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ABSTRACT The fitness landscape defines the relationship between genotypes and fitness in a given environment and underlies
fundamental quantities such as the distribution of selection coefficient and the magnitude and type of epistasis. A better
understanding of variation in landscape structure across species and environments is thus necessary to understand and predict how
populations will adapt. An increasing number of experiments investigate the properties of fitness landscapes by identifying mutations,
constructing genotypes with combinations of these mutations, and measuring the fitness of these genotypes. Yet these empirical
landscapes represent a very small sample of the vast space of all possible genotypes, and this sample is often biased by the protocol
used to identify mutations. Here we develop a rigorous statistical framework based on Approximate Bayesian Computation to address
these concerns and use this flexible framework to fit a broad class of phenotypic fitness models (including Fisher’s model) to 26
empirical landscapes representing nine diverse biological systems. Despite uncertainty owing to the small size of most published
empirical landscapes, the inferred landscapes have similar structure in similar biological systems. Surprisingly, goodness-of-fit tests
reveal that this class of phenotypic models, which has been successful so far in interpreting experimental data, is a plausible in only
three of nine biological systems. More precisely, although Fisher’s model was able to explain several statistical properties of the
landscapes—including the mean and SD of selection and epistasis coefficients—it was often unable to explain the full structure of
fitness landscapes.
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THE fitness landscape is defined by a set of genotypes, the
mutational distance between them, and their associated

fitness in a given environment (Wright 1931; Orr 2005). The
structure of the fitness landscape determines the fitness ef-
fects of mutations and the interaction between mutations for
fitness. These properties determine the pace of adaptation
(Eyre-Walker and Keightley 2007), the predictability of evo-
lution (Weinreich et al. 2006), the benefits of sexual repro-
duction (Kondrashov and Kondrashov 2001; de Visser et al.
2009), and the probability of speciation (Gavrilets 2004;

Chevin et al. 2014). Thus, it is an important goal of evolu-
tionary biology to characterize experimentally the proper-
ties of fitness landscapes across species and environments
(de Visser and Krug 2014).

The most straightforward and popular experimental ap-
proach to access the properties of the fitness landscape con-
sists of identifying mutations, constructing several genotypes
that differ only by various combinations of these mutations,
and measuring the fitness of these genotypes. This protocol
allows reconstruction of what we call “empirical landscapes.”
For example, several experiments identify a small number L
of mutations and consider the fitness of 2L genotypes with all
possible combinations of these mutations. Early studies were
primarily descriptive, with a focus on patterns of epistasis
among mutations (Malcolm et al. 1990; de Visser et al.
1997; Whitlock and Bourguet 2000). In an influential study,
Weinreich et al. (2006) studied the landscape between an
ancestral strain of Escherichia coli and an evolved type with
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five mutations conferring high antibiotic resistance. They
computed the number of paths up to the fitness maximum
that could be followed by a population evolving by natural
selection and showed that the ruggedness of the landscape
implied that very few mutational paths could be used during
biological evolution. This study suggested that the structure
of fitness landscapes might severely constrain evolutionary
trajectories, thus opening up the possibility that adaptation
could be predicted to some extent. This finding has inspired
the characterization of many other empirical landscapes
[reviewed in Weinreich et al. (2013)].

In principle, empirical landscapes can be compared with
predictions from theoretical fitness landscape models. For
example, several studies fit specific models to empirical land-
scapes (Lunzer et al. 2005; Chou et al. 2011, 2014; Rokyta
et al. 2011; Schenk et al. 2013). These models predict quan-
titatively the fitness values and epistasis coefficients and, as
such, greatly improve our understanding of the form of epis-
tasis that is typical of the particular system under study. How-
ever, the increasing number of empirical landscapes calls for
a more general method to infer and compare the properties
of fitness landscapes across species and environments. This
possibility is very appealing and timely given that data accu-
mulate on a diversity of empirical systems and selective en-
vironments, but it also raises several challenges.

The variability observed between empirical landscapes
might be driven by biological differences of interest between
organismsandenvironments of selection, but this variability is
currently confounded with two other factors: stochastic var-
iability due to sampling of a small number of mutations and
variability in theprotocolbywhichmutationsare isolated.The
full fitness landscape of a species in the environment of
selection is defined as the fitness of all possible genotypes
in that environment. This is an incredibly large space, scaling
exponentially with the size of the genome. Most experiments
explore a very small subset of the landscape because they
examine at best a few dozen genotypes. Starting from the
ancestral genotype, a single point in this large fitness land-
scape, the region of the fitness landscape that is explored
depends on the particularmutations that were isolated. Thus,
each empirical landscape results from a single realization of
the stochastic sampling of a small number ofmutations froma
myriad of availablemutations (Tenaillon et al. 2007; Salverda
et al. 2010; Schenk et al. 2013; Szendro et al. 2013; de Visser
and Krug 2014). In other words, a single constant underlying
fitness landscapes can give rise to a diversity of small geno-
typic landscapes depending on the mutations that are sam-
pled (Blanquart et al. 2014). Moreover, the region of the
underlying fitness landscapes that is explored depends on
the experimental protocol used to isolate mutations. For ex-
ample, mutations are often obtained under protocols involv-
ing natural selection. While random mutations give more
rugged empirical landscapes, mutations that have been se-
quentially selected in a single population give smoother em-
pirical landscapes (Draghi and Plotkin 2013; Szendro et al.
2013; Blanquart et al. 2014). Thus, inferring the properties of

fitness landscapes from empirical data in meaningful ways
requires (1) quantifying the uncertainty resulting from sam-
pling of a limited number of mutations and (2) explicitly
modeling how mutations were experimentally isolated.

In this study, we address these challenges and develop a
statistical framework to infer the properties of the underlying
fitness landscape from empirical landscapes. We use a broad
class of phenotypic fitness landscape models that includes
Fisher’s geometric model (Fisher 2000). Phenotypic fitness
landscapes model how the genotype of an organism trans-
lates into a set of phenotypes, which themselves determine
fitness. In other words, the very large space of all possible
genotypes is projected onto a continuous phenotypic space
of arbitrary dimensionality, and fitness depends only on the
position in this phenotypic space. Fisher’s model, in particu-
lar, assumes that the phenotypes are under stabilizing selec-
tion toward a single optimum, that the effects of mutations in
the phenotypic space are drawn from amultivariate Gaussian
distribution, and that mutations combine additively in the
phenotypic space. Phenotypes can be biological traits that
need to be tuned to a precise level to maximize growth of
the organism in the environment of selection, e.g., the con-
centration of an enzyme in a metabolic pathway or the level
of expression of a gene. Fisher’s model also can be viewed as
an abstract statistical description of the genotype fitness map.

Anumberof reasonsmotivate thechoiceofFisher’smodel as
the underlying fitness landscape. A phenotypic model solves
the problem of high dimensionality of the genotypic space.
Indeed, genotypic fitness landscape models such as the rough
Mount Fuji model (Szendro et al. 2013) or the NK model
(Kauffman and Levin 1987) require a number of parameters
increasing linearly with the number of mutations or the num-
ber of genotypes. In contrast, a phenotypic model can describe
an arbitrarily large number of genotypes using a small number
of parameters. More fundamentally, it has been shown re-
cently that Fisher’s model emerges from a set of “first princi-
ples” that specifies how fitness results from developmental
integration of a large number of mutable traits (Martin
2014). Last, Fisher’s geometric model is simple yet can gener-
ate a diversity of empirical landscapes (Blanquart et al. 2014),
and it successfully predicts experimental quantities, such as
the distribution of epistasis coefficient between pairs of muta-
tions (Martin and Lenormand 2006; Martin et al. 2007) and
the dynamics of mean fitness over time (Perfeito et al. 2014).

This study focuses on the following questions: How much
information on the structure of the underlying fitness land-
scape can be inferred from existing empirical landscapes?
What properties of fitness landscapes can be inferred from
empirical data available so far, and are underlying landscapes
similar in similar species or environments? Is the structure of
empirical landscapes compatible with a model assuming sta-
bilizing selectionona set ofunderlyingunknownphenotypes?

To answer these questions, we developed an inference
framework that allows fitting Fisher’s model to a diversity of
experimental data sets obtained under a range of protocols.
Using this framework, we infer the parameters and quantify
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the goodness of fit of Fisher’s model on 26 published genotypic
landscapes representing nine distinct biological systems. We
infer the properties of the underlying fitness landscape of each
data set while accounting for the protocol used to obtain the
data, allowing a meaningful comparison of fitness landscapes
across several species and environments. This survey reveals
substantial differences in the shapes of underlyingfitness land-
scapes across biological systems and environments of selec-
tion. We also show that Fisher’s model is able to fully
account for the observed properties of genotypic landscapes
in only three of nine biological systems.

Materials and Methods

Data set selection

We searched the literature for published empirical landscapes
that include clearly identified sets of genotypes with combina-
tions of twomutations or more together with their fitness. The
way inwhich thesemutations evolved or were obtained had to
be sufficiently described such that we could reproduce it with
simulations (see below). For selected mutations, we verified
that thefitnessmeasurereported is relevant to theenvironment
in which the mutations evolved. We identified a total of 26
published data sets spanning nine independent biological sys-
tems meeting these criteria. In the following, we will identify
the data sets representing these nine systems using the letters
A–I (Table 1 and Supplemental Material, File S1). The data
sets encompassed a diversity of species– including species of
virus, bacteria, fungi, animals– and ecological scenarios
(Table 1). Several experiments explored the fitness land-
scape of species in a laboratory environment using random
mutations in the fungusAspergillus niger (de Visser et al. 1997)
(data sets A1 and A2), the fruit fly Drosophila melanogaster
(data sets C1 and C2) (Whitlock and Bourguet 2000), and the
budding yeast Saccharomyces cerevisiae (data sets B1–B10)
(Costanzo et al. 2010). The latter data set is a large collection
of 5596 deletionmutants. To reduce this large data set to a size
that was amenable to our analysis, we randomly drew 10
independent, randomly chosen subsets that included 20 mu-
tations, all single mutants, and 100 double mutants (all com-
binations of the first 10 mutations times the last 10 mutations,
for a total of 121 possible genotypes but, in reality, 104 to 116
genotypes because some were missing).

Three data sets represented the fitness landscape of virus
species adapting to their hosts (data sets D, E1, and E2)
(Sanjuán et al. 2004; Rokyta et al. 2011). Two data sets rep-
resented landscapes of adaptation of microbial species to a
novel environment, including a long-term selection experi-
ment in a low-glucose environment (data set F) (Khan et al.
2011) and a selection experiment in a methanol environment
(data set G) (Chou et al. 2011). Last, seven data sets repre-
sented empirical landscapes reconstructed from mutations
that confer drug resistance. These included studies of muta-
tions in the enzyme TEM-1 b-lactamase, which confer resis-
tance to cefotaxime in bacteria (four data sets H1–H4)

(Weinreich et al. 2006; Tan et al. 2011; Schenk et al. 2013),
and studies of mutations in the dihydrofolate reductase
gene, which confer pyrimethamine resistance (an antimalarial
drug) in transgenic bacteria and yeast (three data sets I1–I3)
(Lozovsky et al. 2009; Brown et al. 2010; Jiang et al. 2013).

Data analysis

A number of fitness measures were reported in the published
empirical landscapes we collected. Our analysis requires
meaningful estimates of fitness value to model how selected
mutations differ from random mutations.

Meaningful selection coefficients are expressed in units of
log-fitness. They must be calculated either as log½lm=l0�,
where lm and l0 are the multiplicative growth rate of the
mutant and the ancestor (called “fitness” in most population
genetics model), or as rm 2 r0, where rm and r0 are exponen-
tial growth rates (Chevin 2011). Unfortunately, many studies
only reported the ratio rm=r0 (Table 1, data sets A, B, E, F, G,
and I3), which in theory cannot be used to obtain a correct
selection coefficient. To analyze the studies that only report
rm=r0, we used log½rm=r0� as a log-fitness measure. This mea-
sure is approximately equal to ðrm 2 r0Þ=r0 under weak se-
lection, which is a quantity proportional to the selection
coefficient. Moreover, this log-fitness measure, conveniently,
does not depend on the unit of the growth rate and can be
compared across landscapes.

For drug-resistance fitness landscapes, only one data set
reported a growth rate at a given drug concentration (data set
I3, Table 1). Other studies reported the minimum inhibitor
concentration (MIC) or a similar measure (Table 1, data sets
H1–H2, I1 and I2). MIC, the concentration of drug above
which the population cannot grow, is not easily related to
fitness. For this reason, we present the results of MIC land-
scapes in Figure S2 (Weinreich et al. 2006; Tan et al. 2011;
Schenk et al. 2013).

We proceeded to several additional steps of data cleaning.
Three nonviable genotypes (fitness value of 0) were excluded
from the analysis [one in a pyrimethamine landscape (I1) and
two in a Drosophila landscape (C2)] because Fisher’s model
cannot easily account for lethal mutations. In data set G, the
order of fixation of coselected mutations was unknown. We
assumed that mutations fixed from the largest-effect mutation
to the smallest-effect mutation in accordance with the report-
ed dynamics of mean fitness through time in the experiment.
In data set I2, two mutations occurred at the same locus. We
made this data set compatible with our framework (which
assumes that each locus is diallelic) by excluding all genotypes
bearing the third allele.

Approximate Bayesian computation

Table 1 shows that a number of protocols were used to obtain
empirical landscapes. Some of the empirical landscapes were
formed of single and double mutants only, while others in-
cluded all possible combinations of four or five mutations,
thus including genotypes with three, four, or five mutations.
Moreover, the way in which mutations were isolated also
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varied. Mutations were random, independently selected, or
coselected. “Independently selected” means that the muta-
tions emerged under the action of selection in separate pop-
ulations evolving independently from a unique ancestral
genotype. “Co-selected” means that the mutations were se-
lected sequentially in the same population. Modeling the way
selection biased the resulting empirical landscape is already
complicated. To make matters worse, several protocols in-
cluded an additional step. These protocols were used to study
the landscape of resistance to cefotaxime, a b-lactam antibi-
otic (landscapes H1–H4). Among a large set of 48 mutations
found individually in cefotaxime-resistant natural isolates,
three smaller subsets were studied in detail. These subsets
were composed of the four mutations of smallest fitness ef-
fect, the four mutations of largest fitness effect (H3 and H4),
and five mutations that together conferred a very high fitness
(H1–H2). To account for this variety of protocols, we used a
flexible approximate Bayesian computation (hereafter ABC)
approach to infer from empirical data the parameters under-
lying Fisher’s geometric model.

Details of the ABC framework: The original ABC rejection
algorithm proceeds as follows: a large number of parameter
sets aredrawn inaprior distribution. For eachparameter setu,
a data set bDðuÞ is simulated, and a measure of distance be-
tween the true data set and each simulation r½bDðuÞ;D� is
computed. A set of parameters is retained in the posterior
distribution if the distance between D and bDðuÞ is lower than
a small value e. In other words, the posterior distribution is
composed of all the parameter sets u such that r½bDðuÞ;D�, e.
In practice, e is chosen such that a given, small fraction of the
prior parameter sets is retained in the posterior (Csilléry et al.
2012), but ABC will give the correct posterior distribution of
parameters only in the limit where e is close to zero.

The distance between the data set and simulation is often
definedbased on a set of statistics. This set of statisticsmust be
carefully chosen to be informative but of relatively low di-
mensionality. We conducted the analysis using either the full
set of observed log-fitness values (16–121 fitness values) or a
set of six summary statistics. The six summary statistics are as
follows: (1) the mean coefficient of selection of all single
mutants, (2) the mean epistasis coefficient between all pairs
of mutations averaged over all genetic backgrounds, (3) the
SD of selection coefficients, (4) the SD of epistasis, (5) the
correlation between the epistasis coefficient and the back-
ground fitness (specifically, for each pair of mutations, we
calculate the epistasis coefficient and the average fitness of
the two genotypes with one of the mutations and compute
the correlation between these two quantities across all pairs
of mutations and all genetic backgrounds), and (6) the max-
imal fitness value (Table S1). The distance of each simulated
data set to the experimental data set was

r
�bD;D� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnstat

i¼1

� bSi2Si
mad

�bSi�
vuut �2

where nstat is the number of statistics, Si is the statistic i, andbSi is the simulated statistic i. Statistics are normalized by the
median absolute deviationmadðbSiÞ, which is analogous to SD
but with medians instead of means. When statistics were the
full set of fitness values, genotypes were uniquely identified
by ordering mutations by their fitness effects.

We detailed earlier the rejection algorithm, where the
posterior is simply the fraction of parameters randomly drawn
from the prior distribution that generates simulated land-
scapes closest to the data. For this algorithm, we used a
tolerance (the fraction of retained simulations) of 0.005
(using the lower toleranceof0.0005didnot improveaccuracy,
Figure S1). In addition to the rejection algorithm, we used a
linear regression algorithm (Beaumont et al. 2002). In this
method, the posterior parameters are corrected using a local
linear regression of the parameter values onto the summary
statistics, givingmoreweight to simulations closer to the data
set. Last, we used a neural-network algorithm that adjusts the
posterior distribution based on a nonlinear regression using
neural networks (Blum and François 2010). The three meth-
ods are implemented in the R package “abc” ( R Development
Core Team 2010; Csilléry et al. 2012).

Details of the evolutionary simulations: We simulated a
large number of genotypic landscapes under Fisher’s model,
seeding the simulation with parameters u drawn from some
prior distributions (detailed later). The simulated landscapes
were based on Fisher’s model, a phenotypic fitness landscape
model whereby an organism is evolving under stabilizing se-
lection on n continuous phenotypic traits that together deter-
mine fitness. Each genotype is characterized by a phenotype
vector z ¼ fz1; z2; . . . ; zng consisting of n traits, where n is the
dimensionality of the phenotypic space. The parameter n de-
fines the number of phenotypes under selection, or “complex-
ity,” for an organism evolving in a given environment
(Tenaillon et al. 2007; Lourenço et al. 2011; Chevin et al.
2014). The effects of mutations are assumed to be additive
in the phenotypic space. For example, if we consider five mu-
tations at five distinct loci of the genome, the genotype 00101,
where the series of 0s and 1s denote the absence or presence of
mutations at each of five loci (relative to an ancestral strain
with genotype 00000), has phenotype z0 þ dz3 þ dz5, where
z0 is the phenotype vector of the ancestral strain, and dz3 and
dz5 are the phenotypic effects at mutations at loci 3 and 5. The
effects of mutations on phenotypes (the vectors dz) are drawn
from a multivariate normal distribution with mean 0 and
variance-covariance matrix s  In, where s is the size of
mutations. Thus, each mutation jointly affects all phenotypes
(assumption of full pleiotropy). Themapping of phenotype on
fitness is defined by log½WðzÞ� ¼ logðWmaxÞ2 kzkQ þ e, where
Wmax is the maximal fitness, which determines the distance to
the optimum of the ancestral strain, kzk is the Euclidean norm
of the phenotype vector, and e is the experimental error on
fitness measurements. Following Wilke and Adami (2001)
and others (Tenaillon et al. 2007; Gros et al. 2009), we ex-
tended Fisher’s geometric model with the parameter Q, which
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quantifies how flat the peak is at the optimum (Figure 1).
Fisher’s model, sensu stricto is the special case where Q ¼ 2,
i.e., the fitness function is Gaussian. Our definition of fitness
implies that the ancestral strain had log-fitness 0, correspond-
ing to the phenotype z0 ¼ f2logðWmaxÞ

1=Q
; 0; 0; . . . g. This

normalization was done without loss of generality. Maximum
fitness Wmax, which is the height of the fitness peak in the
environment where fitness is measured, was achieved when
all phenotypes are at their optimal value, chosen here to be
z ¼ 0 without loss of generality. Lastly, e is the measurement
error in log-fitness measure and was assumed to be normally
distributed with mean 0 and SD estimated from the empirical
data (File S1). Figure 1 shows several examples of a single
empirical genotypic landscape generated by sampling a small
number of mutations in the underlying landscape.

For each set of parameters u ¼ ðWmax;s; n;QÞ, we simu-
lated the process by which mutations were isolated and gen-
erated a genotypic landscape. In practice, the sets of genotypes
were of two broad categories: either four to five mutations
were isolated and genotypes bearing all possible combinations
of those mutations (24 or 25) were constructed or a larger
number of mutations (seven to nine) were isolated and single
and double mutants were constructed. Mutations were con-
sidered to be random, independently selected, or coselected.
For random mutations, simulations consisted of drawing the
phenotypic effects of mutations in the multivariate normal
distribution ð0;s  InÞ and then combining those mutations ad-
ditively and computing fitness using our phenotype-to-fitness
mapping. When mutations were isolated in an experiment in-
volving selection, we assumed that adaptation proceeded by
successive invasion of beneficial mutations without clonal in-
terference. This allowed us to conduct fast simulations based
on the strong-selection, weak-mutation (SSWM) approxima-
tion (Kimura 1983; Gillespie 1991), making it possible to con-
duct the large number of simulations required by ABC. Under
the SSWM regime, a selected mutation is drawn among the
pool of random mutations, with each mutation weighted by
max½0; s�, where s is the fitness effect of the mutation. This
derives from the fact that the probability of fixation of a ben-
eficial mutation is scaling linearly with its fitness effect s in this
regime (Patwa and Wahl 2008). Fitness effects were calcu-
lated relative to the ancestor for independently selected mu-
tations and relative to the genetic background with previously
evolved mutations for coselected mutations. For the protocol
where five mutations that together confer a large fitness effect
are isolated (H1-H2), we chose the set of five mutations that
confers the highest fitness among 1000 random combinations.

For each empirical landscape, 106 genotypic landscapes
were generated using 106 parameter sets drawn from prior
distributions. Priors were chosen to be uninformative and to
ensure that they could generate a diversity of fitness land-
scapes (Figure 1). The height of the peak in log-fitness
logðWmaxÞ was drawn from an exponential distribution
with mean 2. Maximum fitness on a log scale ranged from
3.7 3 1027 to 29 (2.5–97.5% quantile 0.05–7.4). The com-
plexity of the phenotypic space, the number of phenotypic

dimensions under selection, was given by n ¼ hþ 1, where �
denotes the floor function, and h was drawn from an expo-
nential distribution with mean 5. It ranged from 1 to 75
(2.5–97.5% quantile 1–7). We used an exponential prior
for complexity because, under Fisher’s model with full
pleiotropy, the distribution of fitness effects had unrealistically
small variance at high complexity. The size of mutations s

in the phenotypic space was drawn from an exponential dis-
tribution with mean 0.2. It ranged from 1.7 3 1027 to 2.6
(2.5–97.5% quantile 0.005–0.74). The choice of an exponen-
tial distribution was motivated by the fact that variations in
fitness are modest in many of the data sets, and therefore,
mutational effects are probably small. The shape of the peak
Q was drawn from a uniform distribution ½0:5; 4� (Figure 1).
Cross-validation

We checked the accuracy of inference from empirical land-
scapes using simulated pseudo–data sets generated under
Fisher’s model. We performed cross-validation using
nCV ¼ 500 pseudo–data sets generated under Fisher’s model
for each type of experimental protocol (Figure 2 and Table
2). We applied the ABC algorithm on each data set and
compared the posterior distribution of parameters to the
true (known) parameters. We computed the prediction
error, defined for each parameter as

P​ �
~ui2ui

�2
nCVVðuÞ

where ui is the true value of the parameter used for the ith
simulated pseudo–data set, ~ui is the median of the posterior
distribution, and VðuÞ is the variance of the prior distribution.
The expected prediction error is 0 when inference is perfect
(the median always matches the true parameter) and 1 when
no inference can be made (the posterior parameters are
drawn at random from the prior). For cross-validation, we
assumed that experimental errors were 0 in order to compare
the accuracy of inference across protocols in an ideal case
where fitness values are perfectly known.

Posterior predictive checks

We next tested whether the empirical landscapes we analyzed
were compatible with the hypothesis that Fisher’s landscape
was the true model for the empirical data. We used posterior
predictive checking (Gelman et al. 2014) to quantify the good-
ness of fit of Fisher’s model to each data set. For each exper-
imental data set, we ran the ABC algorithm on 1000 random
pseudo–data sets generated using parameters drawn from the
joint posterior distribution of parameters. For each of these
pseudo–data sets, we recorded the median distance between
the pseudodata and the accepted (closest) simulated data in
the ABC algorithm. This resulted in a null distribution for the
median distance of the simulations retained in the ABC algo-
rithm, which is the distribution of distance between simula-
tions and data when Fisher’s model is truly underlying the
data. We then used this distribution to compute a Bayesian

852 F. Blanquart and T. Bataillon

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.115.182691/-/DC1/FileS1.pdf


P-value, also known as a “posterior predictive P-value” in
Bayesian model checking (Gelman et al. 2014). This P-value
is the probability that median distances for pseudo–data sets
generated under Fisher’s model are greater than the median
distance of the experimental data set. A low P-value suggests
that the data are farther apart from Fisher’s model simulations
than expected if the data followed Fisher’s model. A P-value
was computed for the distances based on summary statistics
and for the distances based on all fitness values. For the latter,
we also decomposed the distance and computed an analogous
P-value for each individual genotype to identify genotypes
with fitness values that are particularly unlikely under Fisher’s
model (those whose individual P-value is lower than 0.05).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in this article are represented fully
within the article.

Results

Cross-validation and accuracy of parameter inference

We quantified the accuracy of inference from empirical land-
scapes using 500 simulated pseudo–data sets generated un-
der Fisher’s model. This analysis revealed that the true
parameters of the underlying landscape are generally inferred

Figure 1 A diversity of genotypic
landscapes can be generated by Fisher’s
fitness landscape model. Each row
shows an example of Fisher’s land-
scape with two phenotypes (n = 2),
with three mutations depicted as ar-
rows in the phenotypic space (left)
and the empirical landscape result-
ing from these mutations in combi-
nation (i.e., eight genotypes) (right).
Blue edges denote mutations that
are beneficial in their background,
while red edges denote deleterious
mutations. (Top row) A sharp land-
scape with Q = 0.5 and where the
three mutations are random muta-
tions. (Center row) Fisher’s classic
landscape with Q = 2 and three
coselected mutations. (Bottom row)
Q = 4 and three independently se-
lected mutations. Fitness of the an-
cestral strain is set to 1 without loss
of generality.
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with mediocre accuracy under most protocols used in existing
studies (Figure 2 and Table 2). Inference based on summary
statistics (Table 2) always yielded lower error than inference
based on all fitness values (Table S2). Using summary statistics
makes the ABC algorithm more accurate because it alleviates
the “curse of dimensionality”: the distance of the data to the
accepted simulations is closer to 0 for the same number of
simulations such that the main assumption of ABC is better
respected. However, the use of summary statistics causes loss
of information (Sünnaker et al. 2013). Here the gain in accu-
racy more than offsets the loss of information, making infer-
ence based on summary statistics better.

ABC is an approximate method, and we cannot rule out
totally that low accuracy was due to these approximations.
However, low accuracy also may be caused by the limited
information contained in small genotypic landscapes. In other
words, even if the inference method were perfect, the true
posterior distribution of parameters still might be quite wide
and cause low accuracy. Because we have explored a number
of variations on the ABC algorithm, including three different
algorithms, full statistics vs. summary statistics, and several
values of tolerance (Figure S1) and accuracy of inference was
always relatively low, we hypothesize that the main reason
behind low accuracy is probably the limited information con-
tained in genotypic landscapes. Each empirical landscape
conveys rather modest information on the underlying “true”
fitness landscape.

In particular, empirical landscapes conveyed almost no
information on the number n of phenotypes under selection.
Prediction errors for this parameter were always higher than
0.5 and often close to 1. The size of mutations s, the height of
peak Wmax, and the shape of fitness peak Q were inferred
with more accuracy. For all parameters, the regression and
neural-network algorithms improved the accuracy of inference
relative to the rejection algorithm, and the neural-network
algorithm was most often the best (Table 2; compare the
“rej,” “reg,” and “nn” columns for each parameter).

With the summary statistics we chose, the number of
mutations that were combined together did not affect the
quality of inference much. The experimental design with 32
genotypes made of all combinations of five mutations per-
formed similarly to theonemadeof eightmutationsand single
and double mutants only (28 genotypes) (Table 2). The de-
sign where 20 random mutations were chosen (landscapes
B1–B10) did not perform particularly better than the one
with eight mutations and all single and double mutants (29
genotypes in total).

The protocol used to isolate mutations was of critical
importance to the quality of inference (Figure 2 and Table
2). Generally, selected mutations allowed the most accurate
inference (compare the “random,” “independently selected,”
and “coselected” lines in Table 2 for a given experimental
design). In these simulations, the protocol where the four
largest mutations were isolated among 48 independently se-
lected mutations performed best and allowed fairly precise
inference of the size of mutations (error = 0.145), height of

the peak (error = 0.068), and shape of the peak (error =
0.045) under the neural-network algorithm. Protocols that
performed best regarding inference of the height and shape
of the fitness peak allow a better exploration of the underly-
ing fitness landscape around the fitness optimum. Indepen-
dently selected mutations and particularly large-effect
mutations create genotypes that are more likely to be around
the fitness peak, especially when genotypes with more than
two mutations are included. In contrast, genotypes con-
structed with random mutations do not always approach
the fitness peak and may be confined to relatively linear
and uninformative zones of the underlying fitness landscape.

Parameter inference in experimental data sets

We obtained the posterior distribution of fitness landscape
parameters in the 26 data sets. We used the ABC protocol
based on summary statistics and the neural-network algo-
rithm, which was shown towork best (Table 2). Note that the
neural-network algorithm, on rare occasions, resulted in

Figure 2 Accuracy of inference for different methods and different data
sets. The median posterior distribution for the rejection algorithm is
shown as a function of the true parameter for each of the 500 cross-
validation data sets (gray points) when the set of genotypes is composed
of all combinations of four independently selected mutations, chosen as
the four largest-effect mutations among a set of 48 mutations, as in
landscape H4 (Schenk et al. 2013). Perfect inference corresponds to all
points on the y = x line. For clarity, we represent this cloud of points with a
local nonlinear fit (gray line). The equivalent linear fit for the neural-network
algorithm is shown as a gray dashed line. The plain and dashed blue
line similarly show the local linear fit for rejection and neural-network
algorithms for the data set composed of 20 random mutations and single
and double mutants only (as in landscapes B1–B10). The neural-network
algorithm generally improves inference compared to the rejection algo-
rithm. The data set composed of all combinations of four selected muta-
tions performs better than the one composed of 20 random mutations and
single and double mutants.
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parameter estimates with biologically meaningless values,
e.g., negative values of dimensionality or maximal fitness.
This is a known problem (Sünnaker et al. 2013) that hap-
pens when none of the summary statistics are very close to
the data such that the neural-network regression extrapo-
lates and yields posterior values outside the range of the
prior. Results are similar, but the posterior distributions
are wider when using inference based on the full set of
fitness values and/or the rejection algorithm.

First, as expected from cross-validation, the posterior dis-
tributionswere broader for parameters describing dimension-
ality and shape of the peak (Figure 3 and Table 3). Each
empirical landscape could have been generated under a diver-
sity of underlyingfitness landscapes. Despite the uncertainty in
parameters, different biological systems exhibited different
types of fitness landscapes (Figure 3).

Three of the experimental systems thatwere represented by
several nonindependent empirical landscapes resulted in sim-
ilarposteriordistributions across these “replicated” landscapes.
This demonstrates the robustness of the ABC method to slight
variation in the set of mutations, to variation in the fitness
measure, and to experimental error. For A. niger (Figure 3,
first row), two empirical landscapes, A1 and A2, were con-
structed using two partially overlapping sets of mutations
(de Visser et al. 1997). For D. melanogaster (Figure 3, first
row), the two landscapes, C1 and C2, corresponded to two
correlated fitness measures, “productivity” (a measure of life-
time reproductive success) and “mating success” (Whitlock &
Bourguet 2000). The posterior distributions of these two land-
scapes were overlapping, had the same covariance structure,
and the median posterior distributions were similar. H1 and
H2, two cefotaxime-resistance landscapes composed of the
same mutations but with replicate MIC measurements, also
had similar posterior distribution of parameters (Table 3).

Remarkably, independent empirical landscapes repre-
senting the same biological system had a similar posterior
distribution of parameters. The 10 independent empirical
landscapes extracted from the large yeast gene deletion
data set B1–B10 (Costanzo et al. 2010) gave similar pos-
terior distributions characterized in particular by muta-
tions of small effect and a low maximal fitness. The two
empirical landscapes of vesicular stomatitis virus, E1 and
E2, had extremely similar posterior distributions of pa-
rameters, although they had very different statistical
properties (Table S1). Different statistical properties arise
because of differences in protocol: E1 is composed of in-
dependently selected mutations, while E2 is composed of
random mutations. The fact that we recover similar under-
lying landscapes for E1 and E2 illustrates the ability of our
method to correct for variation due to protocol.

Lastly, underlying landscapes were similar when using in-
dependent empirical landscapes obtained in similar biological
systems, as revealed by comparison of the two empirical land-
scapes of virus on their host (landscapes D and E) and of the two
landscapes of bacteria adapting to a novel environment (land-
scapes F and G) (Figure 3, third row). In each biological system,
the two landscapes represented independent experiments, yet
posteriors were similar in their marginal distributions and bivar-
iate correlation structure, revealing similar underlying fitness
landscapes. The landscape of resistance to pyrimethamine also
was quite distinct, with large-effect mutations, large maximal
fitness, and a flat peak (I3) (Figure 3, fourth row).

Posterior predictive checks: are experimental landscapes
compatible with Fisher’s model?

We tested whether the empirical landscapes we analyzed
were compatible with the hypothesis that Fisher’s landscape
was the underlying model for the empirical data. An informal

Table 2 Expected prediction error under various experimental designs

Experimental design Type of mutation*
Landscapes using
this protocol

n Wmax s Q

rej reg nn rej reg nn rej reg nn rej reg nn

5 mutations, 25 genotypes R A, C 0.85 0.68 0.64 0.57 0.39 0.37 0.44 0.35 0.32 0.67 0.49 0.43
IS - 0.91 0.79 0.7 0.34 0.2 0.18 0.33 0.19 0.19 0.35 0.15 0.09
CS F 0.83 0.73 0.63 0.34 0.19 0.17 0.53 0.37 0.33 0.39 0.24 0.17

4 mutations, 24 genotypes R - 0.93 0.8 0.78 0.79 0.58 0.54 0.42 0.36 0.35 0.64 0.52 0.45
IS I 0.87 0.76 0.67 0.41 0.22 0.18 0.43 0.25 0.23 0.48 0.27 0.2
CS G 0.9 0.76 0.69 0.37 0.2 0.17 0.49 0.33 0.3 0.42 0.33 0.24

8 mutations, 8 single and
20 double mutants

RS - 0.8 0.58 0.54 0.68 0.48 0.5 0.37 0.3 0.29 0.55 0.44 0.4
IS - 0.75 0.69 0.63 0.44 0.29 0.22 0.41 0.29 0.28 0.47 0.33 0.29
CS - 0.77 0.67 0.62 0.4 0.21 0.18 0.43 0.26 0.23 0.27 0.23 0.2

20 mutations, up to 121
genotypes

R B 0.72 0.62 0.54 0.48 0.25 0.21 0.35 0.23 0.22 0.62 0.45 0.39

9 mutations, 9 single mutants,
18 double mutants

IS D 0.74 0.68 0.63 0.37 0.22 0.15 0.38 0.27 0.24 0.45 0.37 0.32

6 mutations, 6 single mutants,
15 double mutants

IS E 0.81 0.8 0.76 0.45 0.25 0.18 0.39 0.33 0.3 0.67 0.59 0.54

5 mutations, 25 genotypes IS, high fitness combination H1, H2 0.86 0.74 0.61 0.24 0.09 0.06 0.42 0.25 0.22 0.24 0.1 0.05
4 mutations, 24 genotypes IS, small fitness effect mutants H3 0.8 0.84 0.78 0.69 0.52 0.43 0.5 0.41 0.38 0.69 0.48 0.36
4 mutations, 24 genotypes IS, large fitness effect mutants H4 0.94 0.72 0.56 0.26 0.1 0.07 0.25 0.15 0.14 0.27 0.1 0.04

Prediction error for the four parameters of Fisher’s model, for several experimental designs (based on single and double mutants, or complete sets of mutations and all
associated genotypes) and selection procedures (* R: random, IS: independently selected, CS: co-selected mutations), when the 6 summary statistics were used in the
ABC algorithm. For each parameter, the three lowest prediction errors are in bold, highlighting the protocol and inference algorithms that perform best.
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test consisted of resimulating using the posterior distribution
of parameters and examining how close these resimulated
landscapes were to the data. We verified that resimulated
landscapes are indeed close to the pseudodata in the cross-
validation, i.e., when the true model was Fisher’s model
(Figure 4, left panels). For real data, in contrast, the resimu-
lated fitness was close to the true fitness for some but not all
landscapes (Figure 4, center panels). More formally, we
computed a P-value that expresses the probability that the
distance between observed data and simulated data sets
would occur if data followed Fisher’s model, as described
under Materials and Methods (Figure 4, right panels). We
computed this P-value both for the distance based on the full
set of fitness values and for the distance based on summary
statistics. The test of rejection based on summary statistics
tests whether Fisher’s model can reproduce these average
statistical properties of landscapes. The test of rejection
based on the full set of fitness values tests whether Fisher’s
model can reproduce the whole of the data, including spe-
cific relationships between genotypes and fitness values not
captured by summary statistics. Thus, the test based on the
full set of fitness values will be a stronger test of the ade-
quacy of Fisher’s model and will reject Fisher’s model more
often than the test based on summary statistics because it
conserves all information in the landscape.

Fisher’s model reproduced the overall statistical proper-
ties of all empirical landscapes, but in six of nine cases it could
not reproduce the full structure of empirical landscapes
(Table 3). The P-values based on summary statistics were
almost always .0.05 (Table 3) (except for MIC landscapes
H1–H4 and I1–I2, Figure S2). This indicates that the statisti-
cal properties of fitness landscapes described by the six sum-
mary statistics—mean and variance of epistasis and selection,
correlation between epistasis and background fitness, maxi-
mal fitness—could be reproduced by Fisher’s model. However,
Fisher’s model was not able to explain fully the structure of
six of nine fitness landscapes (landscapes B, C, E, F, H and I,
with P, 0.05 in Table 3). We did not identify a single reason
why Fisher’s model was rejected, but it was often related to
mutations with strong negative or positive epistasis (Figure 5).
Fisher’s model could reproduce fully only the landscapes of A.
niger (landscapes A1 and A2), of a bacteriophage adapting to
its host (landscape D), and of bacteria adapting to a methanol
environment (landscape G) (Table 3). In one of the landscapes
compatible with Fisher’s model, the four beneficial mutations
interacted almost additively (Figure 5, landscape G), but a
very different landscape that includes beneficial and deleteri-
ous mutations and substantial sign epistasis among these was
also compatible with Fisher’s model (Figure 5, landscape A1).
In contrast, landscape C1, which looks superficially similar to
landscape A1, rejected Fisher’s model. Landscape F also
rejected Fisher’s model, one reason being that the third muta-
tion had very strong positive epistasis with the first mutation.
The landscape of pyrimethamine resistance (landscape I3)
rejected Fisher’smodel because of two cases of strong reciprocal
sign epistasis. Thus, although Fisher’s model appears valuable

to predict statistical properties of landscapes, in a number of
cases it could not explain more detailed properties of experi-
mental landscapes, such as mutations presenting large positive
or negative epistasis.

In summary, our framework revealed biological differences
between the underlyingfitness landscapes of 26 experimental
landscapes representing nine independent systems. Fisher’s
model was generally able to reproduce the statistical proper-
ties of empirical landscapes but not their full structure. In
particular, only three of nine biological systems (A, D, and
G) featuring both very smooth and additive landscapes and
more rugged ones had a structure that was reproduced by
Fisher’s model.

Discussion

Our understanding of the structure of fitness landscapes has
greatly improved, in particular, thanks to experiments that
identify mutations and systematically measure the fitness of a
set of genotypes bearing combinations of thesemutations. Yet
the generality of insights drawn from these empirical land-
scapes has been questioned recently (Schenk et al. 2013;
Szendro et al. 2013; Blanquart et al. 2014). The properties
of empirical landscapes are heavily dependent on the partic-
ular mutations that are sampled (a small number, among a
myriad of available mutations) and on the protocol used to
identify mutations. We developed a novel framework based
on approximate Bayesian computation to address these chal-
lenges and unravel the properties of the underlying fitness
landscapes. More precisely, we inferred the underlying fit-
ness landscape, parameterized with Fisher’s model, while
accounting for the effects of the protocol on the empirical
landscapes and quantifying the uncertainty due to sampling
of a limited number of mutations. We used this statistical
approach to conduct a survey of fitness landscapes across
various species and ecological contexts.

Summary of the results

Empirical landscapes, because they are composed of a small
number ofmutations, generally conveyed limited information
on theunderlyingfitness landscape. This lackof information is
manifest in wide posterior distributions and a low accuracy of
inference. In other words, quite different underlying fitness
landscapes may generate similar empirical landscapes. This
relates to a previous study where we showed, conversely, that
the sameunderlying landscape results in a variety of empirical
landscapes when multiple sets of mutations are sampled
(Blanquart et al. 2014). The fact that empirical landscapes
are built with a small and often biased sample of mutations
from the underlying fitness landscape suggests that any ex-
trapolation on the global properties of the fitness landscape
from measurement on small empirical landscapes should be
taken with extreme caution.

While the size of mutations, the height of the peak (max-
imal fitness), and the shape of the peak were well inferred
under some protocols, the number of dimensions under
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selection was not inferred with accuracy. Importantly, muta-
tions independently selected in several replicates conveyed
the most information on the underlying fitness landscape
because they allowed an exploration of the most informative
regions of the underlying landscapes. With a protocol that
included as few as four mutations and all 16 possible geno-
types carrying these fourmutations, the size of mutations and
the height and shape of the peakwerewell inferred (Table 2).

Fisher’s model did not accurately reproduce empirical
landscapes in six of nine biological systems tested. The con-
ceptual simplicity of Fisher’s model and its capacity, so far, to
reproduce several experimental observations have made it a
popular model to interpret experimental data and generate
theoretical predictions (Tenaillon 2014). Fisher’s model has
been used successfully before to predict the distribution of
epistasis coefficients (Martin et al. 2007). Fisher’s model also
generates sign epistasis by optimum overshooting when the
ancestral strain is close to the optimum or by pleiotropic
effects when two mutations have small positive fitness
effects (Blanquart et al. 2014).We suggest here that although
Fisher’s model is able to reproduce several statistical proper-
ties of fitness landscapes, it cannot account for their full struc-
ture in many cases. This leads to rejection of Fisher’s model
even with data sets of modest size. Fisher’s model could not
explain (1) sign epistasis far from the optimum (landscapes
A1 and I3 in Figure 5), (2) large negative or positive epistasis
(landscapes C1 and F in Figure 5), and (3) the large variance

in selection coefficients and double-mutant fitness (land-
scapes B and E in Figure 5). It will be interesting to see
whether these patterns can be explained by alternative phe-
notypic models that allow for some asymmetry around fitness
peaks, restricted pleiotropy (mutations affect only a subset of
the phenotypes), or anisotropy (mutations do not affect all
traits to the same extent).

Relationship with previous studies

To our knowledge, only three studies so far have attempted to
compare properties of empirical landscapes across species.
Szendro et al. (2013) quantified ruggedness for 10 experi-
mental landscapes using a set of summary statistics. They
showed that experimental levels of ruggedness are similar
to those obtained with simulations of simple landscapes
made of an additive component and random noise (rough
Mount Fuji landscapes). They noticed the strong effect of
the experimental protocol on the experimental landscape
and in particular that coselected mutations tend to produce
smoother empirical landscapes. However, their framework
did not allow disentangling sampling variation resulting from
protocol from variation owing to genuine biological differ-
ences between systems. Weinreich et al. (2013) analyzed
14 empirical landscapes, defined higher-order epistasis coef-
ficients, and showed that these coefficients make an impor-
tant contribution to fitness in all experimental landscapes.
Lastly, Weinreich and Knies (2013) fitted Fisher’s model to

Figure 3 Posterior distribution of parameters for all experimental landscapes. (From top to bottom) A1 andA2 (Aspergillus) and C1 and C2 (Drosophila);
the yeast deletion data set (B1–B10); virus evolving on their host (D (circle) and E1-E2 (squares)) and bacteria in a novel medium (F and G); adaptation to
an environment containing pyrimethamine (I3). The black point shows the median of the prior, and the dashed line delineates the 50% higher-density
region. The points show the median of the posteriors, and the shaded areas show the 50% higher posterior density regions for the data sets.

Epistasis and Fitness Landscapes 857



seven published data sets using an elegant geometric in-
terpretation of the relationship between the epistasis and
selection coefficients. They found that Fisher’s model fits
the data poorly. However, it is not clear whether this was
due to the data itself or to the very strong assumptions on
which the analytical approach was based: the ancestral
strain was always assumed to be perfectly adapted because
it was set at the fitness optimum, and all mutations were
considered random, so the biasing effects of selection were
not accounted for.

Some of the landscapes analyzed here have been analyzed
previously with Fisher’s model or similar phenotypic land-
scapes. Martin et al. (2007) inferred the parameters of Fisher’s
model from the distribution of selection coefficients and epis-
tasis coefficients in an RNA virus (our data set E) (Sanjuán
et al. 2004). They found that the distribution of epistasis coef-
ficients is approximately normal with a variance twice that of
the variance of the distribution of selection coefficient, in
agreement with theoretical predictions from Fisher’s model,
when the ancestral strain is close to optimum (Blanquart
et al. 2014). Accordingly, we found that statistical properties
of this landscape could be reproduced by Fisher’s model, but
not its full structure. Last, the yeast deletion data set (B1–B10)
also rejected Fisher’s model, as reported previously using a
different analysis (Velenich and Gore 2013).

Several studies have attempted to fit phenotypic land-
scapes to data (Chou et al. 2011; Rokyta et al. 2011; Schenk

et al. 2013). In those studies, the underlying phenotypic ef-
fects of mutations are considered as parameters that are ex-
plicitly estimated, and the mapping of phenotypes to fitness is
defined by a function (e.g., a Gaussian or a gamma function).
This makes it easier to derive the likelihood but prevents the
use of multivariate landscapes that require a number of pa-
rameters proportional to the number of dimensions. Explicitly
estimating phenotypes of individual mutations gives interest-
ing insights in the systemwhen the underlying phenotypes are
biologically meaningful and sometimes even measurable. It is
also useful if one wants to predict the fitness of combinations
of mutations not present in the data. However, it requires
many parameters even for a simple univariate phenotypic
landscape: for example, in data set D (Rokyta et al. 2011), a
univariate-gamma landscape includes 14 parameters, while
Fisher’s model has only two, and both models perform simi-
larly in terms of Akaike’s information criterion (AIC). Fisher’s
model is a useful heuristic tomake predictions on the statistical
properties of fitness landscapes, but the precise value of the
underlying phenotypes is less interesting in such an abstract
model.

Current challenges in the analysis of genotypic
fitness landscapes

In this study, we address a number of challenges to
fit Fisher’s model to a diversity of experimental land-
scapes. But several other challenges remain to improve

Table 3 Posterior distribution of parameters and posterior predictive checks, neural-network algorithm

Reference Name n Wmax s Q
P-value

(summary)
P-value
(full)

— Prior 4 (1; 19) 1.39 (0.05; 7.39) 0.14 (0.01; 0.74) 2.25 (0.59; 3.91)
de Visser et al. (1997) A1 5.24 (0.59; 20.96) 0.14 (-0.07; 1.88) 0.15 (0.08; 0.37) 1.60 (0.42; 3.52) 0.17 0.83

A2 6.72 (1.63; 23.09) 0.34 (-0.09; 3.12) 0.12 (0.05; 0.31) 1.69 (0.66; 3.51) 0.23 0.97
Costanzo et al. (2010) B1 6.00 (1.54; 19.08) 1.01 (0.26; 3.88) 0.09 (0.04; 0.29) 1.91 (0.91; 3.75) 0.25 0

B2 3.44 (0.31; 12.82) 0.28 (0.12; 1.02) 0.09 (0.05; 0.20) 2.96 (1.64; 4.19) 0.3 0.02
B3 3.33 (0.13; 13.78) 0.40 (0.13; 1.78) 0.10 (0.06; 0.23) 2.33 (1.19; 4.36) 0.31 0.01
B4 8.28 (1.64; 24.06) 1.21 (0.04; 5.10) 0.14 (0.03; 0.48) 1.57 (0.77; 3.13) 0.16 0.06
B5 4.16 (0.89; 14.84) 0.43 (0.07; 2.37) 0.08 (0.05; 0.23) 2.17 (1.02; 4.37) 0.26 0.02
B6 3.01 (-0.72; 13.87) 0.34 (-0.05; 1.96) 0.10 (0.05; 0.29) 2.23 (1.16; 4.68) 0.24 0.01
B7 4.47 (-0.25; 15.71) 0.64 (0.12; 2.23) 0.11 (0.05; 0.33) 2.07 (0.97; 4.12) 0.14 0.02
B8 1.63 (-1.91; 12.29) 1.32 (0.32; 4.92) 0.11 (0.00; 0.48) 2.24 (1.10; 4.17) 0.02 0.01
B9 4.12 (0.48; 15.58) 0.39 (0.02; 2.38) 0.09 (0.04; 0.26) 2.12 (1.07; 4.26) 0.17 0
B10 3.46 (0.63; 15.18) 0.32 (0.07; 1.58) 0.07 (0.04; 0.20) 2.34 (1.08; 4.35) 0.06 0.01

Whitlock and Bourguet
(2000)

C1 4.92 (2.12; 13.24) 1.02 (0.58; 3.20) 0.30 (0.16; 0.66) 2.98 (1.71; 4.06) 0.05 0
C2 2.09 (0.21; 7.03) 1.10 (0.82; 2.38) 0.57 (0.39; 1.03) 2.58 (1.01; 3.57) 0.06 0

Rokyta et al. (2011) D 7.00 (2.95; 15.21) 0.46 (0.36; 0.82) 0.21 (0.15; 0.39) 2.08 (0.83; 3.82) 0.15 0.08
Sanjuán et al. (2004) E1 6.28 (1.64; 19.82) 0.19 (0.06; 0.86) 0.15 (0.07; 0.41) 1.65 (0.23; 3.79) 0.37 0.01

E2 5.28 (2.11; 12.45) 0.20 (0.09; 0.55) 0.14 (0.10; 0.25) 2.26 (1.34; 3.42) 0.16 0.03
Khan et al. (2011) F 6.62 (1.63; 22.28) 0.42 (0.21; 0.98) 0.08 (0.05; 0.19) 1.89 (0.81; 3.70) 0.43 0.03
Chou et al. (2011) G 3.65 (0.86; 15.86) 1.09 (0.73; 2.48) 0.07 (0.03; 0.21) 2.67 (1.30; 4.05) 0.42 0.43
Weinreich et al. (2006) H1 14.39 (7.25; 29.54) 12.97 (12.16; 15.73) 0.89 (0.64; 1.46) 1.40 (0.14; 2.48) 0.01 0
Tan et al. (2011) H2 13.18 (5.76; 28.86) 12.02 (10.87; 14.83) 0.46 (0.18; 1.08) 1.83 (0.81; 2.80) 0.01 0
Schenk et al. (2013) H3 4.81 (1.89; 15.30) 3.17 (1.08; 8.91) 0.30 (0.13; 0.79) 2.94 (1.53; 3.91) 0.34 0.07

H4 8.89 (5.63; 17.44) 6.24 (5.27; 7.94) 0.75 (0.51; 1.13) 1.40 (0.62; 2.15) 0 0
Lozovsky et al. (2009) I1 8.24 (3.79; 19.68) 9.20 (7.78; 14.61) 0.57 (0.26; 1.24) 2.22 (0.55; 3.51) 0.02 0
Brown et al. (2010) I2 5.16 (2.50; 13.08) 7.76 (7.41; 8.95) 0.23 (0.15; 0.37) 3.84 (3.17; 4.49) 0 0
Jiang et al. (2013) I3 1.28 (-0.58; 5.47) 2.33 (2.19; 2.71) 0.47 (0.32; 0.79) 3.70 (3.11; 4.24) 0.12 0.03

The median posterior distribution of parameters and the 2.5–97.5% quantile interval (equivalent to 95% higher posterior density) of the posterior distribution of parameters
for the rejection algorithm. The prior is shown for comparison (first row). The P-value for the test of adequacy with Fisher’s model is indicated.
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our understanding of fitness landscapes across species and
environments:

1. Modeling the effects of the protocol on the experimental fit-
ness landscape to infer properly the underling fitness land-
scape. Here selection was modeled using the SSWM
approximation, which is valid when adaptation proceeds
by successive invasions of rare beneficial mutants. This
approximation was necessary to enable the fast simula-
tions required by the ABC approach. However, in some
situations of interest in experimental evolution, multiple
beneficial mutations compete simultaneously in the pop-
ulation (clonal interference); under this regime, beneficial
mutations of larger effect tends to invade the population
(Nagel et al. 2012). Clonal interference may be important
in particular in experimental evolution (landscapes D–G).
The fitness values reported also need to be ecologically
relevant in the sense that they can be used to predict the
fate of newmutations competing with the ancestral strain.
Exponential growth rates, as reported in many studies,
fulfill this condition. But other fitness measures are more
dubious. For example, in drug-resistance landscapes, the
fitness measure is commonly the MIC. We showed in the
example of pyrimethamine resistance that the fitness
landscape was quite different when a more correct fitness

measure, the growth rate at a given drug concentration,
was used. This invites to caution when analyzing MIC
landscapes from an evolutionary perspective.

2. Fitting larger empirical landscapes. Empirical landscapes
contain little information on the parameters of their re-
spective underlying landscape. Larger data sets (Costanzo
et al. 2010; Hietpas et al. 2011; Bank et al. 2015) may
allow more accurate inference and will become much
more common in the future. Our ABC method is too com-
putationally intensive to handle such large data sets. New
theoretical developments and new statistical techniques
need to be developed. These must take into account the
potential biases inherent in the data-production proce-
dure. A likelihood approach would be ideal, but unfortu-
nately, the probability of observing a set of fitness values
under Fisher’s model is hard to compute as soon as geno-
types carry two mutations or more, let alone when muta-
tions were obtained using complex protocols. In essence,
this is because computing the probability of a fitness value
requires integration over all possible values of the unob-
served phenotypes.

3. Fitting other types of data. Other types of data may prove
more informative than empirical landscapes. For example,
Martin and Lenormand (2006) use the fitness effects of
mutations across environments to infer very precisely the

Figure 4 Posterior predictive checks on two example data sets. One data set is compatible with Fisher’s model (top row; Aspergillus data set A1), and
one rejects Fisher’s model (bottom row, data set F). (Left) The median posterior fitness against the “true” fitness of pseudodata generated under Fisher’s
model for the cross-validation showing that when the pseudodata have been generated using Fisher as the true model, the posterior fitnesses are close
to the true fitness values. (Center) Posterior predicted log-fitness as a function of the true experimental log-fitness. The points are the median posterior,
and the lines show the 2.5–97.5% interval. The color code indicates the number of mutations of each genotype, the ancestor in red being set to log-
fitness = 0. The median posterior fitnesses are very well correlated with the true fitnesses when the landscape is compatible with Fisher’s model but less
so when Fisher’s model is rejected. (Right) The median distance of pseudodata to the accepted simulations when the pseudodata are simulated under
Fisher’s model and the posterior parameters. This distribution together with the observed median distance for the experimental data (dashed line) is used
to calculate the P-value corresponding to the null hypothesis: “the underlying fitness landscape is Fisher’s model.”

Epistasis and Fitness Landscapes 859



shape of the fitness peak (i.e., our Q parameter), which
they find to be very close to Q = 2 (the Gaussian function).
Perfeito et al. (2014) show that temporal dynamics of fitness
in experimental populations allow good inference of the

underlying fitness landscape, including dimensionality,
which is very hard to infer from genotypic landscapes. Again,
new theoretical developments may reveal what type of em-
pirical data informs best on the underlying fitness landscape.

Figure 5 Empirical landscapes compared
with simulated landscapes. For each data
set, the data (left) is shown side by side
with the simulated genotypic landscape
closest to the data in terms of Euclidean
distance (center), and a typical simulated
landscape, defined as the landscape,
among all simulated landscapes retained
by the ABC framework, whose distance
to the data was closest to the median
distance. The coefficient of determination
R2 is also shown. Blue edges are benefi-
cial mutations; red edges are deleterious
mutations. Fitness values that are partic-
ularly unexpected under Fisher’s model
are marked with a triangle.
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Conclusion

We have developed a rigorous statistical framework based on
Fisher’s model to infer the properties of the underlying fitness
landscape from empirical landscapes. This framework differs
conceptually from previous approaches because it considers
an empirical landscape as a small sample in the vast space of
all possible genotypes. This new approach reveals that most
experimental protocols reconstruct small landscapes that
carry limited information on the true underlying landscape.
As a consequence, any analysis and interpretation of empir-
ical landscapes must be embedded within a proper statistical
framework that quantifies the uncertainty on the true land-
scape. Surprisingly, we find that a very broad class of pheno-
typic models that has been successful so far in interpreting
experimental data is unable to explain the structure of most
empirical fitness landscapes. Yet phenotypic models repre-
sent an interesting venue for future research because they
can represent landscapes of large dimensionality with a small
number of parameters, and they are more biologically
grounded that direct genotype fitness maps. Much larger em-
pirical landscapes will become more frequent in the future; a
model-based and statistically grounded analysis of these
large landscapes will improve our understanding of the struc-
ture of fitness landscapes across species and environments.
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Figure S1: Comparison of the prediction errors for each parameter, when all fitness 

values are used, for tolerance equal to 0.005 (used throughout the study) versus a 10 times 

smaller tolerance equal to 0.0005. Each point is one of the protocols shown in Table S2. 

Lower tolerance does not generally allow much more precise inference. 
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Figure S2: Empirical landscapes in the datasets of resistance to cefotaxime H1, H3 and 

H4, and resistance to pyrimethamine I1. For each dataset, the data (left) is shown side by 

side with the simulated genotypic landscape closest to the data in terms of Euclidean 

distance (middle), and a typical simulated landscape, defined as the landscape, among all 

simulated landscapes retained by the ABC framework, whose distance to the data was 

closest to the median distance. Blue edges are beneficial mutations, red edges are 

deleterious mutations. Fitness values that are particularly unexpected under Fisher’s model 

were marked with a triangle. Landscapes of drug resistance (H and I) strongly rejected 

Fisher’s model (p < 0.001), except the landscape of cefotaxime resistance made of 

mutations of small effects (H3, p = 0.07). The fact that mutations have relatively small 

effect on fitness in the ancestral strain, but together confer extremely high fitness, is 

unexpected under Fisher’s model. Sign epistasis with large effect mutations and far away 

from the optimum is also unexpected under Fisher’s model. 



Table S1. Summary statistics for each dataset (estimation ± standard deviation of error, when available) 

Name Mean selection Mean epistasis Std dev selection Std dev epistasis Correlation fitness-epistasis Maximal fitness 

A1 -0.188 ± 0.036 0 ± 0.019 0.056 ± 0.03 0.159 ± 0.042 -0.39 ± 0.129 0 ± 0.058 

A2 -0.161 ± 0.038 -0.013 ± 0.02 0.062 ± 0.038 0.091 ± 0.033 0 ± 0.138 0 ± 0.062 

B1 -0.078 ± 0.003 0.01 ± 0.011 0.182 ± 0.006 0.037 ± 0.007 0.02 ± 0.151 0.173 ± 0.048 

B2 -0.048 ± 0.003 -0.011 ± 0.009 0.146 ± 0.004 0.055 ± 0.008 0.189 ± 0.12 0.127 ± 0.083 

B3 -0.042 ± 0.005 0.002 ± 0.012 0.142 ± 0.01 0.042 ± 0.012 -0.106 ± 0.271 0.167 ± 0.016 

B4 -0.152 ± 0.005 -0.001 ± 0.012 0.265 ± 0.01 0.066 ± 0.013 -0.224 ± 0.153 0.108 ± 0.048 

B5 -0.021 ± 0.003 0 ± 0.008 0.115 ± 0.007 0.036 ± 0.01 -0.09 ± 0.184 0.187 ± 0.034 

B6 -0.042 ± 0.003 -0.003 ± 0.01 0.155 ± 0.007 0.042 ± 0.009 -0.2 ± 0.18 0.156 ± 0.033 

B7 -0.099 ± 0.003 -0.004 ± 0.009 0.236 ± 0.009 0.06 ± 0.008 -0.145 ± 0.189 0.112 ± 0.029 

B8 -0.13 ± 0.01 -0.008 ± 0.015 0.356 ± 0.025 0.049 ± 0.012 -0.105 ± 0.35 0.197 ± 0.023 

B9 -0.031 ± 0.003 0.001 ± 0.01 0.134 ± 0.008 0.04 ± 0.014 -0.134 ± 0.11 0.107 ± 0.063 

B10 0.001 ± 0.002 -0.005 ± 0.009 0.068 ± 0.003 0.033 ± 0.007 0.087 ± 0.137 0.146 ± 0.042 

C1 -0.111 ± 0.031 -0.509 ± 0.134 0.559 ± 0.032 0.999 ± 0.177 0.159 ± 0.193 0.739 ± 0.025 

C2 -0.296 0.271 0.848 1.37 -0.554 0.953 

D 0.205 ± 0.007 -0.272 ± 0.022 0.072 ± 0.005 0.114 ± 0.011 0.215 ± 0.102 0.394 ± 0.01 

E1 0.04 ± 0.007 -0.078 ± 0.016 0.041 ± 0.008 0.063 ± 0.008 -0.027 ± 0.172 0.11 ± 0.019 

E2 -0.11 ± 0.006 0.03 ± 0.014 0.137 ± 0.007 0.088 ± 0.01 0.153 ± 0.121 0.058 ± 0.039 

F 0.057 ± 0.004 -0.003 ± 0.002 0.059 ± 0.005 0.036 ± 0.004 -0.128 ± 0.074 0.281 ± 0.01 

G 0.197 ± 0.01 -0.022 ± 0.009 0.145 ± 0.013 0.03 ± 0.013 0.124 ± 0.24 0.66 ± 0.024 

H1 0.565 ± 0.093 0.262 ± 0.018 1.259 ± 0.046 2.173 ± 0.049 -0.423 ± 0.005 10.7 ± 0 

H2 0.877 ± 0.088 0.216 ± 0.039 0.954 ± 0.097 1.778 ± 0.08 -0.47 ± 0.025 10.4 ± 0.153 

H3 0.468 ± 0.104 -0.227 ± 0.076 0.184 ± 0.105 0.376 ± 0.106 -0.444 ± 0.116 1.12 ± 0.161 

H4 2.145 ± 0.09 -1.25 ± 0.071 0.778 ± 0.101 1.899 ± 0.138 -0.616 ± 0.041 5.4 ± 0.193 

I1 1.487 ± 0.11 -0.377 ± 0.046 1.64 ± 0.093 2.438 ± 0.081 -0.602 ± 0.031 7.01 ± 0.026 

I2 1.913 ± 0.026 0.108 ± 0.045 1.891 ± 0.024 1.143 ± 0.057 0.241 ± 0.038 6.88 ± 0.074 

I3 1.845 -0.432 0.304 1 -0.235 2.3 



Table S2: Expected prediction error under various experimental designs when the statistics are the full set of fitness values 

Experimental design Type of mutation 
Landscapes using 

this protocol 

n Wmax σ Q 

rej reg nn rej reg nn rej reg nn rej reg nn 

5 mutations, 25 genotypes 

random A, C 0.89 0.65 0.69 0.8 0.65 0.48 0.46 0.26 0.22 0.75 0.51 0.4 

independently selected - 1.12 0.68 0.67 0.42 0.27 0.21 0.38 0.2 0.14 0.73 0.39 0.2 

co-selected F 1.05 0.87 0.82 0.56 0.41 0.27 0.62 0.33 0.25 0.77 0.53 0.29 

4 mutations, 24 genotypes 

random - 0.86 0.72 0.74 0.87 0.76 0.56 0.45 0.27 0.26 0.63 0.41 0.36 

independently selected I 1.08 0.76 0.75 0.53 0.36 0.32 0.52 0.34 0.28 0.73 0.41 0.27 

co-selected G 1.11 0.89 0.81 0.61 0.41 0.29 0.69 0.49 0.36 0.83 0.56 0.32 

8 mutations, 8 single and 20 

double mutants 

random - 0.86 0.71 0.71 0.75 0.59 0.5 0.49 0.33 0.3 0.67 0.44 0.42 

independently selected - 1.19 0.88 0.78 0.6 0.45 0.37 0.54 0.34 0.33 0.91 0.94 0.59 

co-selected - 1.11 0.93 0.9 0.6 0.38 0.27 0.63 0.42 0.26 0.88 0.51 0.36 
20 mutations, up to 121 

genotypes 
random B 0.75 0.89 0.62 0.73 0.59 0.38 0.45 0.36 0.3 0.75 0.54 0.49 

9 mutations, 9 single mutants, 

18 double mutants 
independently selected D 1.09 0.75 0.76 0.58 0.36 0.24 0.5 0.27 0.25 0.74 0.75 0.48 

6 mutations, 6 single mutants, 

15 double mutants 
independently selected E 1.15 0.71 0.83 0.6 0.36 0.28 0.63 0.39 0.39 0.8 0.76 0.54 

5 mutations, 25 genotypes 
independently selected, high fitness 

combination 
H1, H2 1.1 0.72 0.61 0.27 0.18 0.11 0.75 0.37 0.29 0.55 0.26 0.14 

4 mutations, 24 genotypes 
independently selected, small fitness 

effect mutants 
H3 1.05 0.7 0.71 0.74 0.61 0.53 0.57 0.39 0.33 0.88 0.51 0.48 

4 mutations, 24 genotypes 
independently selected, large fitness 

effect mutants 
H4 1.08 0.67 0.57 0.39 0.28 0.2 0.29 0.18 0.16 0.51 0.22 0.1 

Prediction error for the four parameters of Fisher’s model, for several experimental designs (based on single and double mutants, or complete sets of 
mutations and all associated genotypes) and selection procedures (random, independently selected, co-selected mutations), when the statistics used in 
the ABC algorithm are the full set of fitness values, and not summary statistics. For each parameter, the three lowest prediction errors are in bold, 
highlighting the protocol and inference algorithms that perform best. 
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Details of the datasets 
 
All datasets used in this study were published before, but we reproduce these datasets here. 

Empirical fitness landscapes are presented as tables where each line is a genotype. The first 

columns represent the genotypes as a series of 0 and 1 denoting absence or presence of the 

mutation at each locus. The following columns are, in order, the fitness measure given in 

the reference, the standard error of this fitness measure, our log-fitness measure, defined as 

the log of the fitness of each genotype divided by the fitness of the ancestor, and finally the 

standard error of the log-fitness measure. 
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A1 
 
In A1 and A2, fitness was the rate of increase in colony radius per unit time. All radial 

growth rates were reported relative to that of the ancestor. The absolute radial growth rate 

of the ancestor was not reported. The data was originally analyzed in (de Visser et al. 1997) 

and reported in (de Visser et al. 2009), table 1. 

0 0 0 0 0 1 0.0687 0 0.0893 
1 0 0 0 0 0.878 0.0687 -0.13 0.0893 
0 1 0 0 0 0.834 0.0687 -0.181 0.0893 
0 0 1 0 0 0.87 0.0687 -0.139 0.0893 
0 0 0 1 0 0.772 0.0687 -0.258 0.0893 
0 0 0 0 1 0.793 0.0687 -0.232 0.0893 
1 1 0 0 0 0.865 0.0687 -0.145 0.0893 
1 0 1 0 0 0.854 0.0687 -0.158 0.0893 
1 0 0 1 0 0.773 0.0687 -0.257 0.0893 
1 0 0 0 1 0.873 0.0687 -0.136 0.0893 
0 1 1 0 0 0.816 0.0687 -0.204 0.0893 
0 1 0 1 0 0.716 0.0687 -0.335 0.0893 
0 1 0 0 1 0.848 0.0687 -0.165 0.0893 
0 0 1 1 0 0.778 0.0687 -0.252 0.0893 
0 0 1 0 1 0.82 0.0687 -0.198 0.0893 
0 0 0 1 1 0.972 0.0687 -0.0284 0.0893 
1 1 1 0 0 0.816 0.0687 -0.203 0.0893 
1 1 0 1 0 0.748 0.0687 -0.291 0.0893 
1 1 0 0 1 0.832 0.0687 -0.184 0.0893 
1 0 1 1 0 0.748 0.0687 -0.29 0.0893 
1 0 1 0 1 0.792 0.0687 -0.233 0.0893 
1 0 0 1 1 0.753 0.0687 -0.284 0.0893 
0 1 1 1 0 0.617 0.0687 -0.483 0.0893 
0 1 1 0 1 0.81 0.0687 -0.211 0.0893 
0 1 0 1 1 0.644 0.0687 -0.441 0.0893 
0 0 1 1 1 0.672 0.0687 -0.398 0.0893 
1 1 1 1 0 0.69 0.0687 -0.371 0.0893 
1 1 1 0 1 0.855 0.0687 -0.157 0.0893 
1 1 0 1 1 0.649 0.0687 -0.432 0.0893 
1 0 1 1 1 0.692 0.0687 -0.369 0.0893 
0 1 1 1 1 0.644 0.0687 -0.441 0.0893 
1 1 1 1 1 0.645 0.0687 -0.439 0.0893 
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A2 
 
0 0 0 0 0 1 0.0687 0 0.0893 
1 0 0 0 0 0.878 0.0687 -0.13 0.0893 
0 1 0 0 0 0.834 0.0687 -0.181 0.0893 
0 0 1 0 0 0.87 0.0687 -0.139 0.0893 
0 0 0 1 0 0.908 0.0687 -0.096 0.0893 
0 0 0 0 1 0.772 0.0687 -0.258 0.0893 
1 1 0 0 0 0.865 0.0687 -0.145 0.0893 
1 0 1 0 0 0.854 0.0687 -0.158 0.0893 
1 0 0 1 0 0.924 0.0687 -0.0796 0.0893 
1 0 0 0 1 0.773 0.0687 -0.257 0.0893 
0 1 1 0 0 0.816 0.0687 -0.204 0.0893 
0 1 0 1 0 0.852 0.0687 -0.16 0.0893 
0 1 0 0 1 0.716 0.0687 -0.335 0.0893 
0 0 1 1 0 0.855 0.0687 -0.157 0.0893 
0 0 1 0 1 0.778 0.0687 -0.252 0.0893 
0 0 0 1 1 0.784 0.0687 -0.243 0.0893 
1 1 1 0 0 0.816 0.0687 -0.203 0.0893 
1 1 0 1 0 0.878 0.0687 -0.13 0.0893 
1 1 0 0 1 0.748 0.0687 -0.291 0.0893 
1 0 1 1 0 0.942 0.0687 -0.0603 0.0893 
1 0 1 0 1 0.748 0.0687 -0.29 0.0893 
1 0 0 1 1 0.795 0.0687 -0.229 0.0893 
0 1 1 1 0 0.858 0.0687 -0.153 0.0893 
0 1 1 0 1 0.617 0.0687 -0.483 0.0893 
0 1 0 1 1 0.724 0.0687 -0.323 0.0893 
0 0 1 1 1 0.745 0.0687 -0.294 0.0893 
1 1 1 1 0 0.825 0.0687 -0.192 0.0893 
1 1 1 0 1 0.69 0.0687 -0.371 0.0893 
1 1 0 1 1 0.665 0.0687 -0.408 0.0893 
1 0 1 1 1 0.686 0.0687 -0.376 0.0893 
0 1 1 1 1 0.64 0.0687 -0.446 0.0893 
1 1 1 1 1 0.622 0.0687 -0.474 0.0893 

 

Each fitness was measured twice, allowing us to estimate the standard error of fitness 

measurements. There was no indication that measurement error systematically varied with 

the magnitude of fitness values. Therefore, we used a single measurement error, estimated 

at 0.097. This means each fitness value calculated as the average fitness over the two 

replicates was associated with a measurement error of 𝜎𝑒𝑟𝑟𝑜𝑟 = 0.097/√2 ≈  0.069. To 

calculate the standard error on the log scale, we first computed 95% lower and upper 

bounds on the fitness values as 𝑊 ± 2𝜎𝑒𝑟𝑟𝑜𝑟 , which is a good approximation when the 

error is approximately normally distributed. Then we log-transformed these lower and 

upper bounds, and computed back the error standard deviation on the log scale as the 



 4 

difference between upper and lower bound divided by 4. This gave an estimated 

measurement error on the log scale of 𝜎𝑒𝑟𝑟𝑜𝑟
𝑙𝑜𝑔

= 0.0893. 

 
B1-B10 
 
These landscapes represent 10 random sub-samples of a large dataset (Costanzo et al. 

2010). The full dataset is available at http://drygin.ccbr.utoronto.ca/~costanzo2009/ 

The fitness measure was the increase in colony size per unit time, relative to the ancestral 

strain. The absolute growth rate of the ancestor was not reported. Each sub-sample 

included 20 mutations and 121 genotypes (ancestral strain, 20 single mutants, and 100 

double mutants). Sub-samples were generated using a custom R code available upon 

request. 

A standard error was reported for each fitness value. We transformed these into standard 

error on the log scale using the same procedure as described above for A1 and A2 

landscapes. 

C1 
 
The fitness measures were productivity (for C1), which is the number of adult offspring of 

the strain (thus, it combines fecundity and offspring survival) and mating success (for C2). 

Both measures were taken in competition with a reference D. melanogaster strain carrying a 

visible mutation, and the resulting number of offspring (or number of matings) was divided 

by the corresponding number for the control strain. The data is available in (Whitlock & 

Bourguet 2000), Table 1 (the log fitness is reported). 

The error attached to each fitness measure was not reported but we estimated roughly 

standard error for the productivity assay. For this assay, there were on average 52.5 

replicates, each of them including three mated females of the genotype of interest in 

competition with three mated females of the reference strain. Assuming the number of 

offspring of each mated female is Poisson distributed, simulations show that the standard 

http://drygin.ccbr.utoronto.ca/~costanzo2009/
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deviation of the fitness measure (the total number of offspring of the 157 tested females 

divided by the total number of offspring of the 157 reference females) was between 0.02 

and 0.06 depending on the average of the Poisson distribution (allowed to vary between 3 

to 20). We chose 0.04 as a rough estimate of the standard error of the productivity fitness 

measure. We were unable to perform a similar calculation for mating success, as the 

number of replicates was not reported for this assay. 

0 0 0 0 0 0.793 0.04 0 0.0506 
1 0 0 0 0 0.427 0.04 -0.618 0.0947 
0 1 0 0 0 0.732 0.04 -0.08 0.0549 
0 0 1 0 0 0.807 0.04 0.018 0.0497 
0 0 0 1 0 0.429 0.04 -0.615 0.0944 
0 0 0 0 1 1.66 0.04 0.739 0.0241 
1 1 0 0 0 0.788 0.04 -0.006 0.0509 
1 0 1 0 0 0.613 0.04 -0.258 0.0657 
1 0 0 1 0 0.357 0.04 -0.798 0.114 
1 0 0 0 1 1.26 0.04 0.464 0.0318 
0 1 1 0 0 0.38 0.04 -0.736 0.107 
0 1 0 1 0 0.262 0.04 -1.11 0.157 
0 1 0 0 1 0.967 0.04 0.198 0.0415 
0 0 1 1 0 0.23 0.04 -1.24 0.182 
0 0 1 0 1 0.478 0.04 -0.507 0.0846 
0 0 0 1 1 1.24 0.04 0.45 0.0322 
1 1 1 0 0 0.491 0.04 -0.48 0.0823 
1 1 0 1 0 0.162 0.04 -1.59 0.271 
1 1 0 0 1 0.589 0.04 -0.297 0.0683 
1 0 1 1 0 0.456 0.04 -0.554 0.0887 
1 0 1 0 1 0.823 0.04 0.037 0.0488 
1 0 0 1 1 0.527 0.04 -0.409 0.0765 
0 1 1 1 0 0.143 0.04 -1.71 0.316 
0 1 1 0 1 0.954 0.04 0.185 0.042 
0 1 0 1 1 1.03 0.04 0.258 0.039 
0 0 1 1 1 0.274 0.04 -1.06 0.151 
1 1 1 1 0 0.0866 0.04 -2.21 0.806 
1 1 1 0 1 0.139 0.04 -1.74 0.328 
1 1 0 1 1 0.307 0.04 -0.948 0.133 
1 0 1 1 1 0.359 0.04 -0.792 0.113 
0 1 1 1 1 0.156 0.04 -1.62 0.283 
1 1 1 1 1 0.0105 0.04 -4.33 1.13 
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C2 
 
Two genotypes had zero mating success and we subsequently excluded them from the 

analysis. 

0 0 0 0 0 1.82 0 0 0 
1 0 0 0 0 4.72 0 0.953 0 
0 1 0 0 0 1.2 0 -0.416 0 
0 0 1 0 0 1.13 0 -0.48 0 
0 0 0 1 0 0.444 0 -1.41 0 
0 0 0 0 1 1.6 0 -0.128 0 
1 1 0 0 0 0.791 0 -0.832 0 
1 0 1 0 0 3.42 0 0.631 0 
1 0 0 1 0 0.47 0 -1.35 0 
1 0 0 0 1 1.17 0 -0.444 0 
0 1 1 0 0 0.0625 0 -3.37 0 
0 1 0 1 0 0.0612 0 -3.39 0 
0 1 0 0 1 1 0 -0.598 0 
0 0 1 1 0 0.211 0 -2.16 0 
0 0 1 0 1 0.444 0 -1.41 0 
0 0 0 1 1 0.357 0 -1.63 0 
1 1 1 0 0 0.316 0 -1.75 0 
1 1 0 1 0 0.0953 0 -2.95 0 
1 1 0 0 1 1.33 0 -0.31 0 
1 0 1 1 0 0.222 0 -2.1 0 
1 0 1 0 1 0.394 0 -1.53 0 
1 0 0 1 1 0.4 0 -1.51 0 
0 1 1 1 0 0.363 0 -1.61 0 
0 1 0 1 1 0.261 0 -1.94 0 
0 0 1 1 1 0.115 0 -2.76 0 
1 1 1 1 0 0.125 0 -2.68 0 
1 1 1 0 1 0.313 0 -1.76 0 
1 1 0 1 1 0.1 0 -2.9 0 
1 0 1 1 1 0.333 0 -1.7 0 
1 1 1 1 1 0.25 0 -1.98 0 
 

D 
 
Data is available in (Rokyta et al. 2011), Table 3. The fitness measure was the growth rate of 

the phage population on E. coli strain (log2 increase in the phage population, per hour). 

Standard errors were reported, and we converted these to standard errors on the log-scale 

using the procedure outline above. In this case, because the growth rate of the ancestor was 

reported, we could have computed the log-fitness as (𝑟𝑚 − 𝑟0)/𝑟0 . However, we used 

log[𝑟𝑚/𝑟0] because both values were almost identical. 
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0 0 0 0 0 0 0 0 0 15.2 0.2 0 0.0132 
1 0 0 0 0 0 0 0 0 19.1 0.19 0.228 0.00996 
0 1 0 0 0 0 0 0 0 19.3 0.43 0.242 0.0222 
0 0 1 0 0 0 0 0 0 19.4 0.56 0.243 0.029 
0 0 0 1 0 0 0 0 0 18.6 0.49 0.204 0.0263 
0 0 0 0 1 0 0 0 0 16.8 0.36 0.104 0.0214 
0 0 0 0 0 1 0 0 0 18.6 0.37 0.202 0.0199 
0 0 0 0 0 0 1 0 0 21 0.26 0.325 0.0124 
0 0 0 0 0 0 0 1 0 18.6 0.42 0.204 0.0226 
0 0 0 0 0 0 0 0 1 16.6 0.28 0.0894 0.0169 
1 1 0 0 0 0 0 0 0 18.7 0.25 0.206 0.0134 
1 0 0 1 0 0 0 0 0 18.8 0.37 0.215 0.0197 
1 0 0 0 0 1 0 0 0 18.1 0.56 0.174 0.031 
1 0 0 0 0 0 1 0 0 22.5 0.25 0.394 0.0111 
1 0 0 0 0 0 0 1 0 20.3 0.29 0.29 0.0143 
0 1 0 1 0 0 0 0 0 17.8 0.33 0.158 0.0186 
0 1 0 0 1 0 0 0 0 15.6 0.53 0.026 0.0341 
0 1 0 0 0 0 1 0 0 17.3 0.54 0.131 0.0312 
0 1 0 0 0 0 0 1 0 19.5 0.43 0.249 0.0221 
0 1 0 0 0 0 0 0 1 16.5 0.48 0.0846 0.0291 
0 0 1 1 0 0 0 0 0 17.5 0.36 0.143 0.0206 
0 0 1 0 1 0 0 0 0 11.6 0.47 -0.272 0.0407 
0 0 1 0 0 0 0 1 0 19.5 0.28 0.25 0.0144 
0 0 0 1 0 1 0 0 0 19.3 0.31 0.24 0.0161 
0 0 0 1 0 0 0 1 0 18.5 0.43 0.197 0.0233 
0 0 0 1 0 0 0 0 1 15.4 0.34 0.0144 0.0221 
0 0 0 0 1 0 0 1 0 16.5 0.44 0.0858 0.0266 
0 0 0 0 1 0 0 0 1 12.7 0.35 -0.175 0.0275 

 
E1 
 
Data available in (Sanjuán et al. 2004), supplementary table 1. The fitness measure was the 

growth rate of the mutant relative to the ancestral strain. The absolute growth rate of the 

ancestor was not reported. Standard errors were reported, and we converted them to 

standard errors on the log-scale using the procedure outlined above. 

0 0 0 0 0 0 1 0 0 0 
1 0 0 0 0 0 1.01 0.015 0.0129 0.0148 
0 1 0 0 0 0 1 0.014 0 0.014 
0 0 1 0 0 0 1.01 0.025 0.0139 0.0247 
0 0 0 1 0 0 1.03 0.016 0.0296 0.0155 
0 0 0 0 1 0 1.1 0.022 0.0953 0.02 
0 0 0 0 0 1 1.09 0.028 0.088 0.0257 
1 1 0 0 0 0 0.936 0.016 -0.0661 0.0171 
1 0 1 0 0 0 0.885 0.016 -0.122 0.0181 
1 0 0 1 0 0 0.92 0.012 -0.0834 0.013 
1 0 0 0 1 0 1.03 0.015 0.0257 0.0146 
1 0 0 0 0 1 0.978 0.009 -0.0222 0.0092 
0 1 1 0 0 0 0.93 0.013 -0.0726 0.014 
0 1 0 1 0 0 0.998 0.013 -0.002 0.013 
0 1 0 0 1 0 0.942 0.014 -0.0598 0.0149 
0 1 0 0 0 1 1.06 0.02 0.0611 0.0188 
0 0 1 1 0 0 1.06 0.017 0.062 0.016 
0 0 1 0 1 0 1.09 0.031 0.0871 0.0284 
0 0 1 0 0 1 1.08 0.024 0.0788 0.0222 
0 0 0 1 1 0 0.928 0.012 -0.0747 0.0129 
0 0 0 1 0 1 1.11 0.031 0.106 0.0279 
0 0 0 0 1 1 1.12 0.026 0.11 0.0233 

E2 
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Data available in (Sanjuán et al. 2004), supplementary table 1. Fitness measure and standard 

errors as for E1. The table, including 28 mutation and 76 fitness values, is too large to show 

here, but is available upon request. 

F 

Data available in (Khan et al. 2011), supplementary table S2. Fitness was the growth rate of 

the strain relative to that of the ancestor, measured in a direct competition assay. The 

absolute growth rate of the ancestor was not reported. 95% confidence intervals were 

reported, and we used this information to get an approximate standard error on the fitness 

scale and on the log-fitness scale. 

0 0 0 0 0 0.997 0.005 0 0.00502 
1 0 0 0 0 1.01 0.0065 0.0149 0.00642 
0 1 0 0 0 1.14 0.0115 0.136 0.0101 
0 0 1 0 0 1.1 0.0085 0.103 0.00769 
0 0 0 1 0 1.03 0.008 0.0296 0.00779 
0 0 0 0 1 1 0.0065 0.003 0.0065 
1 1 0 0 0 1.1 0.009 0.101 0.00816 
1 0 1 0 0 1.12 0.0095 0.115 0.0085 
1 0 0 1 0 1.05 0.0065 0.0489 0.00621 
1 0 0 0 1 1.02 0.009 0.0248 0.00881 
0 1 1 0 0 1.2 0.0105 0.189 0.00871 
0 1 0 1 0 1.15 0.0075 0.142 0.00653 
0 1 0 0 1 1.19 0.0115 0.179 0.00964 
0 0 1 1 0 1.12 0.006 0.12 0.00534 
0 0 1 0 1 1.18 0.0115 0.173 0.00971 
0 0 0 1 1 1.08 0.0135 0.0753 0.0126 
1 1 1 0 0 1.2 0.0105 0.183 0.00877 
1 1 0 1 0 1.16 0.0125 0.15 0.0108 
1 1 0 0 1 1.19 0.012 0.176 0.0101 
1 0 1 1 0 1.12 0.0135 0.12 0.012 
1 0 1 0 1 1.2 0.0105 0.189 0.00872 
1 0 0 1 1 1.13 0.01 0.122 0.00888 
0 1 1 1 0 1.2 0.0155 0.186 0.0129 
0 1 1 0 1 1.28 0.014 0.25 0.0109 
0 1 0 1 1 1.22 0.0195 0.199 0.016 
0 0 1 1 1 1.19 0.012 0.174 0.0101 
1 1 1 1 0 1.23 0.0105 0.208 0.00855 
1 1 1 0 1 1.28 0.0195 0.248 0.0153 
1 1 0 1 1 1.19 0.015 0.177 0.0126 
1 0 1 1 1 1.21 0.008 0.195 0.0066 
0 1 1 1 1 1.3 0.0155 0.265 0.0119 
1 1 1 1 1 1.32 0.0155 0.281 0.0117 
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G 
 
Data available in (Chou et al. 2011), figure 1. The fitness measure was the growth rate 

relative to the ancestral strain, measured in a competition assay. The absolute growth rate of 

the ancestor was not reported. Standard errors for the fitness of genotypes in the fitness 

landscape were not reported. However, the standard errors of fitness measurement were 

reported for a set of strains isolated at several generations and in several replicates of the 

evolution experiment (supplementary table 1), allowing us to estimate the magnitude of 

error for fitness measurements done in this study. There was a significant positive 

correlation between the fitness value and its standard error. We described this correlation 

with a linear model, which we then used to compute the predicted standard error for each 

fitness value in the fitness landscape. 

 

0 0 0 0 1 0.0203 0 0.0203 
0 0 0 1 1.17 0.0247 0.154 0.0212 
0 1 0 0 1.1 0.0228 0.0917 0.0208 
1 0 0 0 1.14 0.024 0.133 0.0211 
0 0 1 0 1.51 0.0338 0.411 0.0224 
1 0 1 0 1.62 0.0368 0.484 0.0227 
0 1 1 0 1.61 0.0366 0.479 0.0227 
1 1 0 0 1.28 0.0277 0.248 0.0217 
0 0 1 1 1.64 0.0372 0.494 0.0227 
1 0 0 1 1.32 0.0288 0.278 0.0218 
0 1 0 1 1.3 0.0282 0.262 0.0217 
1 1 1 0 1.75 0.0402 0.561 0.023 
1 0 1 1 1.78 0.0411 0.579 0.023 
0 1 1 1 1.81 0.0418 0.594 0.0231 
1 1 0 1 1.44 0.0318 0.361 0.0222 
1 1 1 1 1.94 0.0451 0.66 0.0233 

 

H1 

 
The fitness measure was resistance to cefotaxime quantified by Minimum Inhibitory 

Concentration expressed in μg/mL and is available in (Weinreich et al. 2006), 

supplementary information, table S1. Three replicate measurements were done, from which 

we could calculate the average MIC and standard errors. Standard errors were converted to 

the log scale using the procedure outline above. Note that in that case standard errors were 
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often 0, as they did not include the error due to the fact that the assay can only give a 

discrete number of MIC values. 

0 0 0 0 0 0.088 0 0 0 
0 0 0 0 1 1.4 0 2.77 0 
0 0 0 1 0 0.063 0.0144 -0.334 0.248 
0 0 0 1 1 32 0 5.9 0 
0 0 1 0 0 0.13 0.0461 0.39 0.442 
0 0 1 0 1 360 0 8.32 0 
0 0 1 1 0 0.18 0.0289 0.716 0.166 
0 0 1 1 1 360 0 8.32 0 
0 1 0 0 0 0.088 0 0 0 
0 1 0 0 1 23 0 5.57 0 
0 1 0 1 0 1.4 0 2.77 0 
0 1 0 1 1 360 0 8.32 0 
0 1 1 0 0 1.4 0 2.77 0 
0 1 1 0 1 2100 0 10.1 0 
0 1 1 1 0 0.71 0.167 2.09 0.256 
0 1 1 1 1 2900 0 10.4 0 
1 0 0 0 0 0.088 0 0 0 
1 0 0 0 1 1.4 0 2.77 0 
1 0 0 1 0 0.088 0 0 0 
1 0 0 1 1 360 0 8.32 0 
1 0 1 0 0 0.18 0 0.716 0 
1 0 1 0 1 360 0 8.32 0 
1 0 1 1 0 0.18 0 0.716 0 
1 0 1 1 1 2100 0 10.1 0 
1 1 0 0 0 0.088 0 0 0 
1 1 0 0 1 360 0 8.32 0 
1 1 0 1 0 0.088 0 0 0 
1 1 0 1 1 360 0 8.32 0 
1 1 1 0 0 2 0.702 3.12 0.436 
1 1 1 0 1 1500 346 9.74 0.25 
1 1 1 1 0 1.4 0 2.77 0 
1 1 1 1 1 4100 0 10.7 0 

 
H2 

 
The fitness measure is mean resistance to cefotaxime quantified by Minimum Inhibitory 

Concentration expressed in μg/mL. and is available in (Tan et al. 2011), supplementary 

information, table 1 (reported in logarithm base √2). The standard errors of MIC were 

reported; in that dataset, the error included both measurement error and the error due to 

the fact that the assay can only give a discrete number of MIC values. Because errors were 

reported on the log scale (base √2), we directly calculated the error on our (natural) log 

scale.  
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0 0 0 0 0 0.0625 - 0 0.173 
0 0 0 0 1 0.793 - 2.54 0.208 
0 0 0 1 0 0.0701 - 0.114 0.208 
0 0 0 1 1 80.7 - 7.16 0.208 
0 0 1 0 0 0.125 - 0.693 0.173 
0 0 1 0 1 161 - 7.86 0.208 
0 0 1 1 0 0.158 - 0.925 0.208 
0 0 1 1 1 1020 - 9.7 0.173 
0 1 0 0 0 0.111 - 0.579 0.208 
0 1 0 0 1 101 - 7.39 0.208 
0 1 0 1 0 0.0788 - 0.232 0.208 
0 1 0 1 1 181 - 7.97 0.173 
0 1 1 0 0 1.12 - 2.89 0.208 
0 1 1 0 1 1020 - 9.7 0.173 
0 1 1 1 0 0.631 - 2.31 0.208 
0 1 1 1 1 1450 - 10.1 0.173 
1 0 0 0 0 0.0991 - 0.461 0.208 
1 0 0 0 1 1.12 - 2.89 0.208 
1 0 0 1 0 0.0701 - 0.114 0.208 
1 0 0 1 1 128 - 7.62 0.173 
1 0 1 0 0 0.25 - 1.39 0.173 
1 0 1 0 1 181 - 7.97 0.173 
1 0 1 1 0 0.198 - 1.15 0.208 
1 0 1 1 1 1020 - 9.7 0.173 
1 1 0 0 0 0.0701 - 0.114 0.208 
1 1 0 0 1 181 - 7.97 0.173 
1 1 0 1 0 0.0701 - 0.114 0.208 
1 1 0 1 1 203 - 8.09 0.208 
1 1 1 0 0 1.78 - 3.35 0.208 
1 1 1 0 1 1150 - 9.82 0.208 
1 1 1 1 0 1.78 - 3.35 0.208 
1 1 1 1 1 2050 - 10.4 0.173 

 

H3 

 
For datasets H3 and H4 the fitness measure was cefotaxime resistance, measured as 

IC99,99. The dataset is available in (Schenk et al. 2013) supplementary information, 

supplementary table 1 (H4, large effect mutations) and supplementary table 2 (H3, small 

effect mutations). Standard errors were not reported, but because the assay is very similar to 

that used for H1 and H2 landscapes, we chose an error of the same order of magnitude as 

the one in H2, 𝜎𝑒𝑟𝑟𝑜𝑟
𝑙𝑜𝑔

= 0.2.  
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0 0 0 0 0.053 - 0 0.2 
1 0 0 1 0.045 - -0.164 0.2 
1 0 1 1 0.05 - -0.0583 0.2 
1 1 1 1 0.063 - 0.173 0.2 
1 1 0 1 0.069 - 0.264 0.2 
0 1 0 0 0.069 - 0.264 0.2 
1 0 0 0 0.077 - 0.374 0.2 
1 1 0 0 0.08 - 0.412 0.2 
0 0 1 1 0.086 - 0.484 0.2 
1 0 1 0 0.092 - 0.551 0.2 
0 0 0 1 0.093 - 0.562 0.2 
0 0 1 0 0.104 - 0.674 0.2 
1 1 1 0 0.118 - 0.8 0.2 
0 1 0 1 0.123 - 0.842 0.2 
0 1 1 1 0.138 - 0.957 0.2 
0 1 1 0 0.163 - 1.12 0.2 

 
H4 

 
0 0 0 0 0.053 - 0 0.2 
0 1 0 1 0.099 - 0.625 0.2 
1 1 1 1 0.128 - 0.882 0.2 
1 0 0 0 0.183 - 1.24 0.2 
0 1 1 0 0.205 - 1.35 0.2 
1 1 0 1 0.217 - 1.41 0.2 
0 1 1 1 0.28 - 1.66 0.2 
0 1 0 0 0.424 - 2.08 0.2 
0 0 0 1 0.441 - 2.12 0.2 
0 0 1 1 0.886 - 2.82 0.2 
1 0 0 1 1.2 - 3.12 0.2 
0 0 1 0 1.22 - 3.14 0.2 
1 1 1 0 1.88 - 3.57 0.2 
1 0 1 1 1.91 - 3.58 0.2 
1 1 0 0 4.01 - 4.33 0.2 
1 0 1 0 11.7 - 5.4 0.2 

 
I1 

 
In this dataset the fitness measure was pyrimethamine resistance, measured as IC50. IC50 is 

the pyrimethamine concentration (expressed in μg/mL) at which the strain’s growth rate is 

50% that achieved in the absence of pyrimethamine and correlated very well with Minimum 

Inhibitory Concentration. The dataset is available in (Lozovsky et al. 2009), supplementary 

information, supplementary table 1. Standard deviations of IC50 were reported. 
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0 0 0 0 0.27 0.04 0 0.153 
1 0 0 0 0.36 0.03 0.288 0.0841 
0 1 0 0 2.04 0.65 2.02 0.377 
0 0 1 0 9.56 0.95 3.57 0.101 
0 0 0 1 0.29 0.05 0.0715 0.18 
1 1 0 0 4.89 0.8 2.9 0.17 
1 0 1 0 37.7 0.58 4.94 0.0154 
1 0 0 1 103 1.53 5.94 0.0149 
0 1 1 0 147 3.79 6.3 0.0258 
0 1 0 1 7.28 0.37 3.29 0.051 
0 0 1 1 0 0 -Inf - 
1 1 1 0 242 8.47 6.8 0.035 
1 1 0 1 56 1.73 5.33 0.0309 
1 0 1 1 56.8 0.77 5.35 0.0136 
0 1 1 1 195 10 6.58 0.0517 
1 1 1 1 300 7.46 7.01 0.0249 

 
I2 

 
In this dataset the fitness measure was pyrimethamine resistance, measured as IC50, here 

expressed in mol/L. The dataset is available in (Brown et al. 2010), supplementary 

information, supplementary table 3 (the log10(IC50) is reported). Because our framework 

includes only diallelic loci, we removed genotypes with the third allele. Standard errors were 

reported on the log10 scale, so we directly converted them to standard errors on our 

(natural) log scale. 

0 0 0 0 0 5.17e-07 - 0 0.121 
0 0 0 0 1 1.54e-06 - 1.09 0.0302 
0 0 0 1 0 5.77e-05 - 4.71 0.0322 
0 0 1 0 0 9e-07  - 0.553 0.0813 
0 0 1 0 1 1.68e-06 - 1.18 0.0442 
0 0 1 1 0 0.000185 - 5.88 0.0566 
0 0 1 1 1 0.000282 - 6.3 0.0762 
0 1 0 0 0 1.89e-06 - 1.3 0.0659 
0 1 0 0 1 3.23e-06 - 1.83 0.0691 
0 1 0 1 0 9.66e-05 - 5.23 0.0396 
0 1 0 1 1 2.51e-05 - 3.88 0.0762 
0 1 1 0 0 1.69e-06 - 1.18 0.0636 
0 1 1 0 1 2.38e-06 - 1.52 0.0792 
0 1 1 1 0 0.000259 - 6.21 0.267 
0 1 1 1 1 0.000501 - 6.88 0.0762 
1 0 1 0 1 2.15e-06 - 1.42 0.0739 
1 1 1 0 0 6.74e-07 - 0.265 0.177 

 
I3 
 
This dataset included mutations conferring pyrimethamine resistance, analogous to those 

studied in I1 and I2. The measure of fitness was the growth rate of a yeast transformed 

with Plasmodium vivax DHFR gene, in the presence of 1 μmol/L of pyrimethamine (Jiang et 
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al. 2013). Data was extracted from fig. 2, and the identity of genotypes was deduced from 

their IC50 presented in fig. 1. We were unable to compute standard errors for these fitness 

measures. Here, because the absolute value of 𝑟0 was given, we computed fitness as (𝑟𝑚 −

𝑟0)/𝑟0. Indeed, selection was sufficiently strong in that case that using log[𝑟𝑚/𝑟0] as an 

approximation would give an incorrect fitness measure. 

 

0 0 0 0 0.0122 - 0 - 
0 0 1 1 0.0219 - 0.788 - 
1 0 1 1 0.0267 - 1.18 - 
0 0 0 1 0.0306 - 1.5 - 
0 1 0 0 0.0329 - 1.69 - 
1 1 0 0 0.035 - 1.86 - 
1 1 1 1 0.0371 - 2.03 - 
0 0 1 0 0.0371 - 2.03 - 
0 1 0 1 0.0376 - 2.08 - 
1 0 1 0 0.0381 - 2.11 - 
1 0 0 0 0.0386 - 2.16 - 
0 1 1 1 0.0392 - 2.2 - 
1 0 0 1 0.0392 - 2.2 - 
0 1 1 0 0.0396 - 2.24 - 
1 1 0 1 0.0401 - 2.28 - 
1 1 1 0 0.0403 - 2.3 - 
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