Table 1. Significant LRTs for a subset of sites having experienced an episodic alteration of selection pressure.
Gene | 2δl | P | q | pi | ωi |
---|---|---|---|---|---|
H1: Great Ape | |||||
LRT-1: model A (ωFG = 1) vs. model A (ωFG > 1) | |||||
None | N.A. | N.A. | N.A. | N.A. | N.A. |
LRT-2: M3(k = 2) vs. model B | |||||
NR0B2 | 7.07 | 0.0292 | 0.7012 | PFG(a+b) = (0.35 + 0.65) | ωFG = 0.0 |
p1 = 0.00 | ω1 = 0.59 | ||||
p0 = 0.00 | ω0 = 0.05 | ||||
H2: Human–Chimpanzee | |||||
LRT-1: model A (ωFG = 1) vs. model A (ωFG > 1) | |||||
None | N.A. | N.A. | N.A. | N.A. | N.A. |
LRT-2: M3(k = 2) vs. model B | |||||
None | N.A. | N.A. | N.A. | N.A. | N.A. |
H3: Human | |||||
LRT-1: model A (ωFG = 1) vs. model A (ωFG > 1) | |||||
NR1D1 | 10.27 | 0.0013 | 0.0650 | PFG(a+b) = 0.002 | ωFG = 99 |
p1 = 0.05 | [ω1 = 1] | ||||
p0 = 0.95 | ω0 = 0.04 | ||||
LRT-2: M3 (k = 2) vs. model B | |||||
NR1D1 | 15.25 | 0.0005 | 0.0234 | PFG(a+b) = 0.01 | ωFG = 99 |
P1 = 0.05 | ω1 = 0.86 | ||||
p0 = 0.94 | ω0 = 0.04 | ||||
PPARG | 9.71 | 0.0077 | 0.1867 | PFG(a+b) = 0.01 | ωFG = 35 |
p1 = 0.11 | ω1 = 0.46 | ||||
p0 = 0.88 | ω0 = 0.0 | ||||
NR2C1 | 8.70 | 0.0129 | 0.2063 | PFG(a+b) = (0.24 + 0.76) | ωFG = 99 |
p1 = 0.00 | ω1 = 0.33 | ||||
p0 = 0.00 | ω0 = 0.02 | ||||
PGR | 7.67 | 0.0215 | 0.2586 | PFG(a+b) = (0.12+0.05) | ωFG = 6.23 |
p1 = 0.24 | ω1 = 0.58 | ||||
p0 = 0.59 | ω0 = 0.05 |
Genes having a q-value of <0.05 are shown in boldface type. The foreground (FG) branches are fully specified for each hypothesis in Figure 2. The null model for all LRTs assumes homogenous selection pressure for all branches (ωBG = ωFG). LRT-1 has d.f. = 1. LRT-2 has d.f. = 2. The q-value is the expected proportion of false discoveries expected if the single-test P-value is used as the boundary to control the FDR. The parameter PFG(a+b) represents the proportion of sites subject to a change in selection intensity.