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University, CBIO-Centre for Computational Biology, 77300 Fontainebleau, 3Institut Curie, 75248 Paris Cedex and
4INSERM U900, 75248 Paris Cedex, France

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Inanc Birol

Received on June 4, 2015; revised on October 26, 2015; accepted on November 13, 2015

Abstract

Motivation: Metagenomics characterizes the taxonomic diversity of microbial communities by

sequencing DNA directly from an environmental sample. One of the main challenges in metage-

nomics data analysis is the binning step, where each sequenced read is assigned to a taxonomic

clade. Because of the large volume of metagenomics datasets, binning methods need fast and

accurate algorithms that can operate with reasonable computing requirements. While standard

alignment-based methods provide state-of-the-art performance, compositional approaches that as-

sign a taxonomic class to a DNA read based on the k-mers it contains have the potential to provide

faster solutions.

Results: We propose a new rank-flexible machine learning-based compositional approach for taxo-

nomic assignment of metagenomics reads and show that it benefits from increasing the number of

fragments sampled from reference genome to tune its parameters, up to a coverage of about 10,

and from increasing the k-mer size to about 12. Tuning the method involves training machine learn-

ing models on about 108 samples in 107 dimensions, which is out of reach of standard softwares

but can be done efficiently with modern implementations for large-scale machine learning. The re-

sulting method is competitive in terms of accuracy with well-established alignment and compos-

ition-based tools for problems involving a small to moderate number of candidate species and for

reasonable amounts of sequencing errors. We show, however, that machine learning-based

compositional approaches are still limited in their ability to deal with problems involving a greater

number of species and more sensitive to sequencing errors. We finally show that the new method

outperforms the state-of-the-art in its ability to classify reads from species of lineage absent from

the reference database and confirm that compositional approaches achieve faster prediction times,

with a gain of 2–17 times with respect to the BWA-MEM short read mapper, depending on the num-

ber of candidate species and the level of sequencing noise.

Availability and implementation: Data and codes are available at http://cbio.ensmp.fr/

largescalemetagenomics.

Contact: pierre.mahe@biomerieux.com

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Recent progress in next-generation sequencing technologies allow to

access large amounts of genomic data within a few hours at a rea-

sonable cost (Soon et al., 2013). In metagenomics, next-generation

sequencing is used to analyze the genomic content of microbial com-

munities by sequencing all DNA present in an environmental sample

(Riesenfeld et al., 2004). It gives access to all organisms present in

the sample even if they do not grow on culture media (Hugenholtz

et al., 2002) and allows us to characterize with an unprecedented

level of resolution the diversity of the microbial realm (Peterson

et al., 2009).

The raw output of a metagenomics experiment is a large set of

short DNA sequences (reads) obtained by high-throughput sequenc-

ing of the DNA present in the sample. There exist two main

approaches to analyze these data, corresponding to slightly different

goals. On the one hand, taxonomic profiling aims to estimate the

relative abundance of the members of the microbial community,

without necessarily assigning each read to a taxonomic class. Recent

works like WGSQuikr (Koslicki et al., 2014) or GASIC (Lindner

and Renard, 2012) proved to be very efficient for this purpose.

Taxonomic binning methods, on the other hand, explicitly assign

each read to a taxonomic clade. This process can be unsupervised,

relying on clustering methods to assign reads to several bins (i.e.

clusters), or supervised, in which case reads are individually assigned

to nodes of the taxonomy (Mande et al., 2012). While binning is ar-

guably more challenging than profiling, it is a necessary step for

downstream applications which require draft-genome reconstruc-

tion. This may notably be the case in a diagnostics context, where

further analyses could aim to detect pathogen microorganisms

(Miller et al., 2013) or antibiotic resistance mechanisms (Schmieder

and Edwards, 2012).

In this article, we focus on the problem of supervised taxonomic

binning, where we wish to assign each read in a metagenomics sam-

ple to a node of a pre-defined taxonomy. Two main computational

strategies have been proposed for that purpose: (i) alignment-based

approaches, where the read is searched against a reference sequence

database with sequence alignment tools like BLAST (Huson et al.,

2007) or short read mapping tools (e.g. BWA, Li and Durbin, 2009)

and (ii) compositional approaches, where a machine learning model

such as a naive Bayes (NB) classifier (Parks et al., 2011; Wang et al.,

2007) or a support vector machine (SVM, McHardy et al., 2007;

Patil et al., 2012) is trained to label the read based on the set of

k-mers it contains. Recently, a very fast compositional approach

using long k-mers and not based on machine learning models, called

Kraken (Wood and Salzberg, 2014), has also been proposed. Since

the taxonomic classification of a sequence by compositional

approaches is only based on the set of k-mers it contains, they can

offer significant gain in terms of classification time over similarity-

based approaches. Training a machine learning model for taxo-

nomic binning can, however, be computationally challenging.

Indeed, compositional approaches must be trained on a set of se-

quences with known taxonomic labels, typically obtained by sam-

pling error-free fragments from reference genomes. In the case of

NB classifiers, explicit sampling of fragments from reference gen-

omes is not needed to train the model: instead, a global profile of

k-mer abundance from each reference genome is sufficient to esti-

mate the parameters of the NB model, leading to simple and fast im-

plementations (Parks et al., 2011; Rosen et al., 2011; Wang et al.,

2007). On the other hand, in the case of SVM and related discrim-

inative methods, an explicit sampling of fragments from reference

genomes to train the model based on the k-mer content of each

fragment is needed, which can be a limitation for standard SVM im-

plementations. For example, Patil et al. (2012) sampled approxi-

mately 10 000 fragments from 1768 genomes to train a structured

SVM (based on a k-mer representation with k¼4, 5, 6) and re-

ported an accuracy competitive with similarity-based approaches.

Increasing the number of fragments sampled to train a SVM may im-

prove its accuracy and allow us to investigate larger values of k.

However, it also raises computational challenges, as it involves ma-

chine learning problems where a model must be trained from poten-

tially millions or billions of training examples, each represented by a

vector in 107 dimensions for, e.g. k¼12.

In this work, we investigate the potential of compositional

approaches for taxonomic label assignment using modern, large-

scale machine learning algorithms. We propose a new, rank-flexible

compositional approach trained with large-scale machine learning

methods and assess its performance in different situations. We show

that it provides an interesting trade-off in speed and accuracy com-

pared to the state-of-the-art, particularly when confronted to species

absent from the reference database, and for a moderate number of

candidate species.

2 Methods

2.1 Linear models for read classification
In most of compositional metagenomics applications, a sequence is

represented by its k-mer profile, namely, a vector counting the num-

ber of occurrences of any possible word of k letters in the sequence.

Only the A;T;C;G nucleotides are usually considered to define

k-mer profiles, that are therefore 4k-dimensional vectors. Although

the size of the k-mer profile of a sequence of length l increases expo-

nentially with k, it contains at most l � kþ 1 non-zero elements

since a sequence of length k contains l � kþ 1 different k-mers.

Given a sequence represented by its k-mer profile x 2 R4k

, we

consider linear models to assign it to one of K chosen taxonomic

classes. A linear model is a set of weight vectors w1; . . . ;wK 2 R4k

that assign x to the class

arg max
j¼1;...;K

w>j x ; (1)

where w>x is the standard inner product between vectors. To train

the linear model, we start from a training set of sequences x1; . . . ;xn

2 R4k

with known taxonomic labels c1; . . . ; cn 2 f1; . . . ;Kg. An NB

classifier, e.g. is a linear model where the weights are estimated from

the k-mer count distributions on each class. Another class of linear

models popular in machine learning, which include SVM, are the

discriminative approaches that learn the weights by solving an opti-

mization problem which aims to separate the training data of each

class from each other. More precisely, to optimize the weight wj of

the jth class, one typically assigns a binary label yi to each training

example (yi¼1 if ci¼ j or yi ¼ �1 otherwise) and solves an opti-

mization problem of the form

min
w

1

n

Xn

i¼1

‘ðyi;w
>xiÞ þ kjjwjj2 ; (2)

where ‘ðy; tÞ is a loss function quantifying how ‘good’ the prediction

t is if the true label is y, and k�0 is a regularization parameter to

tune, helpful to prevent overfitting in high dimension. An SVM sol-

ves (2) with the hinge loss ‘ðy; tÞ ¼ maxð0; 1� ytÞ, but other losses

such as the logistic loss ‘ðy; tÞ ¼ logð1þ expð�ytÞÞ or the squared

loss ‘ðy; tÞ ¼ ðy� tÞ2 are also possible and often lead to models with

similar accuracies. These models have met significant success in
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numerous real-world learning tasks, including compositional meta-

genomics (Patil et al., 2012). In this work, we use the squared loss

function and choose k¼0, a setting that seemed appropriate from

preliminary experiments.

2.2 Large-scale learning of linear models
Although learning linear models by solving (2) is now a mature

technology implemented in numerous softwares, metagenomics ap-

plications raise computational challenges for most standard imple-

mentations, due to the large values that n (number of reads in the

training set), p ¼ 4k (dimension of the models) and K (number of

taxonomic classes) can take.

The training set is typically obtained by sampling fragments

from reference genomes with known taxonomic class. For example,

Patil et al. (2012) sampled approximately n¼10 000 fragments

from 1768 genomes to train SVM models based on k-mer profiles of

size k¼4, 5, 6. However, the number of distinct fragments that may

be drawn from a genome sequence is approximately equal to its

length (by sampling a fragment starting at each position in the gen-

ome), hence can reach several millions for each microbial genome,

leading to potentially billions of training sequences when thousands

of reference genomes are used. While considering every possible

fragment from every possible genome may not be the best choice be-

cause of the possible redundancy between the reads, it may still be

useful to consider a significant number of fragments to properly

account for the intra and inter species genomic variability. Similarly,

exploring models with k larger than 6, say 10 or 15, may be interest-

ing but requires (i) the capacity to manipulate the corresponding

4k-dimensional vectors (415 � 109) and (ii) large training sets since

many examples are needed to learn a model in high dimension.

Finally, real-life applications involving actual environmental sam-

ples may contain several hundreds microbial species, casting the

problem into a relatively massive multiclass scenario out of reach of

most standard implementations of SVM.

To solve (2) efficiently when n, k and K take large values, we use

a dedicated implementation of stochastic gradient descent (SGD

Bottou, 1998) available in the Vowpal Wabbit software (VW,

Agarwal et al., 2014; Langford et al., 2007). In short, SGD exploits

the fact that the objective function in (2) is an average of n terms,

one for each training example, to approximate the gradient at each

step using a single, randomly chosen term. Although SGD requires

more steps to converge to the solution than standard gradient des-

cent, each step is n times faster and the method is overall faster and

more scalable. In addition, although the dimension p ¼ 4k of the

data is large, VW exploits the fact that each training example is

sparse, leading to efficient memory storage and fast updates at each

SGD step. We refer the interested reader to Bottou (2010) for more

discussion about the relevance of SGD in large-scale learning. In

practice, VW can train a model with virtually no limit on n as long

as the data can be stored on a disk (they are not loaded in memory).

As for k, VW can handle up to 232 distinct features, and the count of

each k-mer is randomly mapped to one feature by a hash table. This

means that we have virtually no limit on k, except that when k

approaches or exceeds the limit (such that 4k ¼ 232, i.e. k¼16), col-

lisions will appear in the hash table and different k-mers will be

counted together, which may impact the performance of the model.

2.3 Rank-specific and rank-flexible read classification
The classification approach described in Section 2.1 can be readily

applied by labelling sampled fragments according to a given taxo-

nomic rank and learning read classification models tailored to this

level of resolution, which is sometimes referred to as rank-specific

approaches (Parks et al., 2011). We build such rank-specific classi-

fiers at the species, genus and family levels.

In addition, we implement a rank-flexible classifier to automatic-

ally choose the most adequate level where a read should be classified

in the taxonomy or leave it unclassified if it looks too different from

the reads used to train the model. For that purpose, we assess the re-

liability of a rank-specific prediction at any level by means of two

criteria: the maximum score returned by the linear model (1) and

the difference between the two largest scores. According to the ter-

minology proposed by Gammerman and Vovk (2007), the former

criterion accounts for the credibility of the prediction: if the se-

quence is not granted a sufficient score for any class, it may be con-

sidered unusual with respect to the training dataset. The latter

criterion accounts for the confidence of the prediction: if the scores

of the two top-scoring classes are comparable, both classes may be

considered plausible. By combining both criteria we can reject pre-

dictions that are unlikely or ambiguous. To combine rank-specific

classifiers into a rank-flexible one, we start from the model built at

the lowest rank—species in our case—and iteratively allow a re-

jected read to be classified at the upper rank. If a read is rejected by

all rank-specific models considered, it is left unclassified.

The reject option mechanism underlying this rank-flexible pro-

cedure heavily depends on thresholds on the maximum score of the

linear model and on the difference between the two largest scores,

which can be set globally or on a taxon-by-taxon basis. A strategy

to optimize these thresholds is described in Supplementary Materials

(Section 2), together with an illustration of the trade-offs that can be

achieved in terms of recall and precision.

3 Data

We assemble three databases of genomes, which we refer to below

as the small, the medium and the large databases. Each comprises a

set of reference genomes to train the models and a set of validation

genomes from which reads are generated to evaluate the perform-

ance of the different classification methods.

The small database contains as references 356 complete genome

sequences covering 51 bacterial species, listed in Supplementary

Table S1. For validation, we choose 52 genomes not present in the

reference database but originating from one of the 51 species (two

genomes are indeed available for the Francisella tularensis species,

one of which originating from the novicida subspecies). This small

database is of limited biological interest but is convenient to exten-

sively test the different methods and vary their parameters.

The medium and large databases are meant to represent more

realistic situations, involving a larger number of candidate bacterial

species and a larger number of reference genomes. We download the

5201 complete bacterial and archeal genomes available in the NCBI

RefSeq database as of July 2014 (Pruitt et al., 2012), by means of a

functionality embedded in the Fragment Classification Package

(Parks et al., 2011). We then filter these sequences according to a

criterion proposed in Parks et al. (2011), only keeping genomes that

belong to genera represented by at least three species. We also re-

move genomes represented by less than 106 nucleotides to filter draft

genome sequences, plasmids, phages, contigs and other short se-

quences. The 2961 remaining genomes originate from 774 species,

among which 193 are represented by at least two strains and 110 by

at least three strains. To build the medium database, we randomly

pick one strain within each of the 110 species with at least three

strains as a validation set and combine all other sequences in the
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193 species with at least two strains as reference database. The ra-

tionale of this split is to ensure that each species in the reference

database is represented by at least two strains, which allows to opti-

mize the values of the thresholds involved in the classification pro-

cedure on a taxon-by-taxon basis, by means of an internal

validation process. To define the large database, we randomly pick

one strain within each of the 193 species represented by at least two

strains to define the validation database and keep the remaining se-

quences of the 774 species as reference database. This ensures that

each strain in the validation set comes from a species that is present

in the reference database.

In addition, we create two additional validation sets to assess the

performance of models trained on the large reference database in

more challenging situations. First, we assemble a novel lineage valid-

ation set composed of genomes in the NCBI RefSeq database from

species not represented in the large reference database. Details about

the number of strains in the novel lineage validation set are provided

in Supplementary Table S2. Second, we consider a real dataset com-

posed of actual reads, the HMP Microbial Mock Community data-

set (Even, Low Concentration, 454 GS FLX Titanium, SRA

accession SRX030841). This dataset contains 1 386 198 reads com-

ing from a mock sample made of a genomic DNA mixture obtained

from 20 bacterial and 1 archaeal strains [see Martin et al. (2012) for

further details about the considered strains]. Reads with quality

score below 20 are trimmed, and reads shorter than 25 bp are fil-

tered out.

4 Results

4.1 Proof of concept on the small database
In this section, we present a study on the small dataset, aiming to

evaluate the impact of increasing the number of fragments used to

train the model as well as the length of the k-mers considered. For

that purpose, we consider a rank-specific setting defined at the spe-

cies level, without any reject option mechanism, and learn several

classification models based on fragments of length L¼200 or

L¼400 sampled from the 356 reference genomes in the small refer-

ence database, represented by k-mers of size in f4; 6;8; 10; 12g. The

number of fragments used to learn the models is gradually increased

by drawing several ‘batches’ of fragments to cover, on average, each

nucleotide of the reference genomes a pre-defined number of times

c. We vary the coverage c between 0.1 to its maximal value, equal

to the length of the fragments considered. This leads to learning

models from around n ¼ 2:7� 105, for c¼0.1 and L¼400, up to

around n ¼ 1:1� 109 fragments, when c reaches its maximal value.

This is way beyond the configurations considered for instance

in (Patil et al., 2012), where SVM models were learned from ap-

proximately 104 fragments drawn from 1768 genomes.

To assess the performance of these models, we consider two sets

of 134 319 fragments, of respective length 200 and 400, drawn from

the 52 complete genomes that are not in the reference database used

to train the models. Performance is measured in terms of species-

level recall. We first compute the prediction recall within each spe-

cies, i.e. the proportion of fragments originating from this species

that are correctly classified and consider the average recall observed

across species. In a multiclass setting, this indicator is indeed less

biased toward over-represented classes than the global rate of cor-

rect classification.

Figure 1 shows the performance reached by models based on

fragments of length 200 (left) or 400 (right), for different values of

k (horizontal axis) and different coverages (different colors). We

first note that for c¼0.1, i.e. for a limited number of fragments, the

classification performance starts by increasing with the size of the

k-mers (up to k¼8 and k¼10 for fragments of length 200 and 400,

respectively) and subsequently decreases. This suggests that the

number of fragments considered in this setting is not sufficient to ef-

ficiently learn when the dimensionality of the feature space becomes

too large. Note that twice as many fragments of length 200 as frag-

ments of size 400 are drawn for a given coverage value, which may

explain why performance still increases beyond k¼8 with smaller

fragments. Increasing the number of fragments confirms this hy-

pothesis: performance systematically increases or remains steady

with k for c�1 and for k�8, the performance is significantly higher

than that obtained at c¼0.1, for both length of fragments.

Increasing the coverage from c¼1 to c¼10 has a positive impact in

both cases, although marginally for fragments of length 400.

Further increasing the number of fragments does not bring any no-

ticeable improvement.

Altogether, the optimal configuration on this small dataset in-

volves k-mers of size 12 and drawing fragments at a coverage c�10

for the two lengths of fragments considered. Further increasing the

size of the k-mers did not bring improvements and actually proved

to be challenging. Indeed, as mentioned above, VW proceeds by

hashing the input features into a vector offering at most 232 entries.

This hashing operation can induce collisions between features,

which can be detrimental to the model if the number of features be-

comes too high with respect to the size of the hash table. This issue

is even more stressed in a multiclass setting, where the number of

hash table entries available per model is divided by the number of

classes considered. On this dataset, 51 models have to be stored in

the hash table, which reduces the number of entries available per

model to 232=51 � 232�6 ¼ 413. We have empirically observed that

performance could not increase for k greater than 12 and actually

decreased for k-mers greater than 15.

We now compare these results to two well-established

approaches: a comparative approach based on the BWA-MEM se-

quence aligner (Li, 2013) and a compositional approach based on

the generative NB classifier (Rosen et al., 2011). The NB experi-

ments rely on the Fragment Classification Package implementation

(Parks et al., 2011) and are carried out in the same setting as VW:

we compute profiles of k-mers abundance for the 356 genomes of

the reference database and use them to assign test fragments to their

most likely genome. BWA-MEM is configured to solely return hits

with maximal score (option -T 0). Unmapped fragments are

counted as misclassifications, and a single hit is randomly picked in

L = 200
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Fig. 1. Increasing the number of fragments and k-mer size on the small data-

sets. Left: L¼200 bp fragments. Right: L¼400 bp fragments. These figures

show the average species-level recall obtained by linear predictors trained

with Vowpal Wabbit from fragments covering each reference genome with a

mean coverage c from 0.1 to L. Performances are reported as a function of k-

mer sizes
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case of multiple hits, to obtain a species-level prediction. This latter

random hit selection process is repeated 20 times, and the perform-

ance indicator reported below corresponds to its median value ob-

tained across repetitions. Results are shown in Figure 2. We first

note that k-mer-based approaches, either generative or discrimina-

tive, never outperform the alignment-based approach. Comparable

results are nevertheless obtained for k¼12 with VW, while the NB

shows slightly lesser performance (around 4 points in both cases).

Performances obtained for shorter k-mers are markedly lower than

that obtained by BWA-MEM. We note finally that VW generally

outperforms the NB classifier, except for small k-mers (k�6).

In summary, these experiments demonstrate the relevance and

feasibility of large-scale machine learning for taxonomic binning:

we obtain a performance comparable to that of the well-established

alignment-based approach, provided a sufficient number of

fragments and long enough k-mers are considered to learn the

k-mers-based predictive models.

4.2 Evaluation on the medium and

large reference databases
We now proceed to a more realistic evaluation involving a larger

number of candidate microbial species and a larger number of refer-

ence genomes, using the medium and large reference databases. We

learn classification models based on results obtained on the small

database: we consider k-mers of size 12 and a number of fragments

allowing to cover each base of the reference genomes 10 times in

average. We limit our analysis to fragments of length 200, which

leads to models learned from around n ¼ 1:38� 108 and n ¼ 2:56

�108 fragments for the medium and large reference databases, re-

spectively. Note that due to the larger number of species involved,

around 232=193 ’ 412 and 232=774 ’ 411 entries of the VW hash

table are available per model for each of these reference databases.

We evaluate the performance of the models on fragments extracted

from the genomes of the corresponding validation databases and

draw a number of fragments necessary to cover each base of each

genome once in average, which represents around 2� 106 and 3:5

�106 sequences for the medium and large databases, respectively.

We consider the rank-specific (at the species level) and rank-

flexible VW strategies, as explained in Section 2.3, and compare

them to BWA-MEM and NB, also set to work in a species-level

rank-specific setting, as well as to the rank-flexible Kraken method

trained on the same reference database (Wood and Salzberg, 2014).

We assess the classification performance in terms of precision and

recall. For a given species, recall (or sensitivity) is defined as the pro-

portion of test sequences originating from this species that are classi-

fied as such. Precision (or positive predictive value) corresponds to

the proportion of test sequences actually originating from this spe-

cies among sequences classified as such. To compare the classifica-

tion performance of the various systems, we compute the precision

and recall observed for each species of the validation dataset and

report their average value. We also report the average species-level

F-measure, defined as the harmonic mean of precision and recall.

For rank-flexible strategies, we consider a second definition of re-

call, referred to as the upper recall, and the corresponding upper

F-measure, in which a sequence is considered to be correctly pre-

dicted if it is classified into a ancestor taxon of its species.

Results are shown in Figure 3. We first note that for the medium

reference database, rank-specific VW and BWA-MEM performances

are very similar in terms of species-level recall (mean value of 86.2%

and 86.8%, respectively). The NB classifier, on the other hand, has

a lower species-level recall, with 6 points less than the alignment-

based approach. Rank-flexible strategies also exhibit a lower spe-

cies-level recall but offer a higher level of upper recall, with Kraken

providing slightly better performance than VW (1 point in terms of

species-level recall and 3 points in upper recall). On the other hand,

rank-flexible strategies offer a significantly higher precision than the

three rank-specific approaches, which reach comparable values.

This is due to the rank-flexible ability to reject predictions and to

classify reads at upper ranks, which positively impacts the precision,

measured at the species-level. Interestingly, we note that while both

rank-flexible approaches reject the same amount of predictions

(around 5% per species in average) and classify the same amount of

fragments at the species-level (around 84% per species in average),

Kraken shows a higher precision than VW (97.5% vs. 95%). These

results therefore indicate that trade-offs can be met in terms of preci-

sion and recall. Rank-specific approaches based on BWA and VW

can indeed offer a higher species-level recall, at the price of classifi-

cation errors hence of precision. Rank-flexible strategies, on the

other hand, manage to maintain a high level of precision, at the price
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Fig. 2. Comparison between Vowpal Wabbit and reference methods on the

small datasets. Left: L¼ 200 bp fragments. Right: L¼400 bp fragments.

These figures show the average species-level recall obtained by linear predic-

tors trained with Vowpal Wabbit from fragments covering each reference

genome with a mean coverage equal to 10 (solid line). Performances are

reported as afunction of k-mer sizes. This approach is compared to the stand-

ard compositional NB approach (dashed line) and an alignment-based

approach based on BWA (dash-dotted line)
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Fig. 3. Performance on the medium and large reference databases. This fig-

ure shows the classification performance measured on genomic fragments in

terms of average species-level recall, precision and F-measure, for the vari-

ous classification strategies considered. For rank-flexible approaches, the

average upper recall and upper F-measure are shown as white bars on top of

the gray ones, representing species-level indicators
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of a lower species-level recall. This drop is, however, counterbal-

anced by the flexibility of classifying sequences at upper ranks, lead-

ing to a higher upper-recall than the species-level recall of rank-

specific approaches.

Considering a larger number of candidate species in the large ref-

erence database proves to be challenging for methods based on short

k-mers. Indeed, a drop of 10 points in terms of species-level recall is

observed for the VW and NB rank-specific strategies, while BWA

suffers of a lesser drop of around 6 points. Kraken turns out to be

the most competitive approach compared to BWA. Indeed, Kraken

species-level recall becomes comparable to that of rank-specific VW

but still offers a greater precision and the flexibility of retrieving pre-

dictions at upper ranks. The rank-flexible strategy based on VW is

less competitive on the large database than it was on the medium

one.

4.3 Robustness to sequencing errors
The evaluation performed in the previous section is based on taxo-

nomic classification of DNA fragments drawn from reference gen-

omes without errors. In real life, sequencing errors may alter the

read sequences and make the classification problem more challeng-

ing. To evaluate the robustness of the classifiers to sequencing

errors, we generate new reads simulating three realistic types of

sequencing errors: homopolymeric stretches, which are commonly

encountered in pyrosequencing (e.g. Roche 454) and ion sequencing

(e.g. IonTorrent) technologies, general mutations (substitutions and

insertions/deletions) and an error model tailored to the Illumina

MiSeq technology. For the two former models, we rely on the

Grinder read simulation software (Angly et al., 2012). More pre-

cisely, we consider the Balzer homopolymeric error model meant to

reproduce the Roche 454 technology (Balzer et al., 2010) and the

4th degree polynomial proposed by Korbel et al. (2009) to study

general mutations. In this latter case, however, we modify the par-

ameters of the error model to reach a median error rate of 2%, in

agreement with the results of the original publication (Korbel et al.,

2009). The Illumina MiSeq error model was defined internally, ac-

cording to a procedure described in Supplementary Materials

(Section 3). To compare the results of the fragment- and read-based

evaluations, each dataset simulated from the medium and large val-

idation databases includes as well around 3:5� 106 or 2� 106

sequences, respectively.

Figure 4 presents the performance obtained by the rank-specific

and rank-flexible VW strategies and those obtained by Kraken. On

the medium database, we note that the impact of these sequencing

errors is usually limited, where a drop of at most one point is

observed with respect to the results obtained on fragments, essen-

tially due do a decrease of the recall. This is, however, not the case

for the general mutation error model with the VW rank-flexible

strategy, where a drop of 6 points in terms of species-level recall is

observed. The upper recall, on the other hand, remains comparable,

indicating that a larger number of predictions are made (correctly)

at an upper rank in this case. Considering a larger number of species

in the large database also has a limited impact for the VW rank-

specific strategy and for Kraken, for the Balzer and Miseq error

models (drop of <0.5 point with respect to the fragments results).

The mutation error model is, however, more challenging, leading to

a drop of species-level recall of 3 points for VW and 1.5 point for

Kraken (reduced to a 0.7 point in terms of upper recall). The rank-

flexible VW strategy, on the other hand, is more impacted. We note

indeed a higher drop in terms of species-level recall, even for the

Balzer and MiSeq error model (2 and 5 points, respectively). The

situation is even worse for the mutation error model, where a drop

of almost 12 points is observed. This is due, at least in part, to an in-

crease of the rejection rate with this error model (13% per species in

average vs. 8–10% for the same strategy on other error models and

7.5% with Kraken on the same error model). In any case, the drop

in terms of upper recall is less severe, indicating that a larger fraction

of predictions are made above the species level.

In summary, these results suggest that k-mer-based read classifi-

cation models are robust to realistic sequencing noise. We note,

however, that VW is globally more impacted than Kraken, especially

in its rank-flexible setting and the general mutation error model.

Additional experiments involving higher levels of noise, described in

Supplementary Materials (Section 4), confirm this observation.

4.4 Evaluation on novel lineages
Metagenomic samples encountered in real-life applications may in-

clude microorganisms not represented in the reference database used

to carry out the taxonomic binning. This may be due to the presence

of a previously unknown microorganism, which is common in envir-

onmental studies, or of a microorganism for which no reference gen-

ome is available. In this section, we thus evaluate the ability of
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Fig. 4. Robustness to sequencing errors. Top: medium reference database; Bottom: large reference database. This figure shows the classification performance

measured on simulated reads in terms of average species-level recall, precision and F-measure, for the various classification strategies considered. For rank-

flexible approaches, the average upper recall and upper F-measure are shown as white bars on top of the gray ones, representing species level
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taxonomic binning methods to classify reads coming from novel

bacterial lineages at their appropriate taxonomic rank. For this pur-

pose, we extract from the NCBI RefSeq database genomes of species

not represented in the large reference database and qualify them ac-

cording to the rank of their closest relative. For instance, a strain is

said to be ‘reachable’ at the genus level when its species is not part

of the reference database but when other species of the same genus

are represented. To estimate the performance of classifiers for such

novel lineages, we extract strains reachable at the genus, family,

order, class and phylum levels, draw genomic fragments from their

genomes and classify them using the rank-flexible VW strategy and

Kraken, on the large reference database. We assess the performance

in terms of the proportion of reads that are (i) assigned to the appro-

priate taxon, (ii) assigned to an ancestor taxon, (iii) assigned to a

descendant taxon, (iv) rejected and (v) misclassified. In the two for-

mer cases, the prediction is considered to be correct, which allows to

define criteria of recall by considering case (i) and upper recall by

considering cases (i) and (ii). Predictions assigned to a descendant

taxon are said to be too specific.

Figure 5 shows the results obtained for novel lineages reachable

at the genus, family and order levels. Results obtained at other ranks

are provided in Supplementary Materials (Section 5). We can first

note from panels A and B that both VW and Kraken reject a large

proportion of the predictions (between 56% and more than 93% in

average across reachable taxa). The reject rate increases with the

taxonomic distance between the novel lineage and the reference

database in both cases and is larger with Kraken, especially at the

family level and above. The high reject rate of Kraken comes with a

very moderate error rate (around 3% in average), while VW suffers

from a much higher error rate (around 15%). We note moreover

that the recall is very low at the family level and above, suggesting

that it is difficult to effectively detect genomic proximity from

k-mers at such taxonomic distance. A closer look at novel lineages

reachable at the genus level, i.e. strains coming from species for

which species of the same genus are available, which probably con-

stitutes the most realistic scenario, highlights important differences

between VW and Kraken. We note indeed that the recall is much

higher with VW than Kraken: 15.3% vs. 4.2% on average across

reachable genera and 19.4% vs. 4.6% in terms of upper recall.

Conversely, Kraken classifies a greater proportion of fragments too

specifically, assigning 26.3% of the fragments to a sibling species,

instead of 10.3% with VW. This is illustrated in Figure 5C, which

compares the upper recall on a genus-by-genus basis, as well as in

Supplementary Figure S9, which further highlights the trade-off

observed in terms of recall and proportion of too specific prediction.

In summary, these results indicate first that the faculty of

k-mers-based methods to effectively recognize novel genera and

other more taxonomically distant lineages is limited. As for novel

species, the rank-flexible VW strategy is more efficient than Kraken,

with a greater ability to assign reads to the appropriate genus (or

above) where Kraken essentially classify reads at the species level,

that is, as a sibling species.

4.5 Evaluation on a real dataset
We finally compare the predictions obtained by VW and Kraken on

the real, HMP Microbial Mock Community dataset, using the mod-

els learned on the large reference database. As we have no certainty

about the correct classification of each individual read, we compare

the aggregated predictions over all reads.

Figure 6 shows the abundance profiles obtained by the two

approaches, restricted to taxa accounting for at least 0.2% of the

sample. We note that these abundance profiles are highly comparable.

In particular, we note that both approaches reject approximately the

same amount of reads, while VW classifies slightly more reads at the

genus-level. Eighteen out of the 21 spiked strains are retrieved by both

methods (Streptococcus agalactiae and Lactobacillus gasseri are not

shown in Figure 6 because their abundance is below 0.2%) and the

three remaining ones (Escherichia coli, Rhodobacter sphaeroides and

Actinomyces odontolyticus) are not, because they are not represented

in the reference database. Interestingly, both methods classify reads

coming from the ‘novel’ E. coli strain into Shigella species because of

their close relatedness (Lukjancenko et al., 2010), with the advantage

for VW to take into account this uncertainty by classifying more reads

at the Shigella genus level.
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Fig. 5. VW and Kraken performance on novel lineages. Panels (A) and (B) pre-

sent the proportions of unclassified fragments, the recall (fragments assigned

to their correct reachable taxon), the upper recall (fragments assigned to their

correct reachable taxon or one of its ancestors), the proportion of too specific

predictions (fragments assigned to a descendant of their reachable taxon)

and the error rate (fragments assigned to a taxon not part of the branch of

their reachable taxon). These results are shown for three reachable ranks

(genus, family and order) and correspond to average values across reachable

taxa of a given rank. Results obtained at higher ranks are provided in

Supplementary Figure S7. Panel (C) compares the VW and Kraken upper re-

call estimations for the 69 genera used to evaluate the performance on the

new strains reachable at the genus level
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4.6 Classification speed
Last but not least, we now turn to the comparison of the compara-

tive and compositional approaches in terms of prediction time. This

aspect is indeed of critical importance for the analysis of the large

volumes of sequence data provided by next-generation sequencing

technologies and constitutes the main motivation of resorting to

k-mer-based approaches. To perform this evaluation, we measure

the time taken by BWA-MEM and the k-mer-based approaches to

process the four test datasets involved in the previous experiments

(one fragment dataset, three reads datasets), with the models learned

from the medium and large databases, to investigate the impact of

the number of species involved in the reference database. We do not

make a distinction between the VW and NB compositional

approaches: both involve computing a score for each candidate

species, defined as a dot product between the k-mer profile of the se-

quence to classify and a vector of weights obtained by training the

model. To compute this dot-product efficiently, we implemented a

procedure described in Sonnenburg et al. (2006). With this proced-

ure, each A, T, G, C nucleotide is encoded by two bits, which allows

to directly convert a k-mer as in integer between 0 and 4k � 1.

Provided that the weight vector is loaded into memory, the score

can be computed ‘on the fly’ while evaluating the k-mer profile of

the sequence to be classified, by adding the contribution of the cur-

rent k-mer to the score. The drawback of this procedure lies in the

fact that the vectors of weights defining the classification models

need to be loaded into memory, which can be cumbersome in a mul-

ticlass setting. For 193 and 774 species and k-mers of size 12, this

amounted to 12 and 48 gigabytes, respectively.

Computation times are measured on a single CPU (Intel

XEON-2.8 Ghz) equipped with 250 GB of memory and are detailed

in Supplementary Table S4. The time needed to classify each read or

fragment dataset by VW shows little variation, for a given reference

database. Its median value obtained across test datasets reaches 4.4

and 8.8 min using the medium and large reference databases, re-

spectively, hence about a 2-fold difference. The time taken by

Kraken is smaller and more stable across datasets: 2.9 and 3.3 min

using the medium and large reference databases, respectively, hence

about 1.5 and 2.7 times faster than VW. On the large database, this

therefore amounts to classifying around 4� 105 and 1� 106 200 bp

reads per minute with VW and Kraken, respectively. BWA-MEM

shows a different behavior. We indeed observe that the time is lon-

ger with reads than fragments, while the size of the reference data-

base has a lesser impact. Compositional approaches systematically

offer shorter prediction times than the alignment-based approach,

with an improvement of 2.4–12.4 for VW and 7–17.3 times with

Kraken, depending on the configuration.

Finally, Figure 7 further investigates the relationship between the

number of species involved in the reference database and VW predic-

tion time. For this purpose, we generate random models involving 1

to 1000 classes and measure the time needed to process each test data-

set. We note that for problems involving fewer than 100 candidate

species, VW can achieve faster prediction times than Kraken. This

situation may in particular arise in diagnostic applications involving

specific types of specimens or, at the extreme, regarding the issue of

filtering reads coming from the human host in microbiome samples.

In this latter case, a binary VW model trained to discriminate bacter-

ial from human reads takes around 20 s to process these test datasets,

while the dedicated Kraken model takes around 3 min.

5 Discussion

In this work, we investigate the potential of modern, large-scale ma-

chine learning approaches for taxonomic binning of metagenomics

data and propose a new rank-flexible classification strategy.
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to process each test dataset by VW as the number of classes increases from 1

to 1000. The dashed horizontal line represents the median time measured by

Kraken on the large database
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Fig. 6. Abundance profiles obtained with VW (A) and Kraken (B) on the HMP

spiked dataset. Abundance profiles are presented at the genus level, with col-

ors corresponding to the different predicted species, restricted to species ac-

counting for at least 0.2%) of the samples. Light-gray fractions of the bars

correspond to genus-level predictions
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We extensively evaluate its performance when the scale of the problem

increases regarding (i) the length of the k-mers considered to represent

a sequence, (ii) the number of fragments used to learn the model and

(iii) the number of candidate species involved in the reference data-

base. We also investigate in details its robustness to sequencing errors

using simulated reads. We consider three baselines for this evaluation:

a comparative approach based on the BWA-MEM sequence aligner

and two compositional approaches based on the generative NB classi-

fier and based on Kraken. We demonstrate in particular that increas-

ing the number of fragments used to train the model has a significant

impact on the accuracy of the model and allows to estimate models

based on longer k-mers. While this could be expected and was already

highlighted by previous studies, the resulting configurations are out of

reach of standard SVM implementations. We also show that discrimi-

natively trained compositional models usually offer significantly

higher performances than generative NB classifiers. The resulting

models are competitive with well-established alignment tools and with

Kraken for problems involving a small to moderate number of candi-

date species and for realistic amounts of sequencing errors. Our results

suggest, however, that machine learning-based compositional

approaches, both discriminative and generative, are still limited in

their ability to deal with problems involving more than a few hundreds

species. In this case, indeed, compositional approaches exhibit lower

performance than alignment-based approaches and are much more

negatively impacted by sequencing errors. When confronted with spe-

cies absent from the training set, we show that our model is more ac-

curate than Kraken, which has a larger level of rejection due to its use

of longer k-mers, and affects more reads too specifically to species of

the reference dataset. Finally, we confirm that compositional

approaches achieve faster prediction times. This is indeed systematic-

ally the case in the various configurations listed above, with predic-

tions obtained 2–17 times faster by compositional approaches, and,

interestingly, depends on the number of candidate species. We note in

particular, that for problems involving fewer than 100 candidate spe-

cies, which may arise in diagnostic applications involving specific types

of specimens, VW can achieve faster prediction times than Kraken. At

the extreme, for the binary problem aiming to separate bacterial from

human reads, which is commonly used while analyzing a microbiome

sample, VW can offer a 9-fold increase in terms of prediction time

with respect to Kraken. We emphasize, however, that fast predictions

can only be obtained provided that the classification models are

loaded in memory, hence for a memory footprint that scales linearly

with the number of candidate species and exponentially with the size

of the k-mers, which can become important for large reference data-

bases and long k-mers.

At least three simple extensions could be envisioned to make com-

positional approaches more competitive in accuracy with the align-

ment-based approach, faster and to limit their memory footprint. First,

the robustness to sequencing errors may be improved by learning mod-

els from simulated reads instead of fragments. This could indeed allow

to tune the model to the sequencing technology producing the reads to

be analyzed, provided its error model is properly known and character-

ized. Second, introducing a sparsity-inducing penalty while learning the

model would have the effect of reducing the number of features enter-

ing the model, hence to reduce the memory footprint required to load

the model into memory. Finally, alternative strategies, known as error

correcting tournaments (Beygelzimer et al., 2009), could be straightfor-

wardly considered to reduce the number of models to learn, hence to

store into memory during prediction, to address a multiclass problem.

Our results indeed suggest that addressing these issues is critical to

build state-of-the-art compositional classifiers to analyze metagenomics

samples that may involve a broad spectrum of species.
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