INVESTIGATION

Background Selection in Partially
Selfing Populations

Denis Roze'
Centre National de la Recherche Scientifique, Unité Mixte Internationale 3614, Evolutionary Biology and Ecology of Algae, and
Sorbonne Universités, Université Pierre et Marie Curie Université Paris VI, 29688 Roscoff, France

ABSTRACT Self-fertilizing species often present lower levels of neutral polymorphism than their outcrossing relatives. Indeed, selfing
automatically increases the rate of coalescence per generation, but also enhances the effects of background selection and genetic
hitchhiking by reducing the efficiency of recombination. Approximations for the effect of background selection in partially selfing
populations have been derived previously, assuming tight linkage between deleterious alleles and neutral loci. However, loosely linked
deleterious mutations may have important effects on neutral diversity in highly selfing populations. In this article, | use a general
method based on multilocus population genetics theory to express the effect of a deleterious allele on diversity at a linked neutral locus
in terms of moments of genetic associations between loci. Expressions for these genetic moments at equilibrium are then computed for
arbitrary rates of selfing and recombination. An extrapolation of the results to the case where deleterious alleles segregate at multiple
loci is checked using individual-based simulations. At high selfing rates, the tight linkage approximation underestimates the effect of
background selection in genomes with moderate to high map length; however, another simple approximation can be obtained for this

situation and provides accurate predictions as long as the deleterious mutation rate is not too high.
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NDERSTANDING the evolutionary consequences of tran-

sitions between reproductive systems has been the focus
of an important number of theoretical and empirical studies.
In particular, the shift from biparental sexual reproduction to
self-fertilization has occurred frequently in plants and animals
(Goodwillie et al. 2005; Jarne and Auld 2006), but the phy-
logenetic distribution of selfing lineages suggests that these
are often relatively short-lived and may thus correspond to an
“evolutionary dead end” or “blind alley” (e.g., Stebbins 1957;
Williams 1992; Takebayashi and Morrell 2001; Goldberg
et al. 2010; Igic and Busch 2013). A possible reason for the
lack of macroevolutionary success of selfing species may be
their reduced capacity to produce novel genotypes (in partic-
ular, genotypes adapted to new environmental conditions),
due to a reduced efficiency of recombination. Furthermore,
self-fertilization lowers the effective size of populations and
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should thereby decrease the efficiency of natural selection
against deleterious alleles, which may lead to mutation accu-
mulation and population extinction (Lynch et al. 1995;
Schultz and Lynch 1997). Analyses based on molecular data
show little evidence for increased ratios of nonsynonymous to
synonymous substitutions (dy/ds) in selfing lineages that
would indicate a reduced efficiency of purifying selection
(Glémin and Muyle 2014; Hartfield 2015 and references
therein): this may be due to the recent origin of those lineages
or to the low rates of outcrossing maintained by most pre-
dominantly selfing species (Wright et al. 2013). However,
several recent studies showed elevated ratios of nonsynony-
mous to synonymous polymorphism (7ry /) in various self-
ing species (compared with their outcrossing relatives),
suggesting that deleterious alleles may reach higher frequen-
cies in selfers (e.g., Brandvain et al. 2013; Burgarella et al.
2015; and other references listed in table 1 of Hartfield 2015).

The lower effective size of selfing populations has been
demonstrated empirically using neutral diversity data from a
variety of species (e.g., Charlesworth 2003; Glémin et al.
2006) and is thought to result from two types of effects.
The first type is an automatic increase in the rate of coalescence
per generation, since the ancestral lineages of the two
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homologous copies of a gene in an individual may coalesce in
a single generation (with probability 1/2) if this individual
has been produced by selfing. Due to this effect, the effective
population size is given by N. = N/(1 + F) (Pollak 1987,
Nordborg 2000), where N is the census size and where the
inbreeding coefficient F equals «/(2 — «) in a population in
which a proportion « of individuals are produced by selfing.
Therefore, N, is expected to decline linearly from N to N/2 as
«a increases from 0 to 1. However, N. may be further de-
creased (second effect) by selective sweeps or by selection
against deleterious alleles (background selection) (Charlesworth
etal. 1993; Charlesworth 2012), whose effects are amplified
by the lower effective recombination rates of selfing
populations.

Several models have computed the effect of background
selection on neutral diversity in randomly mating populations,
using different approaches (Hudson and Kaplan 1995; Nordborg
et al. 1996; Santiago and Caballero 1998; Charlesworth
2012). These showed in particular that a deleterious allele
at mutation-selection balance reduces the expected diversity
at a linked neutral locus by a factor ~ 1 — (ush)/(r + sh)?,
where u is the mutation rate toward the deleterious allele,
sh the heterozygous fitness effect of this allele (assumed dif-
ferent from zero), and r the recombination rate between the
two loci. The case of partially selfing populations has been
addressed by Nordborg (1997), using a structured coalescent
model and a separation of timescales argument. Indeed, as-
suming that recombination and coalescence of lineages pre-
sent in different individuals occur at a much lower rate than
the coalescence of lineages present in the same individual due
to selfing, the population can be described in terms of haplo-
types instead of diploid genotypes, which considerably sim-
plifies the analysis. Under this assumption, the effect of a
deleterious allele on linked neutral diversity is given by a sim-
ilar expression as in the panmictic case, replacing sh by
s[h(1 — F) 4+ F] (measuring the strength of selection against
the deleterious allele in a partially selfing population) and r
by the effective recombination rate r(1 — F) (see also Nordborg
2000). Extrapolating this result to the case of deleterious
alleles segregating at many loci, Glémin (2007) and Glémin
and Ronfort (2012) showed that the effective size of highly
selfing populations may be strongly reduced by background
selection effects.

Strictly, Nordborg’s (1997) result holds for tightly linked
loci, since the separation of timescales argument supposes a
low recombination rate. While the effective population size at
a given locus should be little affected by loosely linked loci as
long as the selfing rate remains moderate, this may be less so
when the selfing rate is high, so that linkage disequilibria may
extend over relatively large genetic distances (e.g., Nordborg
et al. 2002). Using multilocus individual-based simulations of
partially selfing populations, Kamran-Disfani and Agrawal
(2014) observed discrepancies between the estimated N,
and predictions obtained by extrapolating Nordborg’s
(1997) result over a whole genetic map. These may be caused
by the fact that the effects of loosely linked loci are not suf-
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ficiently well predicted by the separation of timescales ap-
proximation and become important at high selfing rates.

In this article, I construct a model of background selection
in partially selfing populations by extending the multilocus
population genetics framework previously developed by
Barton and Turelli (1991) and Kirkpatrick et al. (2002). As
we will see, a strength of this approach is that it allows one to
decompose evolutionary processes (here the background se-
lection effect) into different terms involving linkage disequi-
libria and other forms of genetic associations, for which
intuitive interpretation can be given. Expressions valid for
any value of the recombination rate are derived and shown
to converge to Nordborg’s (1997) result when linkage is
tight. However, this tight linkage approximation may signif-
icantly underestimate the strength of background selection
when the selfing rate is high (but <1); we will see that an-
other approximation yielding better predictions at high self-
ing rates can be obtained from the general model. A good
match between the analytical predictions and multilocus sim-
ulation results is observed as long as the genomic deleterious
mutation rate U is not too high (0.1 per haploid genome),
while discrepancies appear at higher values of U: those are
likely due to genetic associations between deleterious alleles
at different loci, which are neglected in the analysis.

Model
General method

As in previous models of background selection (e.g., Hudson
and Kaplan 1995; Nordborg et al. 1996), I first consider the
effect of a single deleterious allele maintained at mutation—
selection balance at a given locus on the dynamics of genetic
diversity at a linked neutral locus. This effect can be quanti-
fied by computing the expected change in neutral diversity
over one generation, which is affected by various moments of
genetic associations between the two loci (e.g., the variance
in linkage disequilibrium and other moments of associations
between genes present either on the same haplotype or on
different haplotypes of a diploid individual). Assuming re-
current mutation at the neutral locus, the effective popula-
tion size N, at the neutral locus can be deduced from the
expected neutral diversity at equilibrium (Nordborg et al.
1996). Alternatively, we may ignore mutation at the neutral
locus and calculate N, by equating the expected rate of loss in
diversity per generation to —1/(2N.), since diversity is
eroded at a rate —1/(2N) per generation in a Wright-Fisher
population. This is the approach that is used here. Strictly, it
relies on a quasi-equilibrium approximation, since moments
of genetic associations (for example, the variance in linkage
disequilibrium) are expressed in terms of diversity at the
neutral locus and of the frequency of the deleterious allele,
implying that these moments of genetic associations equili-
brate fast relative to changes in allele frequencies. However,
this approximation is justified when population size is suffi-
ciently large (so that changes in allele frequencies due to drift



remain small) and yields the same expression for N, as what
would be obtained by calculating the equilibrium neutral di-
versity under recurrent mutation.

I consider the following life cycle: N individuals are present
at the start of each generation and produce a very large (ef-
fectively infinite) number of juveniles in proportion to their
fitness. A proportion « of offspring is produced by selfing,
while the remaining 1 — « is produced by random fusion of
gametes. Finally, N individuals are sampled randomly among
all juveniles produced, to form the next generation (drift).
Fitness depends on genotype at the selected locus, where two
alleles (denoted 0 and 1) are segregating: allele 1 is delete-
rious, reducing fitness by a factor 1 — sh in the heterozygous
state and 1 — s in the homozygous state. The deleterious mu-
tation rate (from allele O to allele 1) is denoted u. As in pre-
vious treatments (Hudson and Kaplan 1995; Nordborg et al.
1996) I assume that sN > 1 and u < s, so that the frequency
of the deleterious allele remains small and can be approxi-
mated by the deterministic mutation—selection balance fre-
quency (strictly, this also assumes Npge > 1, where pye is the
frequency of the deleterious allele). Finally, r measures the
recombination rate between the two loci.

In the following I use a general method to compute the
effects of selection, reproduction, and drift on moments of
genetic associations. This method is based on a previous
formalism for the analysis of multilocus models (Barton
and Turelli 1991; Kirkpatrick et al. 2002), extended to in-
clude genetic drift. It was used previously to study selection
for sex in finite diploid populations undergoing both sexual
and asexual reproduction (Roze and Michod 2010) and is
described in Appendix A for the case of a partially selfing
population. To simplify the notation, the examples shown
in Appendix A concern the case of a biallelic neutral locus;
however, the method extends to multiple alleles, yielding the
same expression for the decay of neutral diversity per gener-
ation. The analysis of the two-locus model then proceeds in
three steps. First, I express the expected decay of genetic di-
versity per generation in terms of various genetic moments
involving both loci. Then, recurrence equations describing
the dynamics of these two-locus moments are derived (to
the first order in 1/N and assuming that the deleterious allele
stays at low frequency). Finally, these equations are solved to
obtain expressions for two-locus moments at (quasi-)equilib-
rium, in terms of diversity at the neutral locus and of the
different parameters of the model. Injecting these solutions
into the equation describing the decay of neutral diversity
yields an expression for the effect of the deleterious allele
on N, at the neutral locus.

The results of this two-locus model are then extrapolated to
a situation where deleterious alleles segregate at a large
number of loci, located at various genetic distances from
the neutral locus. For this, I assume that the effects of the
different selected loci on diversity at the neutral locus are
multiplicative, thereby neglecting genetic associations be-
tween selected loci. In the absence of epistasis between
deleterious alleles, this approximation is expected to yield

correct results under random mating in the regime considered
here (where selection against deleterious alleles is stronger
than drift, e.g., Hudson and Kaplan 1995) but may be less
accurate under partial selfing, as inbreeding generates differ-
ent forms of associations between loci (correlations in homo-
zygosity in particular, e.g., Roze 2015). Nonetheless, we will
see that this assumption of multiplicative effects often gen-
erates accurate predictions, as long as the genomic deleteri-
ous mutation rate is not too high.

Defining genetic associations

The parameters and variables of the model are summarized in
Table 1. Throughout the following, the neutral locus is
denoted A, while the selected locus is denoted B. Two alleles
denoted 0 and 1 segregate at each locus (we will see below
how the notation can be extended to deal with multiple neu-
tral alleles), allele 1 at locus B being the deleterious allele.
Indicator variables XM and X! describe the genotype of an
individual at locus i: these variables equal 1 if allele 1 is pre-
sent on the maternally or paternally (respectively) inherited
chromosome of this individual at locus i and 0 otherwise. The
frequency of allele 1 at locus i (denoted p;) is thus

XM+ x?P

5|’ ey

pi=E

where E stands for the average over all individuals in the
population. Neglecting drift, the frequency of the deleterious
allele at mutation—selection balance (denoted pj) is given by

~ u

P Sh(T=F) + ] @

with F = /(2 — a) (e.g., Glémin 2003).
For each locus i, centered variables (M and ¢ are defined
as
G =X"=pi, =X -pi. 3)

Following Kirkpatrick et al. (2002), the association between
the sets S and T of loci present on the two haplotypes of the
same individual is given by

Dst =E[lst], @

where
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{sp =320 °8°T

’ 2
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(note that Dsr = Drs), and where sets S and T may be the
empty set @, A, B, or AB. Associations between genes present
on the same haplotype of an individual (Dgg) are simply
denoted Ds. For example, Daa = E[(X}! —pa)(XE —pa)] is a
measure of the departure from Hardy-Weinberg equilibrium
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Table 1 Parameters and variables

Symbol Definition

N Population size

a Selfing rate

s Strength of selection against the deleterious allele

h Dominance coefficient of the deleterious allele

u Mutation rate toward the deleterious allele

r Recombination rate between the neutral locus and the selected locus

u Genomic deleterious mutation rate (per haploid genome)

R Genome map length

Pa Frequency of allele 1 at locus A (neutral locus)

Ps Frequency of allele 1 (deleterious allele) at locus B

Ds Deleterious allele frequency at mutation-selection balance

DsT Genetic association between the sets S and T of loci present on different haplotypes of an individual (see Equation 4)
Daa Genetic diversity at the neutral locus

F Inbreeding coefficient (probability of identity-by-descent between the maternal and paternal copies of a gene, due to selfing)
bas Joint probability of identity-by-descent at loci A and B

Gpag = pg — F? Identity disequilibrium between loci A and B

E[X] Average of the quantity X over all individuals

(M) Expected value of the moment M over the stochastic process

at locus A, while Dup = (1/2)E[(X} —pa) (X} —pg)+
(XY — pa)(X5 — pp)] represents the linkage disequilibrium
between loci A and B (genetic association between alleles pre-
sent on the same haplotype, maternal or paternal). Similarly,
Das=(1/2)E[(X}" — pa) (XE — pa) +(XE — pa) ()1 — pp)] mea-
sures the association between alleles at loci A and B present on
different haplotypes of the same individual.

Because population size is finite, allele frequencies and
genetic associations are random variables. Throughout this
article, I use the notation (M) for the expected value of the
genetic moment M (a product of allele frequencies, genetic
associations, or both) at a given generation: for example,
(Dag?) is the expected squared linkage disequilibrium be-
tween the two loci. In the following, the moment
(Daa) = ((1/2)E[(XM—pa)? + (X2 —pa)?]) will be of particu-
lar importance: indeed, using the fact that (X}1)* = X and
(Xj\’)2 =X} (since these variables equal O or 1), we obtain
that (Das) = (paga) (where g; =1 —p;), thus representing
the expected genetic diversity at locus A. Therefore, the ef-
fective population size at the neutral locus can be quantified
by computing the rate of decay of (Daa) per generation.

As mentioned above, the model can be extended to an
arbitrary number n of alleles segregating at the neutral locus.
In this case, we can define indicator variables X};’fk and X%,
that equal 1 if the maternally (respectively, paternall}})
inherited chromosome of a given individual carries allele k

at locus A (and O otherwise), with k = 1,...,n. Vectors X}X[
and X} are defined as X)' = (X}, X}, ..., X}") and X} =
(X3 1,X4 ..., X4 ,); in each of these vectors (and for a given

individual) a single element equals 1 while all other elements
equal zero. Finally, the vector p, = E[(X}! + X})/2] holds the
frequencies of the different alleles at locus A in the popula-
tion. Defining £ = X} — p, and {; = X} — p,, genetic asso-
ciations may be defined in the same way as above,
associations with two “A” subscripts involving a dot product
between the corresponding {, vectors. In particular,
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where p,x is the frequency of allele k at locus A in the
population. Similarly, Dss = E[g}f.gﬁ}, while Dppa =
(1/2)E[(E.C5)({M + £5)]. Equation 6 shows that, as in the
biallelic case, (Daa) represents the expected genetic diversity
at the neutral locus. As mentioned earlier, the method for
computing multilocus moments is explained in Appendix A
for the case of a biallelic neutral locus, but the results shown
below are valid for any number of alleles segregating at this
locus.

Multilocus simulations

Analytical predictions are tested using individual-based,
multilocus simulations. The simulation program (written
in C++ and available from Dryad) is very similar to the
program used in Roze (2015), representing a population of
N diploid individuals whose genome consists of a linear
chromosome with total map length R. Relatively large val-
ues of R (usually 10 M) are used in most simulations to
mimic a whole genome with multiple chromosomes. Each
generation, deleterious alleles occur at rate U per haploid
genome; all deleterious alleles have the same selection and
dominance coefficient and have multiplicative effects on
fitness (no epistasis). As we will see, variable selection co-
efficients have been implemented in a different version of
the program. Offspring are formed by selfing with probabil-
ity « and by random fusion of gametes with probability
1 — a. A neutral locus with an infinite number of possible
alleles is located at the midpoint of the chromosome, mu-
tating at a rate u = 1073 per generation. The program runs
for 2 X 10® generations, genetic diversity at the neutral lo-
cus being recorded every 50 generations and measured as
D =1—-".p;? (where p; is the frequency of neutral allele 7).
The effective population size at the neutral locus is then



estimated from D = 4N /(1 + 4Neu), where D is the aver-
age neutral diversity at equilibrium, yielding

D
Ne = m (7)

(the exact expression including terms in u? yields undistin-
guishable results for the parameter values used here). In the
simulations, D is obtained by averaging after a burn-in period
of 15,000 generations, which was sufficient for diversity to
reach equilibrium with u = 1073. As we will see, a different
version of the program including a neutral sequence with an
infinite number of sites was also used, in which case diversity
takes longer to equilibrate.

Data availability

The author states that all data necessary for confirming the
conclusions presented in the article are represented fully within
the article. The Dryad DOI is doi:10.5061/dryad.p3r01.

Results

All results are obtained using the method presented in Ap-
pendix A for computing recursions for multilocus moments,
implemented in a Mathematica notebook (Supplemental
Material, File S1). All terms are derived to the first order
in 1/N and to the first order in py (the frequency of the
deleterious allele at mutation—selection balance, given by
Equation 2).

General results

The expected change in genetic diversity at locus A per gen-
eration can be written as

(ADaa) = (AsDaa) + (AgDaa), 8

where (AsDaa) is the change in diversity due to selection and
(A4Daa) the change in diversity due to drift, given by

(AgDaa) = — % (<DAA> + <DAA>) C)]

toleading order. In the absence of selection, (AsDaa) = O while
(Daa) at quasi-equilibrium is given by (from Equation A10)

(Daa) =F(Daa) (10)
with F = «/(2 — «), and the expected change in neutral di-
versity per generation thus becomes

(ADg) = (AaDs) = — 5 (L+F)Da). (D)
This corresponds to the classical result that No = N/(1 +F)
under partial selfing (Pollak 1987): the increased homozy-
gosity caused by selfing amplifies the effect of drift, since the
same allele is sampled twice every time a homozygote is
sampled. When selection acts at locus B, we obtain the fol-
lowing expression for (AsDaa) to the first order in s:

(AsDaa) = — sh((Daag) + (Daap))

- S(l - 2h) (<DAAB,B> - <DAADB‘B>)- (12)

An expression to the second order in s is provided in Appendix
B; however, both expressions generally yield very similar
quantitative results, although adding the terms in s> may
slightly improve the predictions under loose linkage. The
different terms that appear in Equation 12 may be interpreted
as follows. From the definitions given in the previous section,
the term (Daap)+ (Daap) may also be written as
E[(1/2)(8 + 5 (¢F + £5)] (where again E stands for the
average over all individuals), thus measuring a covariance
between (1/2)({, +¢5,) and (¥ +¢p (note that
E[Y + ¢5] = 0). The quantity (1/2)(¢{Y, +¢%,) is higher in
individuals carrying rarer alleles at the neutral locus: for exam-
ple, in the case of a biallelic neutral locus, it equals p2,
(p2 +q3)/2, and ¢2 in 00, 01, and 11 individuals, where ps
is the frequency of allele 1. Furthermore, the quantity {¥ + {5
is higher in individuals carrying more deleterious alleles at the
selected locus (it is nearly 0, 1, and 2 in individuals carrying 0,
1, and 2 deleterious alleles at locus B, assuming pg is small).
Therefore, a positive value of (Daag) + (Daag) indicates that
rarer alleles at the neutral locus tend to be found in individuals
carrying higher numbers of deleterious alleles at the selected
locus, while a negative value of (Daag) + (Daap) indicates the
opposite. Recursions for the moments (Daap) and (Daa ) over
one generation are given in Appendix B, to the first order in s,
Dg, and 1/N. In the absence of selfing (« = 0), we obtain that
(Daa) = 0 at quasi-equilibrium, while (Dpsp) is generated by
the variance in linkage disequilibrium (Da32) and by the effect
of selection and is positive when sh > 0. Indeed, when a given
neutral allele becomes associated (by chance) to the deleteri-
ous allele at locus B, this neutral allele tends to decrease in
frequency, generating a positive (Daap) (the deleterious allele
at locus B tends to become associated with rarer alleles at locus
A). This in turns reduces genetic diversity at the neutral locus
(as shown by Equation 12), since these rarer alleles will further
decrease in frequency due to their association with the delete-
rious allele. Because partial selfing generates cross-haplotype
associations (between genes present on different haplotypes of
a diploid), (Dasp) and (Daag) are given by more complicated
expressions when a > 0, involving moments such as (DagDag),
(DagDag i), or (Dapp*) (see Appendix B).

Similarly, the quantity (Daapgp) — (DaaDpp) that appears
on the second line of Equation 12 measures a covariance be-
tween (1/2)(8, +¢5,) and {zp, the quantity (zp being
higher in homozygotes at locus B than in heterozygotes. A
positive value of (Daagg) — (DaaDp p) thus indicates that rarer
alleles at locus A tend to be found more often in homozygotes
at locus B than in heterozygotes. As shown by Equation 12,
this would reduce neutral diversity when the deleterious al-
lele is partially recessive (h < 0.5), since in this case homo-
zygotes at the selected locus have a lower fitness than
heterozygotes. A recursion for (Daagp) — (DaaDpp) is given
in Appendix B (Equation B14); remarkably, it shows that
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identity disequilibrium (covariance in homozygosity) between
the two loci generates negative (Daagp) — (DaaDpp) (that is,
rarer alleles at locus A tend to be found more often in hetero-
zygotes at locus B) even in the absence of selection. Indeed,
setting s = 0 in Equation B14 yields at quasi-equilibrium

2

N2 —a) Gap pg(Daa), (13)

(Daa) — (DaaDpp) = _N(2

where Gy is the identity disequilibrium between loci A and B
(Weir and Cockerham 1969). It is given by Gap = ¢ 5 — F2,
where

_a 2—a—2(2-3a)r(l1-r)
Pan =5 2—afl—2r(1-r)]

(14

is the probability of joint identity-by-descent at the two loci.
This result may be interpreted as follows. Due to identity
disequilibrium, the frequency of heterozygotes at locus A is
higher among heterozygotes at locus B than among homozy-
gotes. Furthermore, the frequency of rarer neutral alleles is
higher among heterozygotes than among homozygotes at
locus A (this is easily seen in the case of a biallelic locus):
therefore, the frequency of rarer alleles at locus A should be
higher among heterozygotes at locus B. As shown by Equation
12, this effect tends to increase neutral diversity, as long as the
deleterious allele is partially recessive (h <0.5), so that het-
erozygotes at locus B have a higher fitness than homozygotes.
As shown in the next subsection (high effective recombina-
tion), the effect of identity disequilibrium dominates over all
other effects when the effective recombination rate r(1 — F) is
sufficiently high [more precisely, r(1 — F) > s], in which case
partially recessive deleterious alleles tend to increase neutral
diversity (this effect usually stays rather small). However,
weaker effective recombination increases the relative impor-
tance of the terms on the first line of Equation 12 that tend to
decrease neutral diversity. Furthermore, weak effective recom-
bination changes the sign of (Daag g) — (DaaDp ) (through the
terms in s in Equation B14), due to the fact that the association
between rarer alleles at locus A and the deleterious allele at
locus B (represented by moments (Daag), (Daa p)) generates an
association between those rarer alleles and homozygosity for
the deleterious allele at locus B.

As shown in Appendix B, calculating the different terms of
Equation 12 at quasi-equilibrium requires computing six
two-locus moments that are generated by finite population
size: (Dap?), (DaDag), (Dap?), (DasDagg), (DagDapg), and
(Dapp2). Recursions for these moments are also given in
Appendix B. Although the solutions obtained are rather
complicated, they are readily computed numerically using
Mathematica (see File S2); furthermore, we will see that
they can be approximated by simpler expressions in sev-
eral cases. Importantly, all expressions obtained are in 1/N
and thus vanish when N tends to infinity.

Besides its effect on (AsDaq4), selection at locus B also af-
fects the average excess homozygosity at locus A (Da4) and
thus the term (A4Da) in Equation 8. Because (Da4) is mul-
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tiplied by 1/N in Equation 9, it is sufficient to compute this
moment in the limit as N tends to infinity, to obtain an ex-
pression for (ADa4) to the first order in 1/N. Using the results
in Roze (2015) (also derived in File S1), we have at quasi-
equilibrium, to the first order in s and py,
(Daa) =F[1—5(1— 2h)Gap pg(Daa), (15)
where again G is the identity disequilibrium between loci A
and B. Indeed, homozygosity at locus A is reduced when the
deleterious allele at locus B is partially recessive (h <1/2),
due to the fact that homozygotes at locus A tend to be also
homozygous at locus B, while homozygotes at locus B have a
lower fitness than heterozygotes.
Putting everything together, we obtain an expression for the
change in diversity at locus A over one generation of the form

1 -
ADaa) = =5 (L+F)(1+T Pg) (Dan), (16)
where T is a function of s, h, r, and «. To the first order in pyg,
we thus have

N

No=-——B
e 1+F sel»

an
where Bg) = 1 — T pg represents the effect of background
selection. Although the expression obtained for T from the
equations given in Appendix B is complicated, we will now see
that simple approximations can be obtained in several re-
gimes (in particular, high effective recombination, tight link-
age, and high selfing).

High effective recombination (with partial selfing)

Under partial selfing and when the effective recombination rate
r(1 —F) is high (and assuming that the dominance coefficient
h of the deleterious allele is significantly different from 0.5),
Equation 12 is dominated by the term on the second line, since
(Dass) — (DaaDp ) is generated by drift even in the absence
of selection and is thus proportional to 1 /N (see Equation 13),
while the terms (Dpag) and (D ) on the first line are gener-
ated by selection and drift and are thus proportional to s/N.
Neglecting the term on the first line of Equation 12 and using
Equations 9 and 15 yields the following expression for the
change in neutral diversity, to the first order ins, pg, and 1/N:

4+«
2

ADar) = — = (14F) [1 (1 - 2h)

N Gap 133} (Daa)-

(18)

Using Equation 2, we obtain for the effective population size at
the neutral locus

4+«

N,
¢ (1-F)+F 2

(19)

_ N u(1—2h) .

T14F| "h AB |
independent of s. Equation 19 shows that identity disequi-
librium between the neutral and the selected locus (Gag)
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increases the effective population size at the neutral locus
when the deleterious allele is partially recessive. This is
caused by two effects: (i) identity disequilibrium reduces
the excess homozygosity at locus A caused by selfing (Equa-
tion 15), since homozygotes at locus A tend to be also ho-
mozygous at locus B, while homozygotes at locus B have a
lower fitness than heterozygotes when the deleterious allele
is partially recessive; and (ii) the higher fitness of heterozy-
gotes at locus B increases diversity at locus A since hetero-
zygotes at locus B tend to be also heterozygous at locus A
(Equation 13).

This increase in effective population size caused by identity
disequilibrium usually stays modest, however (since it is
expected to occur only for high effective recombination),
and is thus difficult to observe in simulations. Background
selection has stronger effects when the effective recombina-
tion rate becomes low, in which case the term (Daag) + (Daag)
in the first line of Equation 12 becomes of the same order of
magnitude as the term on the second line [indeed, we can
show that the denominator of (Dasp) and (Daag) is propor-
tional to ¢ when both (1 — F) and s are of order ¢], while the
sign of (Daapp) — (DaaDpp) changes due to the effect of se-
lection. Two approximations for this regime are given below
(tight linkage, high selfing).

Random mating

In the absence of selfing (¢ = 0), Equations B4-B9 yield the
following expressions for (Das?) and (Dap2) at quasi-
equilibrium,

1+1r2(1 - 2sh)

(Dag®) = 5
2N[1 — (1-1)2(1 — 2sh)

(20)

} Pp(Daa)

1 .
<DA,BZ> = 9N Pp(Daa), 21

Whlle <DABDA,B>7 <DABDAB,B>7 <DA,BDAB,B>7 and <DAB,BZ> = 0.
Furthermore, Equations B10-B14 yield

2sh[(1-7) (Dag?) + r<DA,BZ>]
1—(1-r)(1—sh) ’

(Daag) = (22)
while (Daa g) and (Daap ) — (DaaDp ) = 0. Finally, the rate of
decay of neutral diversity is given by

(ADax) = = sh(Daag) — (sh)? ((Das®) +(Das?)) - % (Daa)-

(23)

Under tight linkage (i.e., both r and s are of order ¢ where ¢ is
a small term), we obtain from Equations 20-22

2\ __ Pg(Daa) 2
<D AB > “ANGsh) <D a8 > (24)
(Dans) ~ S P5Dar) 25)

2N(r + sh)®

giving

(Daa) (26)

1 sh \%.
(ADas) ~ _ﬁ[1+ <r+sh) Ps

in agreement with the results obtained by Hudson and Kaplan
(1995) and Nordborg et al. (1996). Under loose linkage
(r > s), Equations 20-23 yield

(sh)*(1+4r2) _

1
(ADpp) = — = [1 +r72 Dg | (Daa). @27

Setting r = 1/2 in Equation 27 and replacing py by u/(sh)
yields N = N(1 — 8shu), which is equivalent to Robertson’s
(1961) heuristic result that selection at unlinked loci de-
creases the effective population size by four times the addi-
tive variance in fitness—indeed, the variance in fitness
caused by selection against the deleterious allele is ~ 2shu
(see also Charlesworth 2012).

Tight linkage

When r is small, Nordborg’s (1997) separation of time-
scales argument can be used to express associations be-
tween genes present on different haplotypes of a diploid
in terms of associations between genes present on the same
haplotype (see also Nordborg 2000; Padhukasahasram
et al. 2008). Consider for example the association D4 g be-
tween two genes sampled at loci A and B from different
haplotypes of an individual. Going backward in time, two
different events may happen to the ancestral lineages of
these genes: they may find themselves on the same haplo-
type (which may take only a few generations if both line-
ages stay in the same individual due to selfing) or move to
different individuals due to an outcrossing event, in which
case it will take a long time before they find themselves
again in the same individual (assuming N is large). To lead-
ing order, the probability that these lineages join on the
same haplotype before moving to different individuals is
F. Considering now all possible pairs of genes at loci A
and B on different haplotypes of the same individual
(in all individuals of the population) and going backward
in time, we may assume that a proportion F of such pairs
find themselves on the same haplotype after a small num-
ber of generations, while the remaining 1 — F have moved
to different individual lineages (and thus become indepen-
dent): therefore, Dap &~ F Dag—note that this approxima-
tion assumes tight linkage, as it neglects recombination
events separating genes that have joined on the same hap-
lotype, over the small number of generations considered.
Using this approximation, we have

(DaDap) ~ F(Dag®), (Dap®) ~F*(Dag?).  (28)
Similarly, Dagp = F Dagg = F(1 — 2pg)Dap (from Equation
A9), which yields (assuming that pp is small)
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(DaDaBB) ~ F(Dag), (DapDapg) ~ (Dapp>) ~ F*(Dag?).
(29)

Flnally, DAAB,B ~ F Dpagg = F(DAADBB + (1 - ZPB)DAAB)’ from
which we obtain (using the fact that the moment (pgDasg) is
negligible, as shown in File S1)

(DaaBB) — (DaaDpg) ~ (Daa) ~ F(Daag). (30)
Equations 28-30 can also be obtained from Equations B4—
B14, under the assumption that r is small (see File S1). Plug-
ging Equations 28-30 into Equation 12 yields

(AsDan) =~ —s[h(1 —F) + F|(Dass). (31)
Furthermore, plugging Equations 29 and 30 into Equations B4
and B10 and assuming that r is small yields the same expres-
sions as Equations 24 and 25 (obtained for random mating)
for (Dap?) and (Daag), replacing h by h(1—F)+F, r by
r(1—F), and N by N/(1 + F). Therefore, the present model
converges to Nordborg’s (1997) result when loci are tightly
linked.

Figure 1A shows the decrease in effective population size
at the neutral locus caused by the deleterious allele (B, see
Equation 17), as a function of the recombination rate be-
tween the two loci (on a log scale). When r tends to zero,
Bge tends to 1 — pg, and selfing increases N, (as it decreases
the frequency of the deleterious allele). When r is sufficiently
high, however (~ >0.01 for the parameter values used in
Figure 1), increased selfing causes stronger background se-
lection. Under complete selfing (a« = 1), Bse] becomes inde-
pendent of r and is ~ 1 —u/s. As can be seen in Figure 1A,
the tight linkage approximation accurately predicts the so-

lution obtained from Equations B4-B14, except when r and
« are high (in which case it underestimates the strength of
background selection). As we will see, this discrepancy for
high values of r may lead to substantial differences when
integrating over a large genetic map, as the majority of del-
eterious alleles are only loosely linked to the neutral locus,
yet significantly affect N, at this locus when selfing is high
(this is more visible in Figure 1C, showing the strength of
background selection as a function of the position of the
deleterious allele along the genetic map). Note, however,
that the tight linkage approximation yields the same predic-
tion as the more general model when @ = 1 (Bge; = 1 —u/s).

High selfing

Simple approximations can also be obtained when the
selfing rate is high, for any value of the recombination rate
r. From Equations B4-B9 and assuming that « is close to 1,
we obtain

<DA32> ~ <DABDA,B> ~ <DA732> ~ <DABDAB,B> ~ <DA,BDAB,B>

~ <DAB‘BZ> ~ 2N|s + ;r—{lzi a+s)] Py (Daa)-
(32)
Furthermore, Equations B10-B14 yield
(Daag) ~ (Daap) ~ (Daaps) — (DaaDpp)
(14 2r)%s By (Dan), (33)

T Ns+2r(1—a +5)P

which, using p &~ u/s, generates the following approxima-
tion for the rate of decay of neutral diversity:

A By B By Figure 1 Background selection ef-
1.0000k 1.0000k fect generated by a singlle deleteri-
WasEsk il ous allele (Bse, see Equation 17) on
: ’ Ne at the neutral locus, as a func-
0.9998 0.9998 tion of the recombination rate r be-
0.9997F a=0 09997 tween the two loci (A and B) and of
099961 =05 0.9991 the positi'on of the deleterious allele
along a linear chromosome of total
05995¢ Py 0.3295¢ map length 10 M (C and D) (the
0.9994+ = 0.9994¢ neutral locus is located at position
: ‘ ‘ ; . . r ‘ ; ; . r 0). Different colors correspond to
10 104 0001 001 01 05 10 104 0001 001 01 05 different values of the selfing rate
as indicated in A. Solid curves cor-
Cc By D B, respond to the results obtained
from the equations in Appendix B,
1.0000 1.0000 dashed curves in A and C corre-
spond to the tight linkage approxi-
09999 — ———— -—— 0.9999 mation [Equation 26, replacing h
e — e by h(1 —F)+F and r by r(1—F)],
09998 0.9998 and dotted curves in B and D
correspond to the high selfing
0.9997 0.9997 approximation (Equation 34). Pa-
e - rameter values: s =0.05, h =0.3,
‘ ‘ mlap pOSlt](lJn ‘ ‘ rnlap pos:tl(l)n U= 10,5.
-4 -2 0 2 4 -4 -2 0 2 4
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1
2N

(1+42r)s

2
AD, ~ — 1 A =
(ADas) + (s+2r(1—a +S)) Py

(1+F) (Daa)-

(34)

Note that Equation 34 again yields Be) ~ 1 — u/s whena = 1.
As shown in Figure 1D, this approximation better matches the
general model than the tight linkage approximation when the
selfing rate is high (but <1) and when linkage is loose. How-
ever, Figure 1B shows that it differs substantially from the gen-
eral model under tight linkage and is thus expected to perform
poorly when the selfing rate is not high (since in this case
background selection is mainly caused by deleterious alleles
that are tightly linked to the neutral locus).

Multilocus extrapolation and simulations

Following previous work (e.g., Hudson and Kaplan 1995;
Nordborg 1997; Glémin 2007; Kamran-Disfani and Agrawal
2014), results from the two-locus model may be extrapolated to
the case of deleterious alleles segregating at multiple loci by as-
suming multiplicative effects of the different deleterious alleles on
neutral diversity. When the neutral locus is located at the midpoint
of a linear genome with total map length R, and when all delete-
rious alleles have the same selection and dominance coefficients
(as in the simulation program), this yields (using Equation 2)

N U 2 [R/2
Ne ~T5 P | A —F) + XE/O T(")d’“}’
(35)

where U is the deleterious mutation rate per haploid genome
and T(x) corresponds to the term T in Equation 16, in which

N, e N, e

200004 200004

15000 15000
10000 - 10000 —

5000 5000}

the recombination rate r is expressed in terms of the genetic
distance x (in morgans) between the neutral locus and the
deleterious allele, using Haldane’s mapping function r =
(1/2)[1 — e~ %] (Haldane 1919). This integral can be com-
puted numerically as shown in File S2.

Figure 2 shows the effective size of a population of census
size 20,000 as a function of the selfing rate, for a haploid
genomic deleterious mutation rate U = 0.1 and genome
map length R = 10 M. As can be seen in Figure 2, the analyt-
ical model (solid curves) fits well with the simulation results
for all values of a. Note that in Figure 2, Figure 3, Figure 4,
and Figure 5, solid curves have been obtained by calculating
numerically the integral in Equation 35, using a system of
recursions expressed to the second order in s for the different
moments shown in Appendix B (see File S1 and File S2);
however, the results obtained using the recursions given in
Appendix B (expressed to the first order in s) are undistin-
guishable in most cases (results not shown). Explicit forms
can be obtained for the integral in Equation 35 (as a function
of R and the different parameters of the model), when using
either the tight linkage approximation or the high selfing
approximation, and are given in File S2. The results shown
in Figure 2 confirm that the tight linkage approximation un-
derestimates the effect of background selection when the
selfing rate is high, as loosely linked deleterious alleles sig-
nificantly affect neutral diversity. In this case, the high selfing
approximation is more accurate, closely matching the simu-
lation results when « > 0.85.

Figure 3 and Figure 4 show that the full model provides
accurate predictions for N, for different values of map length
R (from 0.1 to 100) and strength of selection against delete-
rious alleles s (from 0.005 to 0.5). As expected, the tight

h=02

Figure 2 Effective population
size N, as a function of the self-
ing rate «, for different values of
the dominance coefficient of del-
eterious alleles h. Solid circles
show simulation results (in this
and subsequent figures, error
bars are smaller than the size of

h=03
N. N,

20000, 200004

15000+ 15000 —
10000 - 10000 —

5000+ 5000+

the solid circles), solid curves
show analytical predictions from
the complete model (see File S2),
dashed curves show the tight
linkage approximation [Equation
26, replacing h by h(1—F)+F
and r by r(1—=F)], and dotted
curves show the high selfing ap-
proximation (Equation 34). Pa-
rameter values: N = 20,000,
s=0.05 U=0.1, R=10.

02 04 0.6 08 1.0
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Figure 3 Effective population size N, as a function of the selfing rate «, for different values of genome map length R: 0.1 (red), 1 (orange), 10 (green),
and 100 (blue). Solid circles show simulation results, solid curves show analytical predictions from the complete model, dashed curves (left) show the
tight linkage approximation, and dotted curves (right) show the high selfing approximation. Parameter values: N = 20,000, s = 0.05, h = 0.3,

u=0.1.

linkage approximation works better at lower values of R. When
the selfing rate is low, increasing s magnifies the strength of
background selection, while it has the opposite effect under
high selfing (due to the fact that mutation-free individuals
are more abundant when selection against deleterious alleles
is stronger). Finally, Figure 5 shows that increasing the delete-
rious mutation rate U (to 0.5 per haploid genome) increases the
strength of background selection, leading to very low values of
Ne at high selfing rates (N, estimated from the simulations is
close to 45 when « = 1). When U = 0.5, discrepancies be-
tween the full model and the simulations appear at low values
of h (h = 0.1 in particular) and intermediate values of a: these
are probably caused by genetic associations between selected
loci (identity disequilibrium in particular), which are neglected
in the analysis. Using an expression for the frequency of dele-
terious allele py that takes into account the effect of identity
disequilibria (Roze 2015) does not significantly improve the
results (not shown). Discrepancies also appear at higher values
of h and high selfing rate (a« =~ 0.8-0.9), the analytical model
underestimating the strength of background selection. Finally,
the model overestimates the effect of background selection
when the selfing rate is very high (@ > 0.95), for all values of

5000 -

02 04 0.6 08 1.0

h: although this is not visible in Figure 5 (as N, is very small
when « is high), it becomes apparent when N, is plotted on a
log scale, as shown in Figure S1. For these parameter values
(e = 0.98, 1), selection against deleterious alleles is no longer
efficient and these accumulate over time in the population
(results not shown).

Equation 35 can be extended to the more realistic case
where deleterious alleles at different loci have different fitness
effects (assuming that selection remains sufficiently strong at
most loci so that deleterious alleles stay near mutation—
selection balance), by replacing s and h by functions of map
position x (e.g., Charlesworth 2012). If the number of dele-
terious loci is large and if the distribution of fitness effects of
mutations does not depend on genomic location, the integral
in Equation 35 can be replaced by a double integral, over map
position x and over the joint distribution of s and h. To test
this, the simulation program was modified to include a log-
normal distribution of selection coefficients s across loci, as-
suming a constant heterozygous effect of mutations (sh),
generating a negative covariance between s and h (see figure
5 in Roze 2015). Figure 6 shows results for « = 0.9 and for
different values of the variance of deleterious effects of

0.2 04 0.6 08 1.0 &

Figure 4 Effective population size N as a function of the selfing rate «, for different values of the strength of selection against deleterious alleles s:
0.005 (blue), 0.05 (green), and 0.5 (red). Solid circles show simulation results, solid curves show analytical predictions from the complete model, dashed
curves (left) show the tight linkage approximation, and dotted curves (right) show the high selfing approximation. Parameter values: N = 20, 000,

h=0.3,U=0.1, R =10.
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Figure 5 Effective population size
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N, as a function of the selfing rate
«, for different values of the dom-
inance coefficient of deleterious al-
leles h. Circles and curves are the
same as in Figure 2 with U = 0.5.

mutations across loci, setting the average of the log-normal
distribution and the heterozygous effect of mutations so that
5= 0.05 and h = 0.25 in all cases. As can be seen in Figure 6,
increasing the variance of s slightly increases Ne, and this
effect is captured by integrating Equation 34 (high selfing
approximation) over the distribution of s.

Temporal change in population size

It is worth emphasizing that the moment-based method pre-
sented in this article yields an expression for the “inbreeding
effective size” (as it is based on the rate of decay of neutral
diversity or the instantaneous rate of coalescence), while
coalescent-based methods (e.g., Hudson and Kaplan 1995;

N,
7000

6500+
6000

[
5500

80
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20

Nordborg 1997) yield an expression for the “coalescence
effective size,” corresponding to half the average coalescence
time between two sequences randomly sampled from the pop-
ulation. After a single change in population size, and if selection
and recombination rate are sufficiently large relative to 1/N,
the different moments computed in Appendix B should equili-
brate quickly relative to the change in neutral diversity, and the
inbreeding effective population size should thus rapidly con-
verge to its equilibrium value for the new census population
size. By contrast, expected coalescence times will take longer to
equilibrate. Assuming that the inbreeding effective size instan-
taneously reaches its new equilibrium value, the expected co-
alescence time t generations after the change is given by

02 04 0.6 0.8 1.0 o

0.00

N §
0.15 0.20

Figure 6 Left: effective population size N, as a function of the standard deviation o of In s across loci, assuming a log-normal distribution of s and
setting the average of In s so thats = 0.05 for all values of o Solid curve shows prediction obtained by integrating Equation 34 over the distribution of s
and over the genetic map; solid circles show simulation results. Parameter values: N = 20,000, @ = 0.9, U= 0.1, R =10. In the simulations the
heterozygous fitness effect hs is the same for all mutations and adjusted so that h = 0.25 for all values of &. Right: the distribution of s for o = 0.1 (solid

curve), 0.5 (dashed curve), and 1 (dotted curve).
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E[T], = 2N, + (1—211%) (E[T]y — 2Ne), (36)

where N, is the new inbreeding effective size and E[T], the
average coalescence time at the time of the change in popu-
lation size. To test this prediction, the simulation program was
modified to include a neutral sequence with an infinite number
of sites at the midpoint of the chromosome. Indeed, the
expected coalescence time between two sequences is simply
given by D/(2u), where p is the mutation rate within the se-
quence and D the average number of differences between two
sequences, given by D = 23" .p;q; (where the sum is over all
segregating neutral sites within the sequence). Figure 7
shows an example in which N = 20,000 during the first
10° generations (starting from a monomorphic population,
which is equivalent to the coalescence of all lineages at gen-
eration zero), while N = 40,000 during the last 10° gener-
ations. As can be seen in Figure 7, the quasi-equilibrium
argument leading to Equation 36 correctly predicts the dy-
namics of E[T] both during the initial phase and after the
change in population size. The quasi-equilibrium argument
could also possibly be used in situations where population
size changes continuously over time (i.e., exponential pop-
ulation growth), although this was not explored here.

Discussion

We have seen how multilocus population genetics theory
can be used to express the effect of a deleterious allele at
mutation-selection balance on the dynamics of diversity at
a linked neutral locus in terms of moments of linkage dis-
equilibrium and other genetic associations between these
two loci. This provides an alternative to methods based on
computing expected coalescence times of pairs of genes
present on different types of genetic backgrounds (e.g.,
Nordborg 1997; Agrawal and Hartfield 2016) and allows
one to decompose the background selection effect into dif-
ferent terms for which intuitive interpretation may be given.
In a panmictic population, background selection is driven by
the variance in linkage disequilibrium (D,52) between the two
loci: neutral alleles that become associated to the deleterious
allele tend to decrease in frequency, eventually causing their
loss from the population. Under partial selfing, background
selection is reinforced by random associations between a
given neutral allele and selected alleles present on the other
haplotype of the same individual (D,p) and associations
between neutral alleles and homozygosity at the selected
locus (Dppp). Furthermore, we have seen that identity dis-
equilibrium (correlation in heterozygosity between loci) has
the opposite effect and enhances neutral diversity when the
deleterious allele is partially recessive, but this effect usu-
ally stays modest.

Under tight linkage, the results converge to the approxi-
mation derived by Nordborg (1997), using a separation of
timescales argument. In that case, the population behaves
approximately as a panmictic population of size N/(1 + F),
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Figure 7 Average coalescence time between two randomly sampled
sequences at a neutral locus located at the midpoint of the chromosome,
as a function of time. The population is monomorphic at time zero (all
lineages coalesce), N = 20,000 during the first 10° generations, and
N = 40,000 during the last 10> generations. Parameter values: a = 0.9,
5s=0.05,h=0.3, U=0.1, R = 10. Dashed curve shows prediction from
Equation 36, where the inbreeding effective size is obtained from Equation
35 and assumed to reach instantaneously its equilibrium value for a given
N. Solid curve shows simulation results (average over 4000 replicate simu-
lations), where E[T] is estimated from the diversity of a neutral sequence
with an infinite number of sites (see text) and mutation rate u = 10~ per
generation.

in which the dominance coefficient of the deleterious allele
and the recombination rate are replaced by the effective pa-
rameters h(1 —F) + F and r(1 — F). Similarly, Agrawal and
Hartfield (2016) showed that in a population reproducing
sexually at rate ¢ and asexually (by mitosis) at rate 1 — o,
the effect of a deleterious allele located at a small recombi-
nation distance r from the neutral locus takes the same form
as in a panmictic (fully sexual) population, replacing r by the
effective recombination rate ro- (as shown in Appendix C, the
effect of partial asexuality can also be derived using the meth-
ods of the present article). However, Agrawal and Hartfield
(2016) also showed that this tight linkage approximation
underestimates the strength of background selection caused
by loosely linked loci, which becomes important when sex is
rare. We have seen that a similar result holds under partial self-
ing: at high selfing rates, neutral diversity may be significantly
affected by loosely linked deleterious alleles, whose effect is
underestimated by the tight linkage approximation. In that case,
a more precise approximation is provided by Equation 34 above.

As mentioned previously (Nordborg 1997), assuming mul-
tiplicative effects of deleterious alleles at different loci on neu-
tral diversity (Equation 35) should be less accurate under
partial selfing than under random mating, since inbreeding
generates different forms of genetic associations between those
loci (e.g., Kamran-Disfani and Agrawal 2014; Roze 2015). Nev-
ertheless, we have seen that Equation 35 yields accurate pre-
dictions as long as the genomic deleterious mutation rate stays
moderate (U = 0.1, Figure 2, Figure 3, and Figure 4), so that
the average number of deleterious alleles per genome is not too
large. Another important assumption of the model is that



selection against deleterious alleles is sufficiently strong rela-
tive to drift, so that these alleles are maintained near their de-
terministic mutation-selection equilibrium frequency. In the
regime where Nes =~ 1 or lower, sometimes called “interference
selection” or a “weak Hill-Robertson interference” regime (e.g.,
McVean and Charlesworth 2000; Comeron and Kreitman
2002; Good et al. 2014), background selection models assum-
ing Nes >> 1 may overestimate the effect of deleterious alleles
on neutral diversity by several orders of magnitude (Kaiser and
Charlesworth 2008; Good et al. 2014). This may possibly be due
to negative linkage disequilibria between deleterious alleles
generated by the Hill-Robertson effect (Hill and Robertson
1966), reducing the variance in fitness in the population
and thus increasing coalescence times. As illustrated in Fig-
ure S1, this regime may be particularly important in highly
selfing populations and when the deleterious mutation rate
U is high, since N. may be sufficiently reduced to affect the
efficiency of selection at an important proportion of selected
sites. This is confirmed by empirical observations of higher
ratios of nonsynonymous to synonymous polymorphism
(mn/mrs) in selfing lineages than in their outcrossing relatives
(Glémin and Muyle 2014; Hartfield 2015 and references
therein), indicating that a significant fraction of deleterious
alleles may increase in frequency due to drift (in which case
the assumption that Nes > 1 at most loci is not valid). It is thus
important to keep in mind that background selection models
such as the one presented here overestimate the reduction in
N, in such situations, and it would be interesting (although
probably challenging) to obtain analytical predictions for neu-
tral diversity in populations undergoing low rates of sex or
high selfing rates and in which selection against a high pro-
portion of deleterious mutations is rendered ineffective.

More generally, the strong reduction in effective popula-
tion size of highly selfing (or asexual) populations caused by
background selection may have an important influence on
stochastic processes that would play a more marginal role in
populations with larger N.. For example, identity disequilib-
rium between selected loci in a partially selfing population
generates positive linkage disequilibrium between these loci,
but as shown by Kamran-Disfani and Agrawal (2014), sto-
chastic forces generating negative linkage disequilibrium be-
come stronger than this deterministic effect when the selfing
rate is high. In a similar way, deterministic forces acting on the
evolution of recombination rates (e.g., Roze and Lenormand
2005) or mutation rates (e.g., Lynch 2010) may be over-
whelmed by stochastic forces under strong inbreeding. De-
veloping analytical models that could scale these different
types of effects may thus help us to better understand how
mating systems affect the evolution of genetic architecture.
The methods presented in this article could possibly be used
to explore such questions.
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Appendices
Appendix A: Deriving Recursions for Multilocus Moments

In the following, I use the notation D' ;. for genetic associations measured at the next generation, while DJSH% and DX T represent
associations measured among juveniles (after reproduction, before drift) and among parents after selection (that is, weighting
each parent by its relative fitness). Therefore, selection changes associations Ds  to Ds > recombination and fertilization (with
partial selfing) change associations Dgaqi to D’SL“{T, and drift changes associations D’S 1 to D'gp. Similarly, p’ denotes allele
frequencies at the next generation, while p’uv represents allele frequencies among juveniles (which are the same as among
selected parents, as recombination and fertilization do not change allele frequencies). In the following I show how to derive
equations representing these different steps. For this, I focus on examples rather than presenting general (and necessarily
cumbersome) equations; however, general expressions are implemented in a Mathematica notebook (File S1). Throughout this
article, I assume that selection is weak (s small) and that population size is sufficiently large so that 1/N < s, r; however, no
assumption is done on the relative orders of magnitude of r and s. Finally, I assume that u < s so that the frequency of the
deleterious allele at mutation—selection balance (pg, given by Equation 2) is small.

Drift To illustrate the effect of drift on genetic moments, consider the expected diversity at the neutral locus, (Das). By
definition, (D',,) = ((1/2)E'[(XY —pi)* + (X5 —pi)?]), where E' is the average over all individuals of the next generation,
while py, is the frequency of allele 1 at locus A among these individuals. Writing Agpa = ps — p)y" the change in allele
frequency due to drift, we have

(0an) = (38 [ 2a0a)” + (G- ~2000)"] ) (D

Expanding and grouping terms in Agpy, this is

1

<D’AA>=<§E’[(XM i)+ (X ’”)2]>— 2<AdpA %E’[(XM )+ (X5 - uv)l>+<(AdPA)2>- (A2)

In the following, I use the notation D 7 for moments measured among individuals of the next generation (after drift), but usmg
the values of allele frequenc1es (called ‘reference values” in Kirkpatrick et al. 2002) before drift (among juveniles): i
particular, D%: = 1E'[(XM —pl™)? + (X2 —pi”)?], while we have DY = IE'[(xX} — pi¥) + (X — p*)] Noting that DY = AdpA,

Equation A2 can be written as
D/ dft Ddft ) (AS)

Next, we can note that products of genetic associations may also be viewed as associations between genes present in two
individuals, sampled with replacement from the whole population: for example, (D} p¥t)? )“ is the association between one gene at
locus A from a first individual and one gene at locus A from a second individual sampled with replacement from the population
at the next generation (and using allele frequencies among juveniles as reference values). Following previous works (Roze and
Rousset 2008; Roze 2009; Roze and Michod 2010), I thus write such products as single associations, using the symbol / to
separate sets of genes present in different individuals sampled with replacement from the population. Using this notation,
(Ddﬁ ) is written as D% R and Equation A3 becomes

(o) = (2~ (0 ) (a4

Equation A4 corresponds to the first step of the computation of the effect of drift on genetic moments (i.e., taking into account
changes in allele frequencies due to drift). The second (and last) step consists of expressing associations between genes present
in different individuals sampled with replacement from the population (at the next generation) in terms of associations
between genes in individuals sampled without replacement. For example, we have

<DZ§IA> - % ((pa) + (o)) + (1 j%,) (D) (A5)

where D)) / is the association between two genes at locus A from two individuals sampled without replacement, at the next
generation (and using allele frequencies before drift as reference values). Indeed, two genes sampled with replacement from
the population may be the same gene with probability 1/(2N), be the two homologous copies of the same individual with
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probability 1/(2N), or come from two different individuals with probability 1 — 1/N. Finally, because the different individuals
of the next generation have been sampled independently from an infinite population of juveniles, associations between genes
present in different individuals (and using as reference values allele frequencies among juveniles) are the same as associations
measured among juveniles: in particular, (DY%) = (D)%), <Diff4> = (D}%), and (Dif/fA) = (Dﬂ;{l{). Noting that (Dﬁ}‘;) = 0 [indeed,
= D’:;q — (Di")?, while D" = 0 from the definition of genetic

because the population of juveniles is infinite, we have D’X/VA

associations], we finally obtain
' — Juvy - Juv Juv
(D'a) = (DAY) — 5 (<DAA> + <DAA>), (A6)

representing the effect of drift on the moment (D4, ). Because all results are computed to the first order in 1/N, it is sufficient to
express the moments that are multiplied by 1/(2N) in Equation A6 in the limit as N tends to infinity.

The same method can be used to compute the effect of drift on other genetic moments. For example, using the same reasoning
as for deriving Equation A4 above, we obtain for the expected squared linkage disequilibrium

<D’ABZ> - <Ddfi > - 2<Ddfi . > + <Ddff o > (A7)
ABJAB ABJA /B A/A/B/B
while computing these moments in terms of associations among juveniles yields
ro2\ juv 2 i juv Juv _ Juvjuv\ Jjuy 2 i
(0 = (04 )+ g5y (Pl + (i) ~ 2(08015) - 4(07)) () 43

Again, because all results are computed to the first order in 1/N, it is sufficient to compute the four moments within parentheses
in Equation A8 in the limit as population size tends to infinity [we will see below that the moments (D2 Di%) and (D4 )
become negligible in this limit, while the moment (D’X; ap) 1s generated by selfing]. '

Equation A8 shows that genetic associations with repeated “B” indices (such as Daspp) may appear within recursions (see
also Equation A12). Because locus B is biallelic, these repeated indices can be eliminated using the relation (e.g., equation 5 in
Kirkpatrick et al. 2002)

Ds;; = piqiDs + (1 — 2p;)Ds;, (A9)

where S is any set of loci, and i is a biallelic locus. However, repeated “A” indices will not be eliminated when computing
recursions, so that the equations obtained still hold for the case where more than two alleles segregate at the neutral locus.

Recombination and fertilization Computing moments measured among juveniles in terms of moments measured among
selected parents is somewhat simpler, as recombination and fertilization do not change allele frequencies: therefore, we only
have to consider the different possible modes of transmission of genes between generations. In particular, <Dﬁ;‘: > = <Dpqur>,
while

(oi) =2 (<DPA§> n <D5;‘jg>). (A10)

Indeed, the two homologous genes of a juvenile at locus A come from the same parent if this juvenile has been produced by
selfing (probability «), in which case they are copies of the same parental gene with probability 1/2, while they come from the
two homologous genes of the parent with probability 1/2. With probability 1 — « the juvenile has been produced by out-
crossing, in which case its two homologous genes are sampled with replacement from the parental population: the association
thus becomes Di ;; = (D5™)?, which equals zero (since D5 = 0). Similarly, we have

(Dlw2y — <DiB/AB> = (1—r)2<DPAC;r7AB> +2r(1-r) <DPA§A,B>

+ r2( pPar_ 7
ABJ/AB

(A11)

while
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<DIX1;AB> = % [(1_r)2<<DpAZrBB> + <DPA(]13rAB>>

+2r(1 1) (Do) + (PRl (A12)
+r2(<DPA;;B <DParAB>)] + 1—a< gyAB>,

where <Dj”vm > is given by Equation A11.
ABJAB

Selection As for the effect of drift, computing the effect of selection on genetic moments can be decomposed into two steps (see
also Barton and Turelli 1991; Kirkpatrick et al. 2002). The first step consists in taking into account the change in reference
values (i.e., allele frequencies that appear within associations) due to selection: denoting Dsel moments measured among
selected parents, but using allele frequencies before selection (p;) as reference values (1nstead of allele frequencies after

selection pJ“V) we have (following the same reasoning as for the derivation of Equations A4 and A7)
ar\ sel sel
CHRICIE <DA/A> (A13)
while
<Dvar > _ <Dseu > - 2<Dseu : > n <Dse£ . > (A14)
AB//AB AB /AB AB /A /B A/ABB/

Finally, computing associations measured after selection (using as reference values allele frequencies before selection) D, in
terms of associations measured before selection Dst, is done by weighting each individual by its relative fitness

w
DY =E [W fsnr] ; (A15)

where E is the average over all individuals before selection, W is the fitness of the individual, and W = E[W] is the mean fitness
of the population. To express the right-hand side of Equation A15 in terms of genetic associations, it is useful to write W/W in
terms of (g variables (e.g., Barton and Turelli 1991; Kirkpatrick et al. 2002). The fitness of an individual can be written as

W =1-sh(X}! +X7) —s(1 - 2n)X} X5, (A16)
which, after rearranging and averaging over all individuals, yields

W _ 1= C—sh(¢g + &) —s(1 — 2h) [Zps +Pa(¢H + 3] (A17)
w 1-C—s(1—2h)Dpp

with C = 2sh pg + s(1 — 2h)pg?. Equation A17 thus takes the form of a polynomial of /s 1 variables. However, because terms in
pp and Dg g appear in the denominator, obtaining expressions in terms of moments of genetic associations and allele frequen-
cies requires developing W /W as a Taylor series in s. To the first order in s, we have

%: 1—sh(¢y + &) —s(1—2h)[¢p — Dpp +ps(¢H +¢5)]- (A18)

From this, we obtain, to the first order in s,

(084) = (E[y €] ) = (Oas) = sh(@a) + (Dans)) = s(1 = 20) (Daans) ~ Dsaas) + paDass) + (aDas).
(A19)

Given that moments (pgDaag) and (pgDaag) equal zero at quasi-equilibrium to the first order in 1/N and pg (see File S1),
Equation A19 yields Equation 12 in the main text. Associations between genes present in different individuals are obtained

similarly. For example, <D“£ > equals zero to the first order in s (because D4 = 0), while Equation A18 yields the following
A/A

expression to the second order in s:
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<D§§A> = <E [% 5415[% §A1|>
= 60 (D) +2(Ouin) * Posins))
+ 25°h(1 - 2h) (< > < AB/ABB>
+ <pBD s >+ < > < AB7A,B>>
() 20 ) 25
i <p32DAB7AB> + 2<p32D AB?A,B> + <pBZDA7B7A,B>).

Equations A19 and A20 illustrate the fact that computing the effect of selection on a given genetic moment introduces more
complicated moments, with a higher number of B indices. This may lead to an infinite system of recursions, as the effect of
selection on these moments will introduce yet other moments with even more B indices. However, assuming Ns > 1 ands > u
(so that the frequency of the deleterious allele at mutation—selection balance, py, remains small), we may neglect moments
that are proportional to pz2—more precisely, moments that are o(pg)—to obtain expressions to the first order in pg. As we will
see, using this “rare allele approximation” yields closed systems of recursions for genetic moments.

Rare allele approximation Deriving expressions to the first order in py can be done using the following general rule. Because
all genetic associations involving at least one B index are proportional to pg, moments involving two elements with a B index
(where an element is either an allele frequency p; or an association Ds 1t among genes present in the same individual) are of
order pg? in the limit as population size tends to infinity. For example, (ppDag), (Das?), and (DagDag ) are all of order pg2 as N
tends to infinity, while (D) and (Dagap) are of order py in the same limit. Now, taking the effect of drift into account when
computing recursions for genetic moments generally introduces moments with one less element carrying a B index, multiplied
by 1/N. This is illustrated by Equation A8 showing the effect of drift on the moment (Da3%) (two elements with a B index): drift
introduces two terms involving moments carrying a single element with a B index ((Daaps) and (Dagag)). Because these
moments are multiplied by 1/N in Equation A8, it is sufficient to express them in the limit as N tends to infinity: in this limit,
these terms are thus proportional to py (by contrast, the terms in (Daz?) /N and (DagDa ) /N in Equation A8 are proportional to
Pg? and may thus be neglected). More generally, moments carrying x elements with a B index are thus of order py* in the limit
as N tends to infinity and of order pz*~! to the first order in 1/N (forx > 1). To compute expressions to the first order in py, we
may thus neglect all moments that must be expressed to the first order in 1/N and that carry more than two elements with a B
index (such as (pgpDaDap g)) and all moments expressed in the limit as N tends to infinity carrying more than one element with
a B index (such as (D4p?)). Using this approximation, Equation A20 simplifies to

(A20)

(D) = R (Das™) + 2(DasDias) + (Pas®)) + 25%K(1 = 2H) (Do) + (PasDass)) + (1-2H(Dass?),
(A21)
Furthermore, we obtain for the moments <Dparn >, <Dparn >, and <Dparﬁ > (that are needed to compute a recursion for
AB /AB AB/AB AB/AB
(Dap?), as shown by Equation A11), to the first order in s
<DPElr > (1 — 2sh)(Dag®) — 25(1 — h)(DasDaB ) (A22)
AB JAB
<Di:7AB> = (1—2sh)(DaDa) — (1 —h)((DasDagp) + (DaDasp)) (A23)
<Dparﬂ > = (1 - 28h)<DA732> - 28(1 - h) <DA.BDAB‘B>- (A24)
AB/AB ’ '
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Appendix B: Recursions for Two-Locus Moments
Using the method shown in Appendix A, we obtain for the change in neutral diversity during selection, to the second order in s,
(AsDaa) = — sh((Daag) + (Daag))— s(1 — 2h)((Daas) — (DaaDpp))
— (sh)*({Dag®) + 2(DasDag) + (Dag®))— 25*h(1 — 2h) ((DaDapg) + (DasDaps)) (B1)
— s2(1-2h)*(Dap %),

while the change in neutral diversity during drift is given by Equation 9 in the main text. The same method can be used to compute
recursions for the different moments that appear in Equation B1, from which solutions at quasi-equilibrium can be obtained. For
example, Equations A8, A11, and A22-A24 yield the following recursion for (Daz?) :

(D3s?) = (1~ 25)[(1-1)2(Das?) + 2r(1 ~ 1) (DasDis) + r*(Das?)|

— 25(1—h)[(1 —r)(DagDags) + r (DasDas3)] (B2)
+ oac (Danss) + (D 15)).

To obtain an expression to the first order in 1/N, it is sufficient to express (Daagg) and (Dag 4g) in Equation B2 in the limit when N
tends to infinity. Using Equation A9, we have Daapg = ppqpDaa + (1 — 2pg)Daag. Furthermore, Daap equals zero at quasi-
equilibrium in an infinite population (indeed, the solution obtained for (Dasp) from the equations below is in 1/N): therefore,
(Dasss) =~ Pg{Daa) when population size tends to infinity. From Equation A12, a recursion for (Dag a5) when N tends to infinity
and s = 0 is given by

<D1’43AB> = % [[1 — 27‘(1 — T)]((DAABB> + <DABAB>) + 21’(1 — r)(<DAA373> + <DABBA>)]- (B3)

Using (Daagg) ~ Dp{Daa) and (Daapp) = (Dappa) =~ F Dg(Daa) vields (Dapap) = dap P(Daa), Where ¢ 45 is given by Equation
14, and corresponds to the probability of joint coalescence of two pairs of genes sampled at loci A and B due to selfing, in an
infinite population. It is possible to compute ¢,5 to the first order in s, but the term in s is always negligible when selection is
weak and is thus ignored here. Using the expressions just derived for (Daapg) and (Dagag), Equation B2 becomes

<D'A32> = (1-2sh) [(1—r)2<DA32> +2r(1 —1)(DagDag) + r2<DA,32>]
1
— 2s(1—h)[(1 —r){(DagDasg) + 1 (DasDaps)| + —(1 + ¢a)Pp(Daa). (B4)
Similarly, we obtain the following recursions for moments (DagDag), <DAA,B2>7 (DaDag g), (DapDas ), and (DABA,BZ) (which are

also generated by finite population size), to the first order in s, pg, and 1/N (recursions to the second order in s are derived in
File S1, but yield very similar quantitative results in most cases):

(DasDas) = 5 [(1 = 25h)[(1 =) (Dan®) + (DasDas) + 1 (Das?)]
—s(1=h)[(2(1 —r) + 1)(DagDapp) + (2r +1)(DapDaps)]] (B5)
b F pp(Dan)
(Dys?) = (%)2 [(1— 25h) (Das?) + 2(DasDag) + (Das>))
— 4s(1 — h)((DagDap) + (DasDagg))] (B6)

L (14 ¢n)5(Dan)

Y

(DapDass ) =5 (1= 2sh) | (1-r)*(Dag®) + 2r(1 ~ r)(DasDas) +*(Das?)|
_l’_

[1—5(3=h)][(1 —r)(DasDasp) + 1 (DapDaBB)) (B7)
— s(1—h){Dapp?)] +%(F + ¢a)Pp(Daa)
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(DsDiss) = (3) 101 = 2501 = r)(Das?) + (DasDas) + 1 (Das?)]
+ (1 —2s)((DaBDaB.8) + (DaBDaBB))

— 25(1=h)[(1 —r){DaDag) + 1 (DapDapp)] (B8)
— 25(1 —h)(Dapg®)] + % (F + ¢ap)Pp(Daa)
(Dps?) = (%)2 (1= 2sh) [(1-1)7 (Dag?) + 2r(1 — r)(DagDas) +r*(Das? )|
+ 2(1—25)[(1 —r)(DagDapg) +1 (DapDass)] (B9)
+1-252- h)]<DAB,Bz>} + % (F + dap)pp(Daa)-

Equations B4-B9 can be solved at quasi-equilibrium (setting (M') = (M) for each moment) to obtain expressions for the six
moments of the form Z pz(Daa)/N, where Z is a function (that differs for each moment) of s, h, r, and «. Although these
expressions are complicated, they are easily computed numerically using Mathematica (see File S2).

Recursions for the moments (D) and (Da4 g) that appear on the first line of Equation 12 are given by (to the first orderins,
Dg, and 1/N)

(Dag ) = (1 —sh)[(1 —1){(Daag) +r{Daas)]
+ 2sh[(1— r)<DA32> + (DaDag) + r<DA,Bz>}

(B10)
+ 25(1—2h)[(1 —r)(DasDaps) + 1 (DasDass)]
= 5(1=)(Daana) ~ (DaaDas)) ~ v (Dana)
<D’AA’B> - % [(1 = sh)((Daag) + (Daas))
+ 25h((Das?) + 2(DasDas) + (Das?)) -

+ 25(1 — 2h) ((DapDagg) + (DasDass))
= 25(1 = W) ((Dass) — (DanDss))] ~ (Dasa)

It is sufficient to express the moment (Dap ) that appears in Equations B10 and B11 in the limit as N tends to infinity. To the first
order in s, we have

<DAB,A> = % [(Dapa) = s(1—h)((Dasas) — (DaaDpp))], (B12)
giving at quasi-equilibrium
(Daa) = — (1= h)F G Pg(Dan) (B13)

(see also Roze 2015), where Gag = ¢ — F? is the identity disequilibrium between loci A and B. Finally, a recursion for
(Daag ) — (DaaDpp) (second line of Equation 12) to the first order in s, pg, and 1/N is given by

<D;MB’B> - <D,3AD33,B> = % [[1—5(2 = h)]({Dasss) — (DaaDs.s))
+ (1=sh)[(1 —1)(Daas) +r(Daap)]
+ 2sh[(1 = 1)(Dag®) + (DapDag) + r{Das?)]
+ 25(1 = 2h)[(1 — r)(DasDass) + 7(DapDasp)]
+ 2sh((DaDasg) + (DagDaBB))
+ 25(1 —2h)(Dapp?)] — % Gag pp(Daa).

(B14)
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Equations B10, B11, and B14 can be solved to obtain expressions for (Daag), (Daag), and (Daapp) — (DaaDpp) at quasi-
equilibrium (using the expressions for (Dag?), (DagDas), (Dag®), (DasDasg), (DapDass), and (Dap *) obtained from Equations
B4-B9); again, Mathematica commands to obtain numerical solutions can be found in File S2. Approximations for high selfing
are obtained by assuming that s and 0 = 1 — « are of order ¢ and expressing Equations B4-B14 to the first order in ¢. Similarly,
tight linkage approximations are obtained by assuming that s and r are of order ¢ (see File S1).

Appendix C: Partial Asexuality

Background selection under partial asexuality in diploids has been explored recently by Agrawal and Hartfield (2016), using
coalescence models. The method presented in Appendix A can also be used for the case of a population in which a proportion o
of offspring are produced by sexual reproduction each generation (with random gamete fusion) and a proportion 1 — ¢ by
asexual reproduction (mitosis), as shown in Roze and Michod (2010). In particular, we obtain for the change in neutral
diversity over one generation (to the second order in s and assuming that h is significantly different from zero)

<ADAA> = — % — Sh<<DAAB> =+ <DAA,B>)_ (Sh)2(<DA32> + 2<DABDA,B> + <DA~,BZ>)' (CD

Recursions for the different moments that appear in Equation C1 are given by [to the first order in 1/N and pp ~ u/(sh)]

(Dip?) = (1=sh)* | (110 (Das?) + 2ro(1 — 1) (DagDag) + (ro)*(Dag?)| + % P5(Daa) (€2)
(DasDas) = (1=sh)*(1 ~ o) [(1 ) (DasDag) +ro(Das?)] (C3)

(D4s”) = (1=shP(1=0)*(Das?) + 51 PalDa) ()

(D) = (1= sh)[(1 = o) (Das) + ror(Daap)] + 2sh[(1 —ro) (Das®) + 2(DasDag) + ro(Das?)] ©5)
<DAA,B> = [(1 - 0)(1 —sh)(Daag) + 2sh({DagDag) + (Dap?)]]. (C6)

Expressions for (Dag?), (DagDag), (Das?), (Daas), and (Daa 5) at quasi-equilibrium can be obtained from Equations C2-C6 and
plugged into Equation C1. When the rate of sex o is small, this yields equations 5 and 6 in Agrawal and Hartfield (2016).
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SUPPLEMENTARY FIGURE

Figure S1. Equivalent to Figure 5 in the main text, with N, (y-axis) shown on a

log-scale.
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