 108 if an obtained P-value was ,  5=B; which ensured
the identification of the genes at the genome-wide significance
level (P-value , 2:83 1026 with a Bonferroni adjustment).
When any obtained P-value was ,1.0e-8, we reported it as
1.0e-8. The P-values of permutation-based aSPUset and of
simulation-based aSPUset agreed well (with a Pearson corre-
lation of 0.98), and thus we reported only permutation-based
results. For MFLM, we used b-smooth basis functions with the
Pillai–Bartlett trace as a representative.

The aSPUset and MDMR tests uncovered two loci associ-
ated with the DMN. Table 1 lists the genes with the highest
significance levels. Genes AMOTL1 (on chromosome 11) and
APOC1, APOE (on chromosome 19) were identified by both
aSPUset and MDMR, but not by other tests, while TOMM40
(on chromosome 19) was detected only by aSPUset. AMOTL1
is known to be involved in cell adhesion and cell signaling
(Hamatani et al. 2004). A recent study using a pathway-
enrichment strategy showed that the genes involved in neu-
ronal cell adhesion and cell signaling are overrepresented in
schizophrenia and bipolar disorder (Meda et al. 2014). Anney
et al. (2008) identified AMOTL1 as a gene associated with
ADHD. The gene was also highly expressed in thalamus, a
brain region implicated in the cognitive impairment of early
stage Huntington’s disease (Schmouth et al. 2013). Three
genes (APOC1, APOE, TOMM40) in chromosome 19 could
not be readily discerned due to their physical closeness, al-
though their gene sizes (i.e., the numbers of SNPs) varied.
The P-values of MDMR became less significant as the gene
size increased, while the aSPUset was robust to the number of
SNPs. This locus containing APOE is well known to be related
to Alzheimer’s disease and cognitive impairment disorder
(Seshadri et al. 2010; Kamboh et al. 2012; Liu et al. 2014).

Table 2 lists the SNPs included in the significant genes.We
applied several single SNP-based tests for association with
the default mode network. For eachmethod, the permutation
or simulation number was increased up to 108 to satisfy the
genome-wise significance level. As shown in Table 2, none of

Table 4 P-values of the gene-based tests for rare variant–DMN association with the ADNI sequencing data

Filtering criteria Gene region No. SNPs Chr Position aSPUset MANOVA MFLM

MAF ,0:05 AMOTL1 536 11 94,481,507 94,629,918 0.298 0.176 0.148
APOE 153 19 45,389,277 45,432,652 0.104 0.837 0.476

MAF ,0:01 AMOTL1 265 11 94,481,507 94,629,918 0.835 0.193 0.151
APOE 84 19 45,389,277 45,432,652 0.874 0.833 0.189
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the SNPs in gene AMOTL1 was significant, suggesting that a
strong association signal was retained only in the gene level,
rather than in the SNP level. On the other hand, SNP rs429358
contained in three genes (APOC1,APOE, TOMM40)was highly
significant with a P-value of 1.0e-8. These results lend support
to the proposed aSPUset test’s potential to be able to recover
both multiple weak effects and single strong effects, due to its
adaptiveness.

We explored each identified locus in detail in Figure 1 and
Figure 2. In Figure 1, a LocusZoom plot (Pruim et al. 2010)
illustrates local linkage disequilibrium (LD), recombina-
tion patterns, and P-values obtained from the single
SNP-based aSPU test for the DMN. Figure 2 illustrates the
association analyses for genes AMOTL1 and APOE, respec-
tively. First, we obtained P-values from the univariate test
between each SNP and each individual trait composing the
DMN, and then we applied the SNP-based test (aSPU) be-
tween each SNP and DMN (12 traits). Finally, we applied
the aSPUset test at the gene level for the DMN. The SNPs
contained in AMOTL1 showed strong LD (Figure 1A), and
their aggregate effects turned out to be significant at the
gene level (Figure 2A). Among the SPUðg1; g2Þ tests applied
with g1; g2 2 f1; . . . ; 8;Ng; SPU(3,2) showed the minimum
P-value, implying that weak effects were aggregated for an
overall association. In Figure 2B, only one variant (rs429358)
in APOE was significant, but the significance level of aSPUset
did not diminish in the gene-level analysis. In testing APOE,
the P-values of SPU(2,1), SPU(4,1), SPU(6,1), SPU(8,1), and
SPU(N;1) were tied and the most significant; this suggested
that one SNP (rs429358) dominated in the gene level across
all the traits.

Since the proposed test is based on combining all possible
single-SNP–single-trait association pairs, if one wants to
identify which pairs contributemost to an overall association,
one can simply examine the significance levels of the univariate
single-SNP–single-trait association tests. For example, Figure 2,
A,a and B,a, illustrates the contribution of each SNP–trait

pair for AMOTL1 and APOE: In the gene AMOTL1; the SNP–
trait pairs, (rs1367505, R-InferiorTemporal), (rs2033367,
R-InferiorTemporal), and (rs333027, L-InferiorParietal),
were ranked highest; for APOE, the top three significant pairs
were (rs429358, R-Precuneus), (rs2075650, L-Precuneus),
and (rs429358, L-InferiorParietal).

As shown in File S1, we conducted a single SNP-based
GWAS scan for the ADNI-1 data. Interestingly, no SNP was
significant from univariate single-SNP–single-trait analyses
as shown in File S1, Figure A and Figure B. Furthermore, only
one SNP, rs429358, was significant in single SNP-based mul-
titrait analyses as shown in File S1, Figure C and Figure D. In
contrast, two loci (AMOTL1 and APOE) were uncovered by
gene-basedmultitrait analyses by our proposed new test (File
S1, Figure E and Figure F). In all analyses, covariates consid-
ered included gender, years of education, handedness, age,
and ICV measured at baseline. Taken together, these results
clearly demonstrated the advantage and power gain of our
proposed gene-based multitrait analysis.

Validation with ADNI-GO/2 data: Using the ADNI-1 data as
thediscovery sample, ourGWAS identified two loci associated
with the DMN. To validate the results, each method was
applied to the two genes AMOTL1 and APOE, using the
ADNI-GO/2 data as the validation sample (with n ¼ 754).
We applied the same SNP-filtering criteria as applied to
ADNI-1. Table 3 presents the P-values obtained from each
method; no significant association was identified. Due to dif-
ferent genotyping arrays, ADNI-GO/2 data contain different
sets of SNPs from those of ADNI-1; we imputed missing SNPs
that were originally included in the analysis of ADNI-1, based
on the reference samples of HapMap 3 with MaCH (Liu et al.
2013), to apply each method to the identical SNP sets of
ADNI-1. The aSPUset and aSPUset-Score tests identified gene
APOE with P-values of 0.019 and 0.024, respectively, which
passed the significance threshold of 0.05/2 as shown in Table
3, but gene AMOTL1 was not significant by any test. File S2,

Table 5 Simulation setup 1: type I errors (f ¼ 0) and power (f 6¼ 0) under varying genetic effect sizes

GEE

f Score SPU(2,2) aSPUset aSPUset-Score MANOVA MDMR MFLM

AMOTL1 (6 SNPs)
0 0.0479 0.0528 0.0530 0.0522 0.0490 0.0353 0.0490
0.2 0.1078 0.1837 0.1659 0.1654 0.1128 0.0964 0.1128
0.3 0.2325 0.3494 0.3159 0.3328 0.2394 0.2135 0.2394
0.4 0.4657 0.5571 0.5079 0.5559 0.4764 0.4130 0.4764
0.5 0.7436 0.7614 0.7156 0.7967 0.7528 0.6607 0.7528
0.6 0.9288 0.9008 0.8722 0.9452 0.9341 0.8608 0.9341
0.7 0.9913 0.9677 0.9550 0.9926 0.9921 0.9611 0.9921

TOMM40 (10 SNPs)
0 0.0488 0.0483 0.0482 0.0495 0.0505 0.0323 0.0532
0.2 0.1051 0.1719 0.1347 0.1369 0.1110 0.0903 0.1116
0.3 0.2177 0.3643 0.2763 0.2889 0.2262 0.2053 0.2169
0.4 0.4429 0.6121 0.5018 0.5330 0.4605 0.4246 0.4256
0.5 0.5800 0.7304 0.6231 0.6673 0.5958 0.5593 0.5664
0.6 0.7196 0.8271 0.7369 0.7904 0.7346 0.6885 0.7036
0.7 0.8405 0.8983 0.8293 0.8856 0.8489 0.8015 0.8231
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Figure A illustrates P-values from single SNP-based testing
after adjusting for covariates; SNP rs429358 was associated
with the DMN (P-value 1.9e-3) by passing the Bonferroni-
adjusted significance level of 0.05/12. File S2, Figure B pre-
sents P-values for the two candidate gene regions based on
the ADNI-GO/2 data; the methods include the univariate
single-SNP–single-trait test, the single SNP-based multitrait
aSPU test, and the gene-based multitrait aSPUset test.

We should mention possible sample differences between
ADNI-1 and ADNI-GO/2 cohorts. The ADNI-1 cohort includes
three subject groups consisting of 25% patients with AD, 50%
subjectswithMCI, and25%cognitively normal (CN) subjects;
in contrast, theADN-GO/2 study assigns 754 subjects intofive
groups: 20% CN, 12% significant memory concern (SMC),
35% early mild cognitive impairment (EMCI), 17% late mild
cognitive impairment (LMCI), and 16%AD. At least the propor-
tions of the CN subjects and patients with AD in the two cohorts
are different, which might lead to different association results.

Finally, we combined the two cohorts to formADNI-1/GO/
2with a larger sample size (�1400 subjects) and obtained the
P-values from the tests for the two candidate gene regions.
The two genes were highly significantly associated with the
default mode network as shown in Table 3.

Gene-based rare variant analysis of the ADNI sequencing
data: The proposed method was applied to analysis of rare
variants with the ADNI WGS data, consisting of 254 and 500
subjects from ADNI-1 and ADNI-GO/2, respectively. In total,
26,142 genes were included for analyses; all variants inside a
gene and those located 25 kb of upstream and downstream of
the gene were mapped to the gene. Five covariates were
adjusted: gender, years of education, handedness, age, and
ICV. Due to the low frequency of rare variants, the asymptotic
assumption for some tests may not hold; we modified each
method to avoid using asymptotics. ForMANOVA, rather than
using the usual F distribution, we permuted residuals (under
the null model) to estimate its null distribution; for aSPUset
and MFLM, similarly the permutation-based method was ap-
plied. We included all rare variants within each gene region;
the number of variants within each region ranged from 3 to
750. Sometimes permutation-based MANOVA suffered from
rank deficiency when constructing the test statistic and could
not be applied to �600 genes; MFLM also failed for some
genes due to rank deficiency.

First, we included only rare variants (with MAF , 0.01)
and then, both rare and low-frequency variants (with MAF,
0.05). No gene passed the genome-wide Bonferroni-adjusted
significance threshold of 2:83 1026: The results for each set
of rare variants are illustrated in File S3, Figure A and Figure
B. MFLM was problematic with an inflation factor �1.5 in
both analyses.

Given that two gene regions were significantly associated
with DMN in the previous GWAS analysis, it would be of
interest to seewhether the rare variants in the two geneswere
associated. Table 4 reports the P-values for the two candidate
genes. No significant associations were detected. File S3,
Figure C depicts the P-values from single trait-based tests,
including SKAT, SKAT-O, T1 (a burden test for rare variants
with MAF , 0.01), T5 (a burden test for rare and low-
frequency variants with MAF , 0.05), minP, and aSPU tests
(Wu et al. 2011; Pan et al. 2014). T1 and T5 are equivalent to
the SPU(1) test with MAF thresholds 0.01 and 0.05, respec-
tively. The minP test is similar to the SPU(N) test.

Simulations

Simulation setups: We evaluated the performance of our
method along with several existing methods in simulation
studies. The simulated data mimicked the association struc-
tures for the two genes (AMOTL1 on chromosome 11 and
TOMM40 on chromosome 19) and the DMN in ADNI-1 data.
Two factors were considered: association effect size (setup 1)
and sparsity of association patterns (setup 2). For setup 1,
various effect sizes were created by scaling the regression co-
efficient estimates obtained from a multivariate linear model
(MLM) fitted to the original data. On each gene, an MLM was
fitted to the ADNI-1 data, including the covariates (zi), SNPs
(xi), and DMN (Yi). For covariates, we included gender, edu-
cation, handedness, age, and ICV as in the original data anal-
ysis. Denote the parameter estimates in anMLM as follows: G0

is a vector for intercepts;G ¼ ðgjtÞ is a p3 kmatrix, inwhich gjt
represents the effect size of SNP j on trait t; the element hqt
in matrix H ¼ ðhqtÞ stands for the qth covariate effect on the
tth trait; and

P
is the covariance estimate for the multivariate

error term. To maintain the true correlation structures
among genotype scores xi ¼ ðxi1; . . . ; xipÞ9 and five covariates
zi ¼ ðzi1; . . . ; zi5Þ9; we sampled pairs ðxi; ziÞ from the ADNI-1
data in each simulation. The multiple traits for subject iwere
generated from a multivariate normal distribution:

Table 6 Simulation setup 2: power under varying sparsity levels of association pattern

AMOTL1þ null SNPs

GEE

No. total SNPs No. causal SNPs No. null SNPs Score aSPUset aSPUset-Score MANOVA MDMR MFLM

6 6 0 0.7436 0.7156 0.7967 0.7528 0.6607 0.7528
12 6 6 0.5332 0.6495 0.6923 0.5427 0.4904 0.5228
18 6 12 0.4160 0.6149 0.6336 0.4291 0.3884 0.3882
30 6 24 0.2950 0.4495 0.4617 0.3055 0.2819 0.2872
60 6 54 0.1813 0.3120 0.3150 0.1981 0.1756 0.2124
80 6 74 0.1442 0.2912 0.2912 0.1661 0.1434 0.1697
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Yi � MN
�
G0 þ f � G9xi þ H9zi;

X�
: (6)

Here fwas a scaling parameter controlling the effect sizes of
the SNPs (xi): with f ¼ 0; the null hypothesis held and type I
error rates were evaluated; at f ¼ 1; the effect sizes were set
to be equal to the estimated ones from the ADNI-1 data.

For setup 2, we varied the sparsity level of the association
structure. At a fixed f ¼ 0:5; we increased the gene size by
adding some null SNPs to gene AMOTL1. For the null SNPs,
the genotype data adjacent to AMOTL1were used. As before,
ðxi; ziÞ pairs were sampled from the ADNI-1 data. Throughout
simulations, 10,000 replicates were used for each setup and
the tests were conducted at the significance level a ¼ 0:05:

Type I error and power: All the tests showed type I error rates
controlled under the nominal level of 0.05 (Table 5). Of note,
MDMR resulted in conservative type I error rates. In setup 1
(Table 5), as the association effect size (f) decreased, the
aSPUset and aSPUset-Score tests were more powerful than
other tests, suggesting the potential usefulness of the pro-
posed tests in identifying causal SNPs with weak effects.
Since MFLM was proposed to reduce the dimensionality of
the SNP data, it might not be desirable to use MFLM here; it
might perform better with larger numbers of SNPs.

In setup 2 (Table 6), the aSPUset and aSPUset-Score yield-
ed higher power than other tests as the proportion of the null
SNPs in the SNP set increased. Throughout the simulations,
the GEE-Score test performed similarly toMANOVA, confirm-
ing their equivalence.

Computational time: We reported the computational re-
quirement of each method in Table 7 by taking the average
computation time for simulation setup 2. MANOVA was
computationally most efficient, followed by MFLM. As the
number of SNPs increased, the GEE-Score test and the
aSPUset-Score test became computationally more demand-
ing, but still feasible.

Conclusions

We have presented a highly adaptive association test for
multiple traits andmultiple genetic variants. From the GWAS
analyses of the ADNI-1 data (File S1), we observed its poten-
tial power gains in identifying cumulative weak effects of
multiple associated SNPs in gene AMOTL1 with multiple
traits, which were undetectable by several other gene-based

tests and single SNP-based tests. Given that most common
variants have only weak effects for complex diseases and
traits, developing testing strategies to improve power in iden-
tifyingmultiple SNPswithweak effects is very important. Our
proposed method is developed along this direction. Further-
more, due to its adaptiveness, it also retains power in the
presence of only one or a few associated SNPs (or traits), as
shown for the APOE gene with the ADNI-1 data (while sev-
eral existing gene-based tests failed to capture this). Our pro-
posed adaptive test is in contrast to most of the existing tests,
which may be powerful in one or more situations, but not
across a wide range of situations. In practice, since the true
association pattern for a given gene and traits is unknown, it
is unclear which nonadaptive test should be used; it will be
convenient and promising to apply an adaptive test such as
our proposed one.

We emphasize the potential power gain with the use of
multiple traits, especially of intermediate phenotypes for a
complex disease such as AD (Mukherjee et al. 2014; Chen
et al. 2015). However, since it is unknown how many of,
and in what association patterns, the multiple traits are as-
sociated with a gene (or a set of SNPs), a straightforward use
of any multivariate test may lose, not gain, power. Again, the
availability of a powerful and adaptive test such as our pro-
posed one will largely facilitate its easy and effective use in
practice.

Finally, we summarize the use of our proposed tests and
make some recommendations. To assess an overall associa-
tion between a set of SNPs and a set of traits, we recommend
the use of the P-value of the aSPUset test. If it is significant,
one can check the individual P-values of the SPUðg1; g2Þ tests
to shed some light on the underlying association pattern. If a
larger g1 (or g2) leads to a more significant P-value of the
SPU test, it suggests amore sparse association pattern; that is,
perhaps one or a fewer number of the SNPs (or traits) is or are
associated. Furthermore, one can examine the P-value from
the univariate test for each SNP–trait pair to identify which
SNP–trait pairs contribute most to the overall association. For
choosing candidate values of g1 and g2; based on our limited
experience, we suggest using G1 ¼ G2 ¼ f1; 2; . . . ; 8;Ng by
default, although an optimal choice depends on the situation;
using a too large or too small set G1 or G2 will lead to loss of
power. A general guidance, taking G1 as an example (and
similarly for G2), is to use G1 ¼ f1; 2; . . . ;C1;Ng such that
the SPUðC1; g2Þ test gives a P-value almost equal to that of
SPUðN; g2Þ; a larger number of SNPs may require a larger

Table 7 Mean computing times (in seconds) for simulation setup 2

GEE

No. total SNPs Score aSPUset aSPUset-Score MANOVA MDMR MFLM

12 1.1597 1.2472 1.6261 0.0149 24.2924 0.0354
18 1.3398 1.5062 2.2552 0.0156 22.2903 0.0385
30 2.2541 1.8766 3.7482 0.0172 21.5940 0.0449
60 6.5183 2.8785 11.1315 0.0211 19.3995 0.0612
80 11.8868 3.5546 20.4237 0.0243 18.4600 0.0722
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value of C1: In addition, if some large univariate associations
between various SNP–trait pairs are likely to be in opposite
directions, only even integers are needed in G1 and G2; if it is
known a priori that large univariate associations are mainly
in one direction, then using only odd integers may be most
powerful; otherwise, both even and odd integers should be
used. Given the relationships among the tests, we recom-
mend the use of our proposed aSPUset and aSPUset-Score
tests, although MFLM may also perform well for large genes;
further evaluations are needed.
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Appendix

Without loss of generality we center both Yi ¼ ðyi1; yi2; . . . ; yikÞ9 and xi ¼ ðxi1; xi2; . . . ; xipÞ9 to have their sample meansPn
i¼1Yi=n ¼ 0 and

Pn
i¼1xi=n ¼ 0: We consider the case without covariates, since several methods are applicable only to the

case without covariates.
We rewrite the data format as a design matrix. DenoteL as an n3 pmatrix, each row of which contains subject i’s genotype

xi ¼ ðxi1; . . . ; xipÞ9; and Q as an n3 k matrix, each row of which consists of multiple traits Yi ¼ ðyi1; . . . ; yikÞ9: Multivariate
analysis can be derived from partitioning of the total sum of squares and cross-products (SSCP) matrix, the inner productQ9Q:

According to the multivariate linear model,Q ¼ LBþ E; where B is the matrix of model parameters, E is the matrix of errors,
the fitted value matrix is defined as Q̂ ¼ LB̂ ¼ LðL9LÞ21L9Q ¼ HQ; and the matrix of residuals is R ¼ Q2 Q̂ ¼ ðI2HÞQ;

where H is a hat matrix.
We define each covariance estimate as follows. Sx ¼ ð1=nÞL9L is a p3 p covariance estimate for genotype scores

xi ¼ ðxi1; . . . ; xipÞ9; and Sy ¼ ð1=nÞQ9Q is a k3 k covariance estimate among k multiple traits Yi ¼ ðyi1; . . . ; yikÞ9:
Syx ¼ ð1=nÞQ9L and Sxy ¼ ð1=nÞL9Q are covariance estimates between two sets of variables xi and Yi:

tr(A) stands for sum of diagonal elements of a matrix A. vec(A) represents a linear transformation that converts the matrix
(A) into a column vector.

Appendix A: SPUw(2,2) and M-MeanStat; SPUw(N,1) and M-Max

For each trait t and SNP j, their pairwise association is quantified by tjt ¼
Pn

i¼1xijðyit 2 ytÞ ¼
Pn

1xijyit; which follows a normal
distribution asymptotically with mean zero and variance varðtjtjytÞ ¼

Pn
i¼1varðxijÞy2it under the null hypothesis. Guo et al.

(2013) defined the generalized Kendall’s t statistic, Tjt ¼ t2jtvarðtjtjytÞ21 � x2
1: Based on this, Guo et al. (2013) proposed M-

MeanStat and M-MaxStat:
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If a canonical link function and a working independence model are used in GEE, the test statistics of SPUwð2; 2Þ and
SPUwðN; 1Þ are defined by

SPUwð2; 2Þ}
Xk
t¼1

Xp
j¼1

Xn

i¼1
xijyitffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
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x2ijvarðyitÞ

q
0
B@

1
CA

2

�
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SPUwðN; 1Þ}
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p
�����
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����� �
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(A2)

Comparing the two sets of statistics in (A1) and (A2), we see thatM-MeanStat and SPUwð2; 2Þ andM-Max and SPUwðN; 1Þ are
approximately equivalent, respectively.

Appendix B: SPU(2,2) and MDMR

Under the working independence model, the test statistic of SPU(2,2) is stated as

SPUð2; 2Þ ¼
Xk
t¼1

Xp
j¼1

 Xn
i¼1

xijyit

!2

¼ tr
�
L9QQ9L

�
: (B1)
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MDMR is a nonparametric modification of traditional Fisher’s MANOVA (McArdle and Anderson 2001). Wessel and Schork
(2006) and Zapala and Schork (2012) introduced the method to applications in genetics and genomics. For a single trait, it is
closely related to kernel methods (Schaid et al. 2005; Pan 2011).

Suppose dij represents the distance between subjects i and j; let A ¼ ðaijÞ ¼ ð21=2  d2ijÞ and G be its centered version. An F
statistic can be constructed to test the hypothesis that the p regressor variables have no relationship to variation in the distance
or dissimilarity of the n subjects reflected in the n3 n distance/dissimilarity matrix. The pseudo-F statistic of MDMR is defined
by

F ¼ trðHGHÞ
trðI2HÞGðI2HÞ:

If the Euclidean distance (i.e., L2 norm) is used to construct the distance matrix G¼ QQ9; the MDMR test statistic is defined as

MDMR}
tr
�
HQQ9H

�
trðI2HÞQQ9ðI2HÞ}

1

trðR9RÞ
.
tr
�
Q̂9Q̂

�} 1h
tr
�
Q̂9Q̂

�
þ trðR9RÞ

i.
tr
�
Q̂9Q̂

� ¼
tr
�
Q̂9Q̂

�
tr
�
Q9Q

� :
As usual, permutations are used to calculate P-values. Then trðQ9QÞ is invariant across all permutations and can be ignored (Pan
2011). The test statistic arrives at

MDMR} tr
�
Q̂9Q̂

�
¼ tr

�
Q9L

�
L9L

�21
L9Q

�
¼ tr

��
L9L

�21
L9QQ9L

�
: (B2)

If we have a single SNP to be tested, i.e., L is an n3 1 matrix, the test statistic (B2) reduces to
MDMR}m21trðL9QQ9LÞ}trðL9QQ9LÞ with L9L ¼ m: Hence, SPU(2,2) and MDMR are equivalent for a single SNP and
multiple traits, as established by Zhang et al. (2014). However, for multiple SNPs and multiple traits, by comparing (B1) and
(B2), we see that in general they are not equivalent.

Appendix C: SPU(2,2) and KMR

With a working correlation matrix Rw in GEE, the SPU(2,2) test can be rewritten as

SPUð2; 2Þ ¼ tr
�
L9QR21

w R21
w Q9L

�
¼ tr

�
R21
w Q9LL9QR21

w

�
: (C1)

Maity et al. (2012) introduced multivariate phenotype association analysis by SNP set- or gene-based KMR. The authors
assumed that the phenotypes are correlated while the individuals are independent. SupposeC ¼ ðcpqÞ is the true correlation
matrix for k traits with p ¼ 1; . . . ; k; and q ¼ 1; . . . ; k: Define V0 ¼ C5In3 n and a kernel matrixKnk3 nk: The score test under
the null for KMR (Maity et al. 2012) is defined by

KMR ¼ vecðQÞ9V21
0  K  V21

0 vecðQÞ ¼ vecðQÞ9V21
0   diagðK1; . . . ;KkÞ  V21

0 vecðQÞ;

where each K1; . . . ;Kk is an n3 n kernel matrix for each trait. Applying a linear kernel K1 ¼; . . . ;¼ Kk ¼ LL9 yields

KMR ¼ vecðQÞ9V21
0

�
Ik3 k5LL9

�
V21
0 vecðQÞ ¼ vec

�
QC21�9�I5LL9

�
vec
�
QC21�

¼ vec
�
QC21�9vec�LL9QC21

�
¼ tr

�
C21Q9LL9QC21

�
:

(C2)

KMR (Equation C2) has the same test statistic as the GEE-SPU(2) test (Equation C1) if the working correlation Rw is the true
correlation structure of Yi [i.e., C ¼ Rw ¼ CorrðYijH0Þ].

Appendix D: GEE-Score test and MANOVA

The GEE-Score test statistic with a working independence model in GEE is

GEE-Score ¼ vec
�
L9Q

�
9ðSy5nSxÞ21vec

�
L9Q

�
¼ n  vecðSxyÞ9

�
S21
y 5S21

x
�
vecðSxyÞ

¼ n  tr
�
S21
y SyxS21

x Sxy
�
:

730 J. Kim, Y. Zhang, and W. Pan



In MANOVA, ameasure of the strength of association betweenQ (multiple traits) andL (genotype scores) for the multivariate
model Q ¼ LBþ E depends on a partition of matrix of total SSCP; i.e., Q9Q ¼ Q̂9Q̂þ R9R (Haase 2011). Considering the
Pillai–Bartlett (PB) trace, theMANOVA test statistic is stated as trðQ̂9Q̂ðQ9QÞ21Þ ¼ trðQ9ðL9LÞ21L9QðQ9QÞ21Þ;which can be
written in an alternate form trðSyxS21

x SxyS21
y Þ ¼ trðS21

y SyxS21
x SxyÞ:Hence, the GEE-Score test and MANOVA using the PB trace

are equivalent.
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File S1
GWAS for ADNI-1 data

1. Univariate GWAS

We applied a linear regression for genome wide association test using one genetic marker versus
individual univariate phenotype comprising default mode netwok; left and right sides of inferior
temporal, medial orbitofrontal, parahippocampal, precuneus and posterior cingulate. For the qual-
ity control, SNPs with minor allele frequency (maf) ≥ 0.05, genotyping rate more than 90%, and
surviving the Hardy-Weinberg test at a significance threshold 0.001 were included, resulting in
519,286 SNPs. Covariates were adjusted such as gender, education, handedness, age, and intracra-
nial volume (ICV) measured at baseline.

Figures A and B are Q-Q plots and Manhattan plots from GWAS on each univariate phenotype.
No SNP passed the genome-wide significance level (p-value < 5 × 10−8). We computed a genome-
wide inflation factor (λ), all of which fell in a reasonable range between 0.98 and 1.02.

A Q-Q plots from univariate testing

1



B Mantattan plots from univariate testing at significant level of 5 × 10−8
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2. SNP-based multivariate trait analysis

SNP-based multivariate GWAS was performed to identify SNPs associated with the default mode
netowork composed of 12 brain regions. MANOVA, GEE-score test, and aSPU test (Zhang et al.
2014), were applied, among which aSPU identified significant marker rs429358 located in APOE.
Figures C and D are Q-Q plots and Manhattan plots from SNP-based multivariate GWAS.

C Q-Q plots from SNP-based multivariate trait analysis

D Manhattan plots from SNP-based multivariate trait analysis at significant level of 5 × 10−8

3



3. Gene-based multivariate trait analysis

Gene-based multivariate GWAS was conducted by applying GEE-score test, aSPUset, aSPUset-
Score, MDMR, MANOVA and FLM. Among 519,286 SNPs which passed quality control, 277,527
SNPs were annotated to 17,557 genes. aSPUset, aSPUset-Score, and MDMR indicated two loci
(gene AMOTL1 and APOE loci) associated with the default mode network. The performance
of Score test and MANOVA was very similar. Figures E and F illustrate the results from the
gene-based multivariate GWAS.

E Q-Q plots from gene-based multivariate trait analysis

4



F Manhattan plots from gene-based multivariate trait analysis at significant level of 2.8 × 10−6
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File S2
Validation with ADNI-Go/2 data

Figure A illustrates the results of single SNP-based multi-trait association test, when applying
aSPU test; each dot represents -log(p-value) obtained from aSPU after adjusting covariates; SNP
rs429358 was associated with DMN (p-value 1.9e-3) by passing the significance threshold 0.05/12.
Figure B illustrates the p-values from the univariate testing, the SNP-based multi-trait analysis,
and the gene-based multi-trait analysis for the candidate genes AMOTL1 and APOE.

A LocusZoom for validating two loci for ADNI-GO/2: LD structure in each locus and p-values
obtained from the SNP-based test (aSPU) are presented.
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B Association tests for DMN and multiple SNPs in the candidate gene regions for the ADNI-
GO/2: (a) Univariate test; (b) aSPU for SNP-based multi-trait test; (c) aSPUset for gene-based
multi-trait test.
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File S3
Analysis with ADNI whole genome sequence data

We conducted whole genome sequencing (WGS) scan. Figure A, illustrates the Q-Q plots from
WGS scan for rare variants with MAF < 0.01. The Q-Q plots from WGS scan for rare variants
with MAF < 0.05 are presented in Figure B. No gene reached the significant threshold. FLM
showed the genomic inflation factor around λ = 1.5.

Figure C depicts p-values from the single trait-based test for two candidate genes (AMOTL1
and APOE), after adjusting covariates.

A Q-Q plots from WGS scan for rare variants with MAF < 0.01

B Q-Q plots from WGS scan for rare variants with MAF < 0.05
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C Association tests for individual trait and multiple rare variants in the candidate gene regions
for the ADNI sequence data

AMOTL1

P values for rare variants with MAF<0.01
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L−
In

fe
rio

rP
ar

ie
ta

l

R
−

In
fe

rio
rP

ar
ie

ta
l

L−
In

fe
rio

rT
em

po
ra

l

R
−

In
fe

rio
rT

em
po

ra
l

L−
M

ed
ia

lO
rb

ito
fr

on
ta

l

R
−

M
ed

ia
lO

rb
ito

fr
on

ta
l

L−
P

ar
ah

ip
po

ca
m

pa
l

R
−

P
ar

ah
ip

po
ca

m
pa

l

L−
P

re
cu

ne
us

R
−

P
re

cu
ne

us

L−
P

os
te

rio
rC

in
gu

la
te

R
−

P
os

te
rio

rC
in

gu
la

te

aSPU

minP

T1

SKAT−O

SKAT

FLM

P values for rare variants with MAF<0.05

L−
In

fe
rio

rP
ar

ie
ta

l

R
−

In
fe

rio
rP

ar
ie

ta
l

L−
In

fe
rio

rT
em

po
ra

l

R
−

In
fe

rio
rT

em
po

ra
l

L−
M

ed
ia

lO
rb

ito
fr

on
ta

l

R
−

M
ed

ia
lO

rb
ito

fr
on

ta
l

L−
P

ar
ah

ip
po

ca
m

pa
l

R
−

P
ar

ah
ip

po
ca

m
pa

l

L−
P

re
cu

ne
us

R
−

P
re

cu
ne

us

L−
P

os
te

rio
rC

in
gu

la
te

R
−

P
os

te
rio

rC
in

gu
la

te

aSPU

minP

T5

SKAT−O

SKAT

FLM

−
lo

g 1
0 

P
 v

al
ue

0

2

4

6

8

2



File S4
Simulations for GEE-aSPUpath

Simulation set-up

We conducted a small simulation study to demonstrate the performance of the GEE-aSPUpath test.
The simulated data mimicked the ADNI-1 dataset. The phenotype data were simulated based on
the grey matter volumes in the 12 ROIs corresponding to the default mode network (DMN). For
covariates, we included gender, education, handedness, age and ICV as available in the ADNI-1
dataset. We used a KEGG pathway hsa00410 containing 20 genes with 592 SNPs in total.

We explored two factors that might influence testing power: 1) the overall effect size of the
pathway and 2) varying gene-level and trait-level association patterns. In simulation set-up 1, we
varied only pathway effect sizes. Using the ADNI-1 data, first, we estimated the marginal effect
of each SNP j on an individual trait t by estimating the regression coefficients (i.e. wjt), and
estimated each covariate effect (q) on each trait (i.e. ψqt). The sample covariance matrix of the
multiple traits (Σ) was evaluated. Denote the mean vector of the 12 traits W0, and the estimated
regression coefficient matrices W = (wjt) and Ψ = (ψqt).

Given a pathway S with |S| genes, the genotype scores for the SNPs in the pathway for
subject i are xi = (x′i,1, ..., x

′
i,|S|)

′ with gene g including hg SNPs, xi,g = (xi,g,1, ..., xi,g,hg)′. To
maintain the original correlation structures among the genotype scores xi and the five covariates
zi = (zi1, ..., zi5)

′, we used every pair of (xi, zi) from the ADNI-1 data in each simulation. The
multiple traits for subject i were generated from a multivariate normal distribution:

Yi ∼MN (W0 + φ ·W ′xi + Ψ′zi, Σ).

Here a scaling factor φ was used to control the effect sizes of the pathway: with φ = 0, there was
no association and Type I error rates were evaluated; as φ increased, the association strengths of
the pathway with the multiple traits increased and power was evaluated.

In simulation set-up 2, we considered the presence of non-associated SNP-trait pairs, which is
expected to be more realistic than set-up 1. Out of the 20 genes in the pathway hsa00410, 10 genes
were defined as causal; in each causal gene, we randomly selected two-thirds of the SNPs as causal
and the rest as null SNPs; all the SNPs in a non-causal gene were null. We also restricted each
causal SNP to be associated with only 8 or 9 traits out of the total of 12 traits. We designated
a 0 regression coefficient for each non-associated SNP-trait pair; otherwise, the same regression
coefficients were used for others. As before, (xi, zi) pairs were sampled from the ADNI-1 data, and
Yi was generated from the multivariate normal distribution.

Throughout simulations, 1000 replicates were used and the tests were conducted at the signifi-
cance level α = 0.05. For the GEE-aSPUset test, we used γ1, γ2 ∈ {1, ..., 8}; for the GEE-aSPUpath
test, γ1 ∈ {1, ..., 8} and γ2, , γ3 ∈ {1, 2, 4, 8}. We used B = 1000 permutations for each test.

Type I error and power

The empirical Type I error rates (with φ = 0) were well controlled by both GEE-aSPUpath and
GEE-aSPUset tests (Table A). As the effect sizes (controlled by φ > 0) of the pathway increased, the
power of both GEE-aSPUpath and GEE-aSPUset tests increased; the GEE-aSPUset test performed
better, since in set-up 1 all SNPs in the pathway were causal, for which the adaptiveness of the
GEE-aSPUpath test to the genes was useless. Note that set-up 1 was not realistic with all SNP-trait
pairs being associated (for φ > 0).

1



For simulation set-up 2 (Table B), perhaps due to the varying association patterns at both
the gene-level and trait-level, the GEE-aSPUpath test was slightly more powerful than the GEE-
aSPUset test.

Table A. Type I errors (φ = 0) and power (φ 6= 0) under varying overall pathway effect size.

φ GEE-aSPUpath GEE-aSPUset

0 0.050 0.0495
0.02 0.073 0.100
0.04 0.110 0.332
0.06 0.273 0.847
0.08 0.654 0.998
0.10 0.951 1.000

Table B. Power under varying pathway effect size and sparsity of associations.

φ GEE-aSPUpath GEE-aSPUset

0.05 0.084 0.066
0.08 0.142 0.130
0.10 0.236 0.208
0.15 0.663 0.604
0.18 0.894 0.874
0.20 0.980 0.961

2


	FileS1 (2).pdf
	FileS2.pdf
	FileS3.pdf
	FileS4.pdf

