
| INVESTIGATION

Inferring the Frequency Spectrum of Derived
Variants to Quantify Adaptive Molecular Evolution

in Protein-Coding Genes of
Drosophila melanogaster
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ABSTRACTMany approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of
counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the
high-copy-number elements of the SFS is difficult, however, because of misassignment of alleles as derived vs. ancestral. This is a
known problem with parsimony using outgroup species. Here we show that the problem is particularly serious if there is variation in the
substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS
using one or two outgroups that attempts to overcome the problem of misassignment. We show that two outgroups are required for
accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for non-
synonymous sites in protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites
in a population of Drosophila melanogaster from phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra
to estimate the frequency and strength of advantageous and deleterious mutations and estimate that �50% of amino acid substi-
tutions are positively selected but that,0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes � 12.
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MOSTprotein sequences are strongly conserved between
closely related species, which suggests thatmost amino

acid–changing mutations are selectively removed from pop-
ulations (Graur and Li 2000). The nature of the selective
forces acting on the mutations that become fixed between
species is central to a variety of questions in population ge-
netics. These include understanding the maintenance of var-
iation within species, determining the causes of variation in
nucleotide diversity across the genome, and discerning the
nature of evolutionary adaptation. Evidence for pervasive
selection in the genome comes from observations of positive
correlations between nucleotide diversity at putatively neu-
trally evolving sites and the rate of recombination (Begun

and Aquadro 1992) and negative correlations between local
genomic diversity and the presence of functional elements
(such as protein-coding exons or conserved noncoding ele-
ments) (Cai et al. 2009; Hernandez et al. 2011; Lohmueller
et al. 2011; Halligan et al. 2013; Enard et al. 2014; Deinum
et al. 2015). These correlations are likely to be caused by
natural selection acting on functional sites in the genome re-
ducing diversity at linked sites, but the precise nature of the
selective forces involved is unresolved because both selective
sweeps owing to positive selection and background selection
caused by purifying selection can contribute to these patterns.

One approach to discriminating between the contribu-
tions of neutral, deleterious, and advantageous substitutions
to molecular evolution is based on the McDonald-Kreitman
(MK) test (McDonald and Kreitman 1991), which compares
within-species polymorphism to between-species divergence.
Initially conceived as a test of departure from neutrality in a
specific gene, it was subsequently adapted to estimate the
proportion of substitutions driven to fixation by positive
selection between species for a class of sites in the genome
(Fay et al. 2002; Smith and Eyre-Walker 2002). It does not,
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however, directly provide information on the rate of occur-
rence of advantageous mutations or on the magnitude of
their selective effects. Furthermore, the approach is com-
promised if there has been a demographic change that
alters the fixation probability of selected alleles (either
advantageously or disadvantageously), the signature of
which is not captured by analysis of the polymorphism data
(Eyre-Walker 2002).

Other ways of combining polymorphism and divergence
data or focusing on polymorphism data only to infer genome-
wide selection may be more fruitful. Andolfatto (2007) and
Macpherson et al. (2007) showed that there is a negative
correlation between synonymous site polymorphisms and
nonsynonymous divergence in Drosophila, and they used this
information to estimate the strength of selection and fre-
quency of adaptive protein evolution. Both studies concluded
that there is widespread adaptive evolution, but estimates of
the strength of selection and frequency of adaptive substitu-
tion depended on the size of the genomic window considered
in the analyses. A related approach fits a population genetics
model to mean reductions in diversity observed around
nonsynonymous sites that have experienced a substitution
between related species (Sattath et al. 2011). This does not
depend on the use of a specific window size. The best-fitting
model suggests that there is substantial variation in the
fitness effects of adaptive amino acid substitutions in Dro-
sophila, potentially shedding light on the different results
of Andolfatto (2007) and Macpherson et al. (2007).

Wehave previously described anapproach that attempts to
simultaneously infer the rate and strength of deleterious and
beneficialmutations occurring in a class of sites in the genome
that exploits the shape of the unfolded site frequency spec-
trum (uSFS) (Schneider et al. 2011). The uSFS is a vector of
counts of nucleotide sites with j copies of the derived allele,
where 0 # j # n, and n is the number of gene copies in the
sample (i.e., including sites fixed for ancestral or derived
alleles). By using the uSFS, information for inferring the
strength of selection can come mainly from current polymor-
phisms within a focal species rather than divergence from an
outgroup species. The first step is to infer demographic param-
eters using the SFS for quasi-neutrally evolving sites, such as
synonymous sites. Conditioning on the estimates of the demo-
graphic parameters, selection parameters are estimated for a
selected site class SFS (e.g., for nonsynonymous sites). These
parameters describe the distribution offitness effects (DFE) for
deleterious mutations and the frequency of occurrence and
strength of selection for one or more classes of advantageous
mutations. Inferring adaptive evolution parameters requires
that there is an excess of high-frequency derived variants
above and beyond that expected from demographic change
and from negative selection acting on the bulk of mutations.

Applying the method of Schneider et al. (2011) or any
method that uses the frequencies of high-frequency derived
variants therefore depends on accurate inference of the uSFS.
Inference of the uSFS is potentially compromised, however,
by misassignment of the ancestral state, and this tends to

affect high-frequency elements of the SFS disproportionately
(Fay and Wu 2000; Baudry and Depaulis 2003; Hernandez
et al. 2007; Glémin et al. 2015). Current methods for infer-
ring the uSFS rely on a single outgroup (Hernandez et al.
2007). Schneider et al. (2011) also described a method for
inferring the uSFS, but we have recently determined that
this tends to overestimate the frequency of high-frequency
derived variants (Halligan et al. 2013). Here we present a
new method for inferring the uSFS using information from
one or two outgroup species, which we thoroughly test
by simulations. We apply this method to a recent whole-
genome polymorphism data set for protein-coding genes
from a sample of Drosophila melanogaster genomes originat-
ing from a Rwanda population close to their ancestral range.
By use of the inferred uSFS, we estimate the frequencies
and effects of deleterious and advantageous amino acid–
changing mutations.

Materials and Methods

Inferring the uSFS: basic assumptions

A focal species is sequenced at multiple sites in a cohort of
individuals sampled fromapopulation.Thepossibilityofmore
than two alleles segregating at a site in the focal species is
disregarded. The consequences of this simplification are in-
vestigated in the simulations described later, which allow
multiallelic sites. To infer the uSFS, we need to compute
probabilities for the possible states of the alleles ancestral
to the observed alleles in the focal species (Figure 1A). We
compute these probabilities using information from a single
gene copy, assumed to be randomly sampled at each site,
from either one or two outgroup species. Polymorphisms in
the common ancestor of the outgroup(s) and the focal species
are disregarded; bias introduced by violating this assumption
is investigated using the simulations. Initially, we assume
that all types of base substitution are equally frequent. Dis-
tinct transition and transversion rates are subsequently
incorporated. The consequences of violating the equal-
mutation-rates assumption in the basic method are ex-
plored by the simulations.

Single-outgroup, single-mutation-rate parameter

Here we illustrate the approach for inferring the uSFS assum-
ing a single outgroup and a single evolutionary divergence
parameter K. This is the divergence between the allele ances-
tral to the observed allele(s) in the focal species and a single
outgroup (Figure 1A). We do not need to consider mutations
from the ancestral allele to the observed segregating alleles in
the focal species. In this and the methods that follow (i.e.,
that allow different transition and transversion rates and two
outgroups), a two-stage approach is implemented. First, the
evolutionary divergence parameter(s) is estimated by maxi-
mum likelihood (ML). Second, assuming perfect knowledge
of divergence parameter(s), the elements of the uSFS are
estimated one by one by ML.
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Single outgroup stage 1: ML estimation of K

Assume that the data consist of counts of numbers of dif-
ferent alleles observed in a sample of n copies in the focal
species (n = 4 gene copies in Figure 1 and Table 1, for
example) and a single copy from an outgroup species. Let
K be the expected number of mutations distinguishing the
allele ancestral to these four gene copies and the outgroup.
Defining yi as the allelic configuration observed at site i in
the focal species and the outgroup, and assuming indepen-
dence among sites, the likelihood of the data for all sites
combined is

L ¼
Ysites
i¼1

pð yijKÞ (1)

If the focal species is monomorphic, there are two possible
configurations of alleles (y1 and y2) (Table 1), and there are
three configurations if the focal species is polymorphic (y3, y4,
and y5) (Table 1). Noting the symmetry of configurations y3
and y4, Equation 1 therefore can be rewritten as

L} pð y1jKÞz1;0pð y2jKÞz2;0
Yn=2
j¼1

�
pð y3jKÞz3;jþz4;jpð y5jKÞz5;j

�
(2)

where zx,j is the number of sites showing the configuration
with subscript x, given that there are j minor allele copies in
the focal species.

Assuming that the number of mutations m is Poisson dis-
tributed with probability PðmjKÞ, the probability of configu-
ration yx, given divergence K, is

pð yxjKÞ ¼
XN
m¼0

qx;mPðmjKÞ (3)

where qx,m is the conditional probability for allelic config-
uration yx given that there are m mutations (Table 1). In
practice, we considered only up to two mutations in the
summation in Equation 3. Simulations with K up to 20%
suggested that allowing more than two mutations had a
negligible effect on estimates of K or the SFS elements.

To understand the table, note, for example, the probability
q1,0 of observing configuration y1 = 1 if there have been no
mutations; it is not possible to observe configuration y1 if
there has been one mutation (i.e., q1,1 = 0); q1,2 = 1/3
because if there had been twomutations, nucleotide A could
have mutated to any other nucleotide and then must have
mutated back to A. The natural log likelihood with respect
to K, i.e., log(Equation 2), was maximized by the Golden
Search Algorithm (Press et al. 1992).

Single outgroup stage 2: ML estimation of the uSFS
elements given K

The approach is to find the ML estimate of the proportion of
probability density pj attributable to the major allele being
ancestral vs. the minor allele being ancestral for each ele-
ment of the SFS while assuming the fixed ML estimate of K
from stage 1. There are therefore n/2+ 1ML estimates to be
made. To compute the likelihood of pj, we need to consider
sites for which there are j copies of one allele and n 2 j
copies of a different allele in the sample of n copies. For
invariant sites (j = 0), there are z1,0 and z2,0 sites that have
allelic configurations y1 and y2, respectively (Table 1). For
variant sites (j 6¼ 0), there are three possible allelic config-
urations (y3, y4, and y5) (Table 1), but sites where the out-
group allele is different from the copies observed in the focal
species (configuration y5) provide no information about the
uSFS and so can be disregarded. Note that these sites do
contribute to the estimate of K. We therefore have z3,j and
z4,j sites with the two informative configurations. The likeli-
hood for variant sites that have j minor alleles in the focal
species is

LðjÞ}
( XN

m¼0

h
qmaj
3;mPðmjKÞ

i
pj þ

XN
m¼0

h
qmin
3;mPðmjKÞ

i
ð12pjÞ

)z3;j

3

( XN
m¼0

h
qmaj
4;mPðmjKÞ

i
pj þ

XN
m¼0

h
qmin
4;mPðmjKÞ

i
ð12pjÞ

)z4;j

(4)

where the superscript maj (min) on q implies that the ances-
tral allele is themajor (minor) allele (Table 1). The likelihood
for invariant sites in the focal species is

Lð0Þ}
( XN

m¼0

h
qmaj
1;mPðmjKÞ

i
p0

)z1;0( XN
m¼0

h
qmin
2;mPðmjKÞ

i
ð12p0Þ

)z2;0

(5)

We considered only up to twomutations in the summations in
Equations 4 and 5. Log likelihood with respect to each pj was
maximized by the Golden Search Algorithm.

Figure 1 Example of a site at which four copies are sequenced in the
focal species, where A is the major allele and the ancestral allele and T is
the minor allele. (A) A single outgroup has the same state as the ancestral
allele. (B) There are two outgroups and an internal node x. Time t2 is the
total number of generations from x to outgroup 2.
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This method can be adapted to infer uSFS elements where
different transition and transversion rates have been esti-
mated (Supplemental Material, File S1 and Table S1) and
where there are two outgroups (File S1 and Table S2).

Simulations

Weassessed the performance of the uSFS inference procedures
using Monte Carlo simulations, which incorporate the possi-
bility of polymorphisms in the population ancestral to the focal
and outgroup species and unequal transition/transversion
rates.We analyzed data sets containing large numbers of sites
specifying the allelic states for n copies sampled from the
population of a focal species and single copies sampled from
populations of one or two outgroup species. The simulated
populations were diploid and of constant population size N=
100. We generally assumed that the neutral diversity u =
0.01 by setting the mutation rate per site per generation to
m= u/4N. We simulated unlinked nucleotide sites that could
be in one of four states (A, T, C, or G). An ancestral popula-
tion was initiated with equal frequencies of the four nucleo-
tides and allowed to evolve to mutation-drift equilibrium for
20N burn-in generations. A site of an individual was mutated
with probability m each generation by randomly altering its
current nucleotide state. In general, the probability of a tran-
sition mutation was equal to 1/(1 + 2/b), where b . 1
implies that there is transition/transversion mutation bias.
In the case of a single outgroup, two separate populations
were each evolved for t1 generations after the burn-in to pro-
duce a focal population and the outgroup population (Figure
1A). When simulating two outgroups, an outgroup 2 popu-
lation was evolved for (t1 + t2)/2 generations, and a second
population was evolved for (t2 – t1)/2 generations up to node
x (Figure 1B). Two populations then were each evolved from
the node x population for t1 generations to produce a focal
population and an outgroup 1 population.

In many simulations, we assumed that all sites evolve
neutrally. We also simulated variation in the rate of substitu-
tionamongsitescausedbyvariation in thestrengthofpurifying
selection. A fraction C of sites was contributed by selectively
constrained sites. Any allele that was different in state from
the wild-type allele that arose at such sites was designated
as mutant and had a selective disadvantage s/2. Effects on
fitness were multiplicative. Fertility selection was carried
out by sampling individuals for reproduction with replace-
ment in proportion to their relative fitness.

We quantified bias (in percent) affecting estimates of
elements of the SFS as the percentage deviation from the true
value of that element.We also estimated the scaled rootmean
square error (RMSE inpercent) for elements of the SFS.RMSE
incorporates variance among estimates (because one method
might produce less variable estimates of SFS elements about
the true values than another) and is also influenced by bias:

RMSE ¼ 1003

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
r
P ðŶ i2YiÞ2

q
P

Yi=r
; (6)

where Ŷ i is the estimate for an SFS element from simulation
replicate i, Yi is the corresponding true value of that element,
and r is the number of simulation replicates.

D. melanogaster polymorphism data: We obtained poly-
morphism data from an African population ofD.melanogaster
comprising 17 Rwandan haploid genomes (RG18N, RG19,
RG2, RG22, RG24, RG25, RG28, RG3, RG32N, RG33,
RG34, RG36, RG38N, RG4N, RG5, RG7, and RG9) that have
been estimated to have the lowest levels of admixture with
European populations (,3%) (see Pool et al. 2012, Figure
3b]. We downloaded FASTQ files from the Drosophila Pop-
ulation Genomics Project (DPGP; http://www.dpgp.org/
dpgp2/candidate/). We further masked any regions of the

Table 1 Five possible configurations (y1, . . ., y5) of numbers of copies of alleles at a site observed in the focal species and the outgroup for
the case of four copies sampled in the focal species

Observed state Conditional probability

Configuration Focal species Outgroup m = no. of mutations qmaj
x;m qmin

x;m qx;m ¼ qmaj
x;m þ qmin

x;m

y1 AAAA A 0 1 0 1
1 0 0 0
2 1/3 0 1/3

y2 AAAA T 0 0 0 0
1 0 1 1
2 0 2/3 2/3

y3 AAAT A 0 1 0 1
1 0 1/3 1/3
2 1/3 2/9 5/9

y4 AAAT T 0 0 1 1
1 1/3 0 1/3
2 2/9 1/3 5/9

y5 AAAT C 0 0 0 0
1 2/3 2/3 4/3
2 4/9 4/9 8/9

There is either no copy or a single copy of a minor allele present in the focal species (T in this case). Assuming that there are from m = 0 to m = 2 mutations between the
ancestral allele of the alleles present in the focal species and the outgroup (Figure 1), the conditional probabilitiesqmaj

x;mandqmin
x;mof observing configuration x given that the

ancestral allele is the major or minor allele, respectively, are shown.
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African samples with evidence of admixture from European
populations using the admixture coordinates reported by
Pool et al. (2012). Following Pool et al. (2012), sites with a
Burrows-Wheeler alignment (BWA) quality score below Q =
31 (equivalent to a Phred score of 48 and approximately
equivalent to one error per 100 kb) also were masked. This
produced the Q31 data set, which is the focus of most of the
analysis. We also analyzed a more stringently filtered Q41
data set. From the FASTQ files, we extracted protein-coding
regions using gene annotations from FlyBase v5.33 (www.
flybase.org) and made FASTA files containing all samples
(17 copies), and we excluded genes within non-crossing-over
regions (see Campos et al. 2012). For each D. melanogaster
gene with multiple transcripts, we chose one transcript at
random. We included as outgroups the orthologous genes
of D. simulans (r2.01) and D. yakuba (r1.3), obtained from
the D. melanogaster–D. simulans–D. yakuba gene alignments
of Hu et al. (2013), from which we selected the coding re-
gions corresponding to our selected transcripts.

Estimating the DFE and rate and strength of adaptive
mutations along with the frequency of
adaptive substitutions

Assuming the inferred unfolded uSFSs for two outgroups and
with no transition/transversion bias, we estimated parame-
ters of the DFE and adaptive mutations by the ML method
described by Schneider et al. (2011), which is incorporated
into the software DFE-alpha (Keightley and Eyre-Walker
2007), with the following modifications: we first fitted a
three-epoch demographic model to the neutral (i.e., synony-
mous) uSFS, allowing two changes of population size, first
from N1 to N2 and then from N2 to N3 at times t2 and t3,
respectively, while also fitting parameters specifying the frac-
tions of unmutated sites (f0) and sites fixed by drift (f2N). By
fitting this model to the DPGP synonymous uSFS, we found
that high-frequency elements were underpredicted. The es-
timated uSFS for synonymous sites contains a small uplift
in the last element, which cannot be explained under the
demographic and mutational model fitted. This uplift could
reflect hitchhiking with selected amino acid variants or pos-
itive selection on synonymous variants. Alternatively, it could
be caused by residual misassignment of low-frequency vari-
ants. We assumed that such processes also affected the non-
synonymous uSFS and would lead to upwardly biased
estimates of positive selection parameters if not corrected.

In a similar manner to that described by Glémin et al.
(2015), which follows the approach of Eyre-Walker et al.
(2006), we therefore corrected elements of the nonsynony-
mous uSFS Nj using the deviations of the observed elements
Sj from the fitted elements Ej of the synonymous uSFS:

N9
j ¼

Nj

1þ ðSj2 EjÞ=Ej for j ¼ 0::n (7)

We assessed goodness of fit by comparing fitted uSFSs to
observed uSFSs using a x2 statistic, but because the numbers

of sites in derived class j and ancestral class n 2 j are non-
independent, we did not perform formal significance tests.

Conditioning on the values of the parameters fitted to the
synonymous SFS, parameters specifying the effects and rela-
tive frequencies of deleterious and advantageous mutations
were fitted by ML to the corrected nonsynonymous uSFS. We
eitherassumedthat thefitnesseffects ofdeleteriousmutations
weredrawnfromagammadistribution(which is specifiedbya
shape and a scale parameter) or, following Kousathanas and
Keightley (2013), that there were nd fixed classes of delete-
rious mutations, where the fitness effect and frequency
of class i are sd,i and pd,i, respectively. We fitted na classes
of advantageous mutations, where the fitness effect and
frequency of class j are sa,j and pa,j, respectively, such that

Xnd

i

pd;i þ
Xna

j

pa;j ¼ 1 (8)

The gamma DFE represents a single, continuously variable
class of deleterious mutations.

To findmaximum-likelihood estimates (MLEs), we carried
out runs with large numbers of combinations of random
starting values. We estimated 95% confidence limits for the
proportion of adaptive mutations and their selective strength
from profile likelihoods on the basis of drops in log likelihood
of 2 units from their respective MLs (Cole et al. 2014). For
each point in each profile likelihood, we used the highest
likelihood obtained from 20 runs using different starting
values sampled around the MLEs. Estimates of a, the pro-
portion of adaptive substitutions, and va, the rate of adap-
tive substitution relative to the rate of neutral substitution,
were obtained as described by Schneider et al. (2011).

Data availability

The authors state that all data necessary for confirming the
conclusions presented in this article are represented fully
within the article. The code for uSFS inference is available
at www.homepages.ed.ac.uk/pkeightl/.

Results

Simulations: single outgroup

To investigate the performance of the uSFS inference pro-
cedureunder circumstanceswhere thedata closely conformto
theassumptionsof themodel,we simulateda focal population
and a single outgroup with nucleotide divergence K = 0.1,
no transition/transversion bias (b= 1), and no selection. We
assumed that u = 4Nem = 0.01 so that u ,, K and few
polymorphic sites in the focal species are also polymorphic
in the ancestral population prior to the split between the focal
species and the outgroup. Figure 2 shows the true uSFS (cal-
culated using knowledge of the ancestral state for each site)
and the uSFSs inferred using the single-outgroup method
described here and the method of Schneider et al. (2011).
The new approach is therefore capable of estimating the
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uSFS with little bias on average, including high-frequency
elements of the SFS. The method of Schneider et al. (2011)
tends to overestimate high-frequency SFS elements, presum-
ably because polymorphic sites having an outgroup allele in-
consistent with either allele present in the focal species are
misassigned. Our approach appears to give nearly unbiased
estimates of the uSFS elements as long as the divergence to
the outgroup is K , 0.3 (Figure S1).

We extended the method to include the estimation of
separate transition and transversion rate parameters (File
S1 and Table S1). This was tested by simulations of neutrally
evolving sites and also produces nearly unbiased estimates
of the uSFS in the presence of transition/transversion
mutational bias (Figure S2A). The single-rate-parameter
method also produces reasonably unbiased estimates of the
uSFS as long as the transition/transversionmutation bias b,
2 (Figure S2B).

Simulations: two outgroups, neutrally evolving sites

We then compared the performances of the uSFS inference
procedures allowing one or two outgroups. The results sug-
gest that there is a clear benefit from using a second outgroup
in terms of lower variance among replicates (lower RMSE)
(Figure 3) but potentially a cost in terms of higher bias (i.e.,
there is a tendency for underestimation of the high-frequency
SFS elements), especially if the divergence from the second
outgroup is small (Figure 3).

Simulations: variable strength of purifying selection
among sites

We then investigated the performance of the uSFS inference
procedures in the presence of variation in the substitution rate
and diversity among sites caused by purifying selection. We
simulated this variationby assuming that a fractionCof sites is
subject to negative selection (seeMaterials and Methods), the
remainder evolving neutrally. We found that with C � 0.85
andNs=10 (so that mutant alleles rarely become fixed), and
divergence, diversity, and the shape of the SFS simulated are
similar to what we observe in the D. melanogaster polymor-
phism data for nonsynonymous sites, although in this case we
assume a constant population size.

We compared the accuracy of the inferreduSFSusing one
or two outgroups, focusing on the high-copy-number ele-
ments of the SFS, which are hardest to estimate accurately.
We assumed a neutral divergence between the focal species
and the first outgroup of K1 = 0.1 (which is similar to the
D. melanogaster –D. simulans divergence) and a neutral
divergence between the internal node and the second out-
group of K2 = 0.15. The results suggest that there is a clear
benefit in terms of both reduced bias and reduced RMSE
from using the information from a second outgroup (Figure
4 and Figure S3). Using information from a single out-
group, however, can lead to serious overestimation of the
high-copy-number SFS elements (as much as 15% in the
cases shown). Presumably, the benefit of using a second
outgroup applies when there are other sources of variation

in the substitution rate among sites, such as variation in the
mutation rate.

Inference of uSFSs and frequency and strength of
adaptive molecular evolution in the D.
melanogaster proteome

We applied the uSFS inference procedure to the polymor-
phism data set of protein-coding genes of the D. melanogaster
DPGP phase 2. Using two outgroups (D. simulans and
D. yakuba), we inferred uSFSs for four- and zerofold sites
(Figure 5). As expected, nucleotide diversity at zerofold sites
is substantially lower than that at fourfold sites, and there is
an enrichment of zerofold singletons, consistent with nega-
tive selection acting on many nonsynonymous sites.

Given the inferred SFSs, we then applied the approach of
Schneider et al. (2011) to estimate the rate of occurrence and
selective strength of adaptive amino acid mutations. We fit-
ted parameters of a three-epoch demographic model to the
synonymous-site data (Table S3 and Figure S4); this model
fit much better than a two-epoch model (log-likelihood
difference = 221) and suggests that there was a population-
size bottleneck followed by a population expansion. There
is, however, an appreciable deviation between the observed
and fitted synonymous uSFSs, particularly affecting the
last element [Figure S4; x2(16) = 138]. We assumed that
misinference also would affect the nonsynonymous uSFSs,
potentially leading to spurious estimates of adaptive molec-
ular evolution. We therefore corrected the nonsynonymous

Figure 2 True uSFS (from simulation) and estimated uSFSs computed by
the present method and by the method of Schneider et al. (2011), both
using a single outgroup. Twenty copies were sampled at each site of the
focal species. Diversity u = 4Nm = 0.01, and divergence between the focal
species and the outgroup was K = 0.1. There were eight replicate simu-
lations, each with 106 sites, resulting in a negligible sampling variance for
elements of the estimated uSFSs.
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uSFSs using the deviation between the observed and fitted
synonymous uSFSs, as described in Materials and Methods.
Uncorrected and corrected nonsynonymous uSFSs are shown
in Figure S5.

Given the demographic parameter estimates from the
synonymous site data, we then estimated parameters of the
DFE for deleterious mutations and the proportion pa and
scaled selection strength acting on one or more classes of
adaptive mutations Nesa, assuming that the DFE is constant
through time. Several models had similar levels of statistical
support (Table 2). The best-fitting model gives an excellent
fit to the data [Figure S5; x2(16) = 16.9] and consisted of

four classes of mutational effects: two classes of deleterious
mutations, a class of neutral mutations, and a single class of
advantageous mutations. There is substantial support for
models with adaptive mutations (Dlog L = 93 between the
best-fitting model and the same model excluding adaptive
mutations). Assuming the four-class model, MLEs of the pro-
portion of advantageous mutations and the scaled strength of
selection acting on them are pa = 0.0045 [approximate upper
95% confidence interval (CI) = 0.012] and Nesa = 11.5 (ap-
proximate lower 95% CI = 5), respectively. Because we as-
sume that the inferred SFSs are known with certainty, these
95% CIs are likely to be underestimates. Note that pa and sa
are hard to estimate separately, but their product is well es-
timated. Other models that explain the data almost as well
(gamma DFE, three classes of mutational effects) give some-
what different ML estimates of pa and Nesa, but the products
of pa 3 Nesa are of similar magnitude (Table 2). Fitting addi-
tional classes of mutations (advantageous or deleterious) did
not lead to a further increase in log likelihood. We then esti-
mated the frequency of adaptive substitutions a and the rate

Figure 4 One- vs. two-outgroup comparison in the presence of variation
among sites in selective constraints. The panels show bias (A) and RMSE
(B) in the last three elements of the uSFS. For example, the label 17,1
refers to the bias/RMSE affecting element 17 with a single outgroup. A
fraction C of sites was simulated with scaled selection coefficient Ns =
210, and the remainder evolve neutrally. A total of 105 sites were sim-
ulated per replication and 240 replicates. The divergence parameters for
neutral alleles were K1 = 0.1 and K2 = 0.15.

Figure 3 Estimated bias (%) (A) and RMSE (B) for estimates of uSFS
elements 17, 18, and 19 plotted against divergence K2 between node x
and outgroup 2 (see Figure 1) for the case of 20 copies sampled at each
site of the focal species. Positive and negative percent bias imply over- or
underestimation of the SFS element, respectively. The solid and dotted
lines show inferences using one or two outgroups, respectively. The di-
vergence between the focal species and outgroup 1 was K1 = 0.1, and
the diversity in the focal species was u = 0.01. There was no transition/
transversion bias. In each of 160 replicates, 105 sites were simulated.
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of adaptive substitution relative to that of neutral substitu-
tion va from the proportions and fixation probabilities of the
advantageous, neutral, and deleterious mutation classes. The
estimates are a = 0.57 and va = 0.096 for the four-class
model, but these are sensitive to themodel assumed (Table 2).

Discussion

Therewere threemainmotivations for this study. First,wehad
determined that a previously described method to infer the
uSFS (Schneider et al. 2011) tends to overestimate high-
frequency SFS elements. Second, using parsimony for infer-
ring ancestral states of high-frequency elements of the SFS
is problematical because the corresponding low-frequency
elements usually involve a far greater number of sites, and
these tend to be misassigned as high-frequency elements,
potentially leading to an overestimation of the frequency of
alleles under positive selection. Third, large, genome-wide
polymorphism data sets offer the opportunity to investigate
the frequency and strength of ongoing adaptive molecular
evolution using a method also described by Schneider et al.
(2011), but this requires accurate inference of the uSFS. The
development of this approach was motivated by inconsis-
tent results emerging from the application of variants of the
MK test, such as the methods of Welch (2006), DFE-alpha
(Eyre-Walker and Keightley 2009), and DoFE (based on
Eyre-Walker et al. 2006).

These methods all estimate the frequency of adaptive
substitutions in a set of loci by contrasting polymorphism data
in a focal species with divergence from an outgroup species.
For example, many estimates of the proportion of adaptive
amino acid substitutions a in plants are negative, some sig-
nificantly, at face value, implying that there is little adaptive
protein evolution (Gossmann et al. 2010). The true value of a
cannot be negative, however, and this result may reflect the
presence of widespread population structure in plant species,
which distorts the SFS and could bias estimates of a down-
ward. Some estimates of a in great apes are also negative
(Good et al. 2013). A clear example of inconsistency comes

from a reciprocal analysis of genome-wide polymorphism
data in murid rodents, where an estimate of a in wild house
mice using divergence from the rat is strongly and signifi-
cantly positive, i.e., a � 0.3 (Halligan et al. 2013), whereas
an estimate using polymorphisms within wild brown rats and
divergence from the mouse is strongly and significantly neg-
ative, i.e., a � 20.3 (Deinum et al. 2015). The negative esti-
mate presumably reflects a recent population bottleneck in
the brown rat, leading to overprediction of the number of
fixed, slightly deleterious mutations.

In contrast toMK-basedmethods, themethod of Schneider
et al. (2011) uses information on polymorphism data within a
species to infer ongoing adaptive molecular evolution. It can
be set up to use no information from sites fixed for the derived
allele, but we did not do that here. By simulations, we in-
vestigated the circumstances under which accurate inference
of the uSFS is possible. The most important potential source
of misinference we identified is variation in the substitution
rate, affecting the joint spectrum of polymorphisms in the
focal species and divergence(s) from the outgroup(s). This
could either be due to variation in the mutation rate between
different kinds of sites or variation between sites in selective
constraints or adaptive potential. In principle, it is possible to
account for some components of variation in the mutation
rate by explicit modeling (e.g., transition/transversion bias).
Selection that varies among sites appears to be a more im-
portant issue, however, and is more difficult to model. Our
simulations show that with a single outgroup only, high-copy-
number uSFS elements are potentially seriously overesti-
mated if there is variation in selective constraints among
sites. This is so because the divergence between the ancestral
allele and the outgroup is computed as an average across
sites, but this will be lower than the divergence at the subset

Table 2 ML estimates of parameters from DFE-alpha for three
different models

ML estimates

Parameter Four classes Three classes Gamma

b — — 0.35
pd1 0.88 0.89 1
Nesd1 2177 2167 22120
pd2 0.076 0.10 —

Nesd2 22.8 21.4 —

pd3 0.039 — —

Nesd3 0 — —

pa 0.0045 0.0093 0.0031
Nesa 11.5 6.7 17
a 0.57 0.89 0.68
va 0.096 0.14 0.091
Dlog L 0 20.6 22.1

The models assume that there are four or three classes of mutational effects or a
gamma DFE. The difference in log likelihood (Dlog L) is the difference from the best-
fitting model. The parameters of the model are as follows: b = shape of gamma
distribution; pdi = proportion of deleterious mutations in category i; Nesdi = scaled
selection coefficient for deleterious mutations in category i; pa = proportion of
adaptive mutations; Nesa = scaled selection coefficient for adaptive mutations;
a = proportion of amino acid substitutions fixed by positive selection; and va =
rate of adaptive amino acid substitution relative to the neutral substitution rate.

Figure 5 Unfolded SFSs for zero- and fourfold sites of D. melanogaster
protein-coding genes inferred using two outgroups (D. simulans and
D. yakuba).
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of unconstrained sites, so multiple hits are undercorrected at
these sites. Our simulation results suggest that incorporating
a second outgroup substantially corrects this problem, allow-
ing accurate estimation of the uSFS. It should be feasible to
extend our approach to include multiple outgroups, although
there are presumably diminishing returns and potential
biases from adding more distant outgroups. Incorporating
data from multiple linked SNPs in a region also might add
further information, although the rapid decay of linkage dis-
equilibrium with distance between markers in Drosophila
(Mackay et al. 2012) means that this would be of limited use.

We applied our new uSFS inference approach to the
D. melanogaster DPGP phase 2 data for protein-coding genes,
and several aspects of the results are noteworthy. The
inferred uSFS for synonymous sites contains a small but ap-
preciable uplift in the last element (Figure S4). With the de-
mographic and mutational models fitted by DFE-alpha,
however, it is not possible to obtain an uplift in the fitted
uSFS. The apparent increase in the frequency of high-copy-
number derived synonymous alleles could be genuine and
explained, for example, by hitchhiking with linked selected
amino acid variants or selection on synonymous variants
(Zeng 2010; Clemente and Vogl 2012; Lawrie et al. 2013).
If the uplift is an effect of selection on linked sites, we can
assume that this also affects the nonsynonymous uSFS. This
is the rationale for correcting the nonsynonymous uSFS
based on the deviation from the fitted and observed synony-
mous uSFS. Alternatively, it could be caused by residual
misassignment of low-frequency variants. We investigated
whether thismight be due to sequencing errors by analyzing a
more stringent set of SNPs (Q41). The inferred uSFSs are
extremely similar to the uSFSs analyzed (Q31) (Figure S6),
suggesting that sequencing errors in DPGP are not an im-
portant source of misinference. We corrected the nonsy-
nonymous uSFS based on the deviation from the fitted
and observed synonymous uSFS.

Fitting the demographic parameters estimated from syn-
onymous sites and then estimating selection parameters by
ML resulted in a close fit to the corrected nonsynonymous
uSFS (Figure S5), but several alternative models also give
excellent fits (Table 2). Taking the best-fitting model at face
value, the results therefore imply that there is a major con-
tribution from adaptive amino acid substitutions to protein
evolution in D. melanogaster, i.e., a � 0.5. This figure is con-
sistent with several studies employing variants of the MK test
to estimate the frequency of adaptive protein evolution (Fay
et al. 2002; Smith and Eyre-Walker 2002; Welch 2006;
Andolfatto 2007; Eyre-Walker and Keightley 2009; Campos
et al. 2014). The estimated selective effects of adaptive mu-
tations are also consistent with estimates for the more com-
mon, weakly selected of the two classes inferred by Sattath
et al. (2011) based on changes in diversity around substituted
nonsynonymous sites. However, Sattath et al. (2011) esti-
mated that only about 13% of amino acid substitutions cause
selective sweeps, arguing that this low value could reflect
a prevalence of partial sweeps. However, Schneider et al.

(2011) used information from high-frequency polymor-
phisms, which is most relevant for inferring the ongoing
strength of selection and the frequency of relatively weakly
selected variants. This is so because strongly selected muta-
tions are expected to be relatively rare and sweep rapidly to
fixation, leaving little detectable footprint in the uSFS.
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Figure S1. Bias (%) as average deviation from true values of estimates for the last three elements 

of the uSFS (i.e., number of copies of the derived allele = 17, 18 or 19) as a function of divergence 

(K) between the focal species and an outgroup. 20 copies were sampled at each site of the focal 

species, and one from a single outgroup. Diversity θ = 4Nμ = 0.01. There was no 

transition:transversion bias. 105 sites were simulated in each of 160 replicates.
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Figure S2. Bias (%) as average deviation from true values for estimates of the last three elements 

of the uSFS (i.e., number of copies of the derived allele = 17, 18 or 19) as a function of the 

transition:transversion mutation rate bias parameter, beta. 20 copies were sampled at each site of 

the focal species, diversity = θ = 4Nμ = 0.01, and the divergence between the focal species and a 

single outgroup = K = 0.1. 105 sites were simulated in each of 32 replicates. A: analysis using 

method incorporating separate transition and transversion rates. B: analysis using single rate 

parameter method.
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Figure S3. One versus two outgroup comparison where a subset of sites are subject to negative 

selection. Bias (A) and RMSE (B) in the last three elements of the uSFS. For example, 17,1 refers 

to the bias/RMSE affecting element 17 with one outgroup. A fraction C = 0.9 of sites had scaled 

selection coefficient (Ns) and the remainder evolved neutrally. 105 sites were simulated per 

replication and 240 replicates. The divergences for neutral alleles were K1 = 0.1 and K2 = 0.15.
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Figure S4. Comparison of synonymous uSFS from a three-epoch model estimated by DFE-alpha 

(fitted) to the observed uSFS  in Drosophila.
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Figure S5. Comparison of nonsynonymous uSFS estimated by DFE-alpha (fitted) to the observed 

uncorrected uSFS and the corrected uSFS in Drosophila.
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Figure S6. Uncorrected nonsynonymous uSFSs for the DPGP data inferred using two SNP quality 

thresholds (Q31 and Q41).
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Table S1 Configurations and conditional probabilities for the case of transition/transversion

bias.

Observed state Conditional probability

Config
Focal

species
Outgroup m qx ,m

maj qx ,m
min qx ,m=qx , m

maj
+qx , m

min

y1 AAAA A 0 1 0 1

1 0 0 0

2 Kts
2 + 2Ktv

2 0 Kts
2 + 2Ktv

2

y2 AAAA T 0 0 0 0

1 0 Kts Kts

2 0 2Ktv
2 2Ktv

2

y3 AAAA C 0 0 0 0

1 0 Ktv Ktv

2 0 4KtsKtv 4KtsKtv

y4 AAAG A 0 1 0 1

1 0 Kts Kts

2 Kts
2 + 2Ktv

2 2Ktv
2 Kts

2 + 4Ktv
2

y5 AAAG G 0 0 1 1

1 Kts 0 Kts

2 2Ktv
2 Kts

2 + 2Ktv
2 Kts

2 + 4Ktv
2

y6 AAAG C 0 0 0 0

1 2Ktv 2Ktv 4Ktv

2 4KtsKtv 4KtsKtv 8KtsKtv

y7 AAAC A 0 1 0 1

1 0 Ktv Ktv

2 Kts
2 + 2Ktv

2 2KtsKtv Kts
2 + 2KtsKtv + 2Ktv

2

y8 AAAC C 0 0 1 1

1 Ktv 0 Ktv

2 2KtsKtv Kts
2 + 2Ktv

2 Kts
2 + 2KtsKtv + 2Ktv

2

y9 AAAC G 0 0 0 0

1 Kts + Ktv Kts + Ktv 2Kts + 2Ktv

2 2KtsKtv + 2Ktv
2 2KtsKtv + 2Ktv

2 4KtsKtv + 4Ktv
2

Nine possible configurations (y1...y9) of numbers of copies of alleles at a site observed in the focal 

species and the outgroup for the case of four copies sampled in the focal species. There are either 

zero or one copy of a minor allele present in the focal species. Assuming that there are from m = 0 

to 2 mutations, the conditional probabilities qx ,m
maj and qx ,m

min of observing configuration x, given 

that the ancestral allele is the major or the minor allele, respectively, are shown as a function of the

rates of transition and transversion substitution, Kts and Ktv, respectively.



Table S2 Configurations and conditional probabilities for the case of two outgroups.

Observed state Conditional probability

Config Focal sp. Outgroup 1 Outgroup 2 m qx ,m
maj qx ,m

min qx ,m=qx ,m
maj

+q x ,m
min

y1 AAAA A A 0 1 0 1

1 0 0 0

2 2K1
2/3 + K2

2/3 0 2K1
2/3 + K2

2/3

y2 AAAA T A 0 0 0 1

1 K1/3 0 K1/3

2 2K1
2/3 + 2K1K2/3 0 2K1

2/3 + 2K1K2/3

y3 AAAA A T 0 0 0 1

1 K2/3 0 K2/3

2 2K1
2/3 + 2K2

2 /3 0 2K1
2/3 + 2K2

2 /3

y4 AAAA T T 0 0 0 1

1 K1/3 0 K1/3

2 2K1
2/3 + 2K1K2/3 0 2K1

2/3 + 2K1K2/3

y5 AAAA T C 0 0 0 1

1 0 0 0

2 4K1
2/3 + 8K1K2/3 0 4K1

2/3 + 8K1K2/3

y6 AAAT A A 0 1 0 1

1 0 K1/3 K1/3

2 2K1
2/3 + K2

2/3 2K1
2/9 + 2K1K2/9 8K1

2/9 + 2K1K2/9 + K2
2/3

y7 AAAT T T 0 0 1 1

1 K1/3 0 K1/3

2 2K1
2/9 + 2K1K2/9 2K1

2/3 + K2
2/3 8K1

2/9 + 2K1K2/9 + K2
2/3

y8 AAAT A T 0 0 0 0

1 K2/3 K1/3 K1/3 + K2/3

2 2K1
2/9 + 2K2

2 /9 2K1
2/9 + 2K1K2/9 4K1

2/9 + 2K1K2/9 + 2K2
2/9

y9 AAAT T A 0 0 0 0

1 K1/3 K2/3 K1/3 + K2/3

2 2K1
2/9 + 2K1K2/9 2K1

2/9 + 2K2
2/9 4K1

2/9 + 2K1K2/9 + 2K2
2/9

y10 AAAT A C 0 0 0 0

1 2K2/3 0 2K2/3

2 4K1
2/9 + 4K2

2 /9 4K1
2/9 + 8K1K2/9 8K1

2/9 + 8K1K2/9 + 4K2
2/9

y11 AAAT T C 0 0 0 0

1 0 2K2/3 2K2/3

2 4K1
2/9 + 8K1K2/9 4K1

2/9 + 4K2
2/9 8K1

2/9 + 8K1K2/9 + 4K2
2/9

y12 AAAT C A 0 0 0 0

1 2K1/3 0 2K1/3

2 4K1
2/9 + 4K1K2/9 4K1

2/9 + 8K1K2/9 8K1
2/9 + 12K1K2/9

y13 AAAT C T 0 0 0 0

1 0 2K1/3 2K1/3

2 4K1
2/9 + 8K1K2/9 4K1

2/9 + 4K1K2/9 8K1
2/9 + 12K1K2/9

y14 AAAT C C 0 0 0 0

1 2K1/3 2K1/3 4K1/3

2 4K1
2/9 + 4K1K2/9 4K1

2/9 + 4K1K2/9 8K1
2/9 + 8K1K2/9

y15 AAAT C G 0 0 0 0

1 0 0 0

2 4K1
2/9 + 8K1K2/9 4K1

2/9 + 8K1K2/9 8K1
2/9 + 16K1K2/9



Table S3 ML estimates of demographic parameters from DFE-alpha.

Parameter ML estimates

N2/N1 0.30

N3/N1 0.70

t2/N2 3.2

t3/N3 0.28



File S1

Inference of evolutionary rates and uSFS elements allowing different transition and 

transversion rates

Stage 1. Analogously to equation (2), the likelihood equation for the allelic configurations (Table 

S1) as a function of the transition and transversion rates (Kts and Ktv, respectively) is:

L∝p(y 1∣K ts ,K tv)
z1,0 p(y 2∣K ts ,K tv)

z2,0 p(y 3∣K ts ,K tv)
z3,0

∏
j=1

n /2

[p(y 4∣K ts ,K tv )
z4, j+z5, j p(y 6∣K ts ,K tv)

z6, j p(y 7∣K ts ,K tv)
z7, j+z8, j p (y 9∣K ts ,K tv)

z9, j]

where 

p(y x∣K ts ,K tv)=∑
m=0

∞

qx ,m P (m∣K ts+2K tv ) ,

qx,m is the conditional probability given in Table S1 and P(m | x) is the Poisson probability function 

for m events with parameter x. Likelihood was maximized using the Simplex algorithm (Press et al. 

1992).

Stage 2. Analogously to equation (4), the likelihood equation for the allelic configurations, given the

evolutionary rates, as a function of the site frequency spectrum elements with derived allele count j

= 1 to n – 1 is:

L( j )∝ ∏
i=4,5,7,8

[∑
m=0

∞

(q i , m
maj P (m∣K ts+2K tv))π j+∑

m=0

∞

(q i , m
min P (m∣K ts+2K tv))(1−π j)]

zi , j

,

where index i refers to the configurations in Table S1. Likelihood was maximized by the Golden 

Search algorithm (Press et al. 1992).

Inference of evolutionary rates and uSFS elements allowing two outgroups



Stage 1. The likelihood equation for the allelic configurations (Table S2) as a function of the lengths

of the branches (K1 and K2, Figure 1) is:

L∝∏
i=1

5

p (y i∣K 1, K 2)
zi ,0∏

j=1

n/2

( ∏
i=6,8,10,12

p (y i∣K1, K 2)
zi , j+ zi+1, j p(y 13∣K 1, K 2)

z13, j p(y 14∣K1, K 2)
z14, j) ,

where

p(y x∣K1, K 2)=∑
m=0

∞

qx ,m P (m∣2K1+K 2) ,

qx,m is the conditional probability given in Table S2 and P(m | x) is the Poisson probability function 

for m events parameter x. Likelihood was maximized using the Simplex algorithm (Press et al. 

1992).

Stage 2. The likelihood equation for the allelic configurations, given the branch lengths K1 and K2, 

as a function of the site frequency spectrum elements with derived allele count j = 1 to n – 1 is:

L( j )∝∏
i =6

13

[∑
m=0

∞

(q i , m
maj P (m∣2K 1+K 2))π j+∑

m=0

∞

(q i , m
min P (m∣2K 1+K 2))(1−π j )]

z i , j

,

where index i refers to configurations in Table S1. Likelihood was maximized by the Golden Search

algorithm (Press et al. 1992).
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