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Abstract

When a binary dependent variable is misclassified, that is, recorded in the category other than 

where it really belongs, probit and logit estimates are biased and inconsistent. In some cases the 

probability of misclassification may vary systematically with covariates, and thus be endogenous. 

In this paper we develop an estimation approach that corrects for endogenous misclassification, 

validate our approach using a simulation study, and apply it to the analysis of a treatment program 

designed to improve family dynamics. Our results show that endogenous misclassification could 

lead to potentially incorrect conclusions unless corrected using an appropriate technique.
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1. INTRODUCTION

Misclassification of a dichotomous categorical variable means that an observation with a 

true value of ′0′ is observed as ′1′ or an observation that is truly a ′1′ is observed as a ′0′. 

When the misclassified variable is the dependent variable, probit or logit estimates may lead 

to biased and inconsistent estimates if the misclassification is ignored or modeled incorrectly 

(Hausman, 2001).

Misclassification of a variable can happen for various reasons, although one can categorize 

them broadly into two groups; response errors that are random in nature, and those that vary 

systematically with some respondent characteristic. The case we explore here is the latter, 

when the probability of misclassification is observation specific and dependent on 

covariates.

The source of the error sometimes offers some insight into whether possible 

misclassification is systematic or not. In labor market data, for example, some respondents 

may misreport their employment status or a correctly reported labor status may be 
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mistranscribed (Chua and Fuller, 1987; Poterba and Summers, 1995). If the data is 

misreported because of language difficulties or a lack of understanding, the probability of 

misclassification could vary systematically with education or primary language. Moreover, 

while we might think mistranscribed data is a random event, if the mistranscriptions are due 

to transcriber quality and transcribers are correlated with location, then misclassification 

probabilities could vary systematically with location.

Previous work on misclassified dependent variables has taken two paths. The first approach 

uses supplemental data to verify the accuracy of responses. Chua and Fuller (1987) develop 

a parametric model that incorporated all J(J—1) misclassification (possibilities of an 

outcome variable with J categories, but their approach requires a minimum of three 

independent sets of survey responses obtained by re-interviewing the original respondents, 

and has a limited practical use. The conditional logit procedure proposed in Poterba and 

Summers (1995) also incorporates all possibilities of misclassification and requires 

misclassification probabilities found by analyzing the discrepancies between interview and 

re-interview outcomes.

An alternative path builds the probability of misclassification into the estimation procedure, 

allowing for errors in the data, and using statistical methods to correct for it. Hausman et al. 

(1998) and Abrevaya and Hausman (1999) suggest both parametric and semi-parametric 

approaches for misclassification probabilities that cannot be independently verified and are 

independent of covariates. The focus of their parametric model is a dichotomous outcome 

variable with two types of misclassification, which they denote as α0 (the probability that a 

true 0 is recorded as a 1) and α1 (the probability that a true 1 being recorded as 0)1. With 

their parametric approach the unknown misclassification probabilities are estimated 

simultaneously with the usual coefficients of the binary choice model. Their semi-parametric 

method provides consistent estimates of the model parameters, but not of the 

misclassification probabilities. Dustmann and van Soest (2004) extend the parametric model 

of Hausman et al. (1998) to a trichotomous case.

Lewbel (2000) allows the misclassification probabilities to be covariate-dependent functions 

and shows that (given some regularity) the binary choice model with covariate-dependent 

misclassification is completely identified even when the functional forms of α0, α1 and the 

distribution of the error term are unknown. However, he also acknowledges that his 

estimator is ‘not likely to be very practical since they involve up to third order derivatives 

and repeated applications of nonparametric regression’ (pp. 607-608). The lack of any 

empirical work exploiting his estimator indicates the need for a more practical estimator in 

the case of covariate dependent misclassification, even at the cost of some additional 

assumptions.

Our paper extends the parametric approach of Hausman et al. (1998) to the case, where the 

misclassification probabilities are functions of one or more covariates2. The parametric 

estimator that we propose is a more tractable way to identify a model similar to Lewbel 

1Throughout this paper we use the same notation.
2Although Hausman, et al. (1998) briefly discusses a limited extension of systematic misclassification in section 5.5, they do not fully 
characterize or implement the approach. A semi-parametric approach to deal with covariate-dependent misclassification of the 
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(2000), but is conditional on functional form assumptions. The paper proceeds as follows. In 

section 2, we present our structural approach to deal with covariant-dependent 

misclassification of the dependent variable and the identification requirements. Section 3 has 

a Monte Carlo experiment that compares our approach with the ordinary probit model and 

the basic model presented in Hausman et al. (1998). In section 4, we present an empirical 

application to demonstrate the applicability of the model. Finally, in section 5 we discuss 

implications and conclusions from our generalization.

2. THE GENERALIZED MODEL TO CORRECT FOR COVARIATE-

DEPENDENT MISCLASSIFICATION

Assume,  is an unobserved latent variable such that

(1)

where, Xi is a vector of observed independent variables, β is a vector of coefficients to be 

estimated and εi is an iid error term with a known common distribution. We observe

(2)

If no misclassification is present, we always observe the dichotomous outcome variable, γi, 

correctly. However, if there is misclassification, the outcome variable that we observe, , 

includes some true ′1′s classified as ′0′s and some true ′0′s classified as ′1′s. As a result, in 

general, . Accordingly, the binary variable we observe ( ) also includes an additional 

measurement error ζi such that

(3)

In other words,

(4)

and

(5)

dependent variable is discussed in detail in Abrevaya and Hausman (1999). Our interest is in the parametric model and in methods that 
provide misclassification probabilities.
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The addition of ζi not only increases the variance of the econometric error term, but also 

adds heteroskedastity in a specific way. The overall stochastic mechanism that determines 

the values ultimately observed with random misclassification is a conditional Bernoulli 

process that can be characterized via the following data generating process.

(6)

We assume ui and εi in (1) are independent. If the values of α0i and α1i are dependent on γi 

as in (4) and (5), but independent of Xi, and the probability distribution function of εi is F(.) 

then, as Hausman, et al. (1998) show, we can express the expected value of the observed 

dependent variable as

(7)

When α0i and α1i are constants (α0 and α1) and α0 + α1 < 13, the parameters of the above 

model can be consistently estimated either by MLE or NLLS4.

Suppose instead that the misclassification probabilities α0i and α1i are functions of a set of 

variables,  and  respectively as in Lewbel (2000). In particular, the probabilities in (4) 

and (5) are now given by

(8)

(9)

where  and  may be but are not necessarily subsets5 of Xi, and F0 and F1 are the 

cumulative distribution functions of stochastic components that determine each type of 

misclassification.6 Inserting the preceding generalized representation of the misclassification 

probabilities into (7), the expected value of the observed dependent variable with a 

covariate-dependent misclassification can be expressed as

(10)

3This condition, termed the “monotonocity condition” in Hausman et al. (1998) must be satisfied to identify (β,α0,α1). separately 
from (−β,−α0,−α1).
4The relevant objective functions are given by equations (6) and (7) in Hausman et al. (1998).
5This allows one or both misclassification probabilities to depend on variables that do not affect the outcome.
6A generalization of the model could include a correlated error structure between the error terms of the latent variable equations.
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If each of the vectors  and  include only a constant term, we have 

 and  equivalent to α0 and α1 in 
Hausman et al. (1998). Accordingly, equation (10) nests the basic parametric model 

presented in Hausman et al. (1998), hereafter referred to as HAS1, allowing a statistically 

testable proposition.7

Assuming the functional forms of F0, F1 and F are known the parameters of the model can 

be estimated with NLLS by minimizing

(11)

over (β,γ0,γ1). Alternatively, MLE can be applied to the following log likelihood function:

(12)

In the Monte-Carlo simulations and the application to real data that we present in subsequent 

sections, all the parameter estimations are based on MLE using equation (12) and also 

approximate all three functions F0 F1 and, F above by a normal CDF.

As we explained earlier, HAS1 is a special case of our generalization, which we refer to 

hereafter as GHAS, without any covariates affecting each type of misclassification 

probabilities. The generalization of the Hausman et al. (1998) data generating process in (5) 

that applies to the GHAS specification is given by

(13)

and again εi in (1) and ui are independent. The nesting of HAS1 in GHAS and of the 

standard binary choice model in HAS1 facilitates statistical testing for the most suitable 

model in a given application. The significance tests for parameters in  and  other than 

the constant terms serve as tests for the suitability of GHAS over HAS1. Given that no 

elements of  and  pass this threshold, one may estimate HAS1 and the significant tests 

of the terms α0 and α1 serve as tests for the suitability of HAS1 model over the standard 

binary choice model8.

7If  (10) further collapses to a standard binary choice specification. However, as discussed in 
footnote 9, it is not possible to directly test for this condition.
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Identification of the parameters of (12) stems from the non-linearity of F. The first order 

necessary conditions and the Fisher information matrix of (12) can be expressed as below.

(14)

(15)

where , 

 and  and  are the first derivatives of 

F0,F1 and F1 respectively.

When F0 and F1 are symmetric and F0 = F1 identification requires that  be different from 

. To demonstrate this point consider the case where , F1(v) = F0(v) = 1 − 

F0(−v) and F(v) = 1 − F(−v). Then the log-likelihoods, l(β,γ0,γ1) = l(−β,−γ0,−γ1). Hence, to 

identify (β,γ0,γ1) from (−β,−γ0,−γ1) we need  However, if F is asymmetric or F1 ≠ 

F0, we do not necessarily require this exclusion restriction to identify the model parameters.

A merit of our estimator, however, is that the identification does not require 

 when  and F0(•),F1(•) and F(•) are non-linear 

transformations. Additional exclusive restrictions will help strong identification of 

parameters but are not necessary. Moreover, if  we no longer need α0 + α1 < 0 as 
Hausman et al. (1998) requires. In spite of these advantages our estimator has certain 

limitations too. The Hausman et al. estimator allows the misclassification probabilities to be 

zero (but not 1, since that would violate the monotonicity condition). If 

 and/or  as is the case with 

most functional forms9, ours require each type of misclassification probability to be 

bounded between 0 and 1, and not at the possible extremes, because if either of the two 

types of misclassifications takes an extreme value, the matrix  becomes singular. A 

8As noted above, the standard probit model, in general, is not nested in GHAS in a directly testable manner and thus we propose this 

sequential procedure. As the misclassification probability, αki for k = 0.1 reaches 0,  approaches the lower bound of F(•), which 
is –∞ in case of a normal distribution, potentially leading to convergence issues. As such, convergence issues of GHAS may indicate a 
misspecified model and that HAS1 could be a more appropriate choice.
9A notable exception is the uniform distribution function.
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related consequence would be large standard errors when misclassification probabilities are 

too small or too large. In contrast to HAS1, our estimator performs best when the 

misclassification probabilities are large in both directions. If the misclassification is known 

to be one-sided we can use a restricted version of our model by imposing F0(•) ≡ 0 or F1(•) 

≡ 0 as appropriate, circumventing this identification issue while improving the efficiency of 

the estimator.

3. MONTE CARLO EXPERIMENT

In order to assess the impact of covariate-dependent misclassification on estimates with and 

without an appropriate correction mechanism we set up a Monte Carlo experiment which 

mimics the experiment used in Hausman et al. (1998). We first generated the X matrix in 

equation (1) including three random variables and a constant as covariates. Our X matrix is 

identical to the one they use in section 4 of their paper and comprises of X1, drawn from a 

lognormal distribution X2, a dummy variable equal to one, with probability 1/3, X3, a 

uniform (0,1) random variable, and a constant. The ε econometric error term, was drawn 

from a standard normal distribution. The parameter vector β also is identical to theirs. Based 

on this data generation process, the latent dependent variable is given by,

(16)

In our experiment the two types of misclassification probabilities are functions of subsets of 

X. More specifically, we have designed our experiment such that, the covariates in equations 

(7) and (8) are given by  and . Denoting 

and  given the distribution of Z0 and Z1, expected values of α0i and 

α1i in equations (8) and (9) are, respectively,

(17)

(18)

where Φ(θ) denotes the normal distribution function. For consistency and comparison with 

the Hausman et al. (1998) experiment, we first chose the parameter vectors γ0 and γ1 by 

numerically integrating (16) and (17) using Gauss-Legendre quadrature such that E(α0i) = 

E(α1i) ≈ 0.05. We also ran experiments with two additional symmetric expected values, 0.1 

and 0.2, and two asymmetric and larger misclassification probabilities, E(α0i,α1i)=((0.3, 

0.75) and (0.75, 0.3). The observed dependent variable, γ0 was generated by adding 

misclassification according to equation (13).
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For each set of parameters, we generated a random sample, and used that sample to estimate 

the model parameters using, (i) the standard probit model (Probit); (ii) HAS1; and (iii) 

GHAS. The results are based on 200 Monte Carlo runs, each with a random sample of 5000 

observations, for each of the sets of parameter values described in the preceding paragraph. 

The standard errors reported are the standard deviations of each set of 200 estimates.

Our findings with regard to probit estimates, shown in table 1, though based on a different 

data generating process, are broadly in line with the findings of Hausman et al., (section 4): 

(i) Even in the case of a small amount of misclassification, ordinary probit produces 

estimates are biased by 15-25%; (ii) The problem worsens as the amount of misclassification 

grows; (iii) Not only does probit yield inconsistent estimates, but it can also overstate the 

precision of the estimates. Our results show that the three observations are valid, not only for 

the case with random misclassification, but also for the more general case with covariate-

dependent misclassification. The problems with the ordinary probit model in the presence of 

a misclassified dependent variable, whether random or covariate-dependent, are not small 

sample problems and thus cannot be overcome by increasing the sample size. As the sample 

size increases, Φ(Z0Z1) and Φ(Z1Z1) approaches their expected values E(α0i) and E(α1i). 

The consistency of the ordinary probit estimator requires 

 which is not the usual case.

The overstated precision of estimates, together with a significant bias of estimates is a more 

severe issue than having the biased estimates alone. Even when the misclassification 

probabilities are 5%, ordinary probit estimates are at least two standard deviations away 

from the true values, and any statistically significant estimates are but a mere illusion due to 

the false precision, possibly leading a researcher towards incorrect conclusions. The problem 

worsens as the misclassification probabilities increase.

Despite not being the correct model, one may expect HAS1 to perform better than the 

ordinary probit model in the presence of covariate-dependent misclassification. As the result 

show, there is no guarantee that HAS1 will perform better, even though it may partially 

correct the bias under certain conditions. More specifically, when the misclassification 

probabilities are small and only depend on one or few covariates which are independent of 

the covariates of the main equation, HAS1 is a better alternative than the conventional probit 

model. In real applications, however, misclassification probabilities may be large and may 

depend on a large number of covariates; hence the random component of misclassification 

may be much smaller relative to the systematic component. Under such conditions HAS1 

may increase the bias while also reducing the efficiency and thus may not be a better option 

than ordinary probit.

Mroz and Zayats (2008) argue that one must be cautious of the scale invariability when 

comparing the coefficient estimates of different specifications of a multilevel binary choice 

model. They note (page 409), “The coefficients might differ only because one is implicitly 

conditioning on information sets that differ by the inclusion of additional, independent 

information.” and the ‘relative effects’ or the coefficient ratios could be a better measure of 

comparison. The idea is that the ratio cancels out the common scale factor. Although the 

magnitude differences are less severe, the superiority of GHAS prevails even when 
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evaluating coefficient ratios. For example, when the symmetric misclassification 

probabilities are 0.1, the average ratio of the estimated beta1/beta2 in the Monte Carlo with 

probit was 0.101, compared to 0.111 for HAS1 and 0.136 for GHAS, while the true value of 

the ratio is 0.133. This pattern persists over for all parameters and all misclassification 

probabilities10.

As our experimental results show, the superiority of GHAS over HAS1 and ordinary probit 

becomes more apparent both with the increased misclassification probabilities and with the 

increased heterogeneity of the distribution of misclassification probabilities. This holds 

when the probability of misclassification is symmetric or asymmetric. We intentionally used 

the two last sets of parameters to show a potential outcome of probit estimates when the 

misclassification probabilities (in expectation) are so high that the HAS1 monotonocity 

condition is not satisfied. Misclassification probabilities of these magnitudes are not always 

unrealistic. In fact, we may not abandon a project due to large covariate dependent 

misclassification probabilities, particularly when one or both the misclassification 

probabilities are very large with a specific sub group, but small with others. If we ignore 

misclassification and use probit estimates, as the results show, the co-efficient estimates are 

not only biased downward but also may show up with their signs toggled. As the probit 

estimates have no correspondence to the underlying data generation process when there are 

large misclassification probabilities it could lead to one or more of the following 

consequences.

i. Downward biased estimates with the same sign and with reduced statistical 

significance;

ii. The coefficient of an important variable may appear to be insignificant;

iii. The bias could be sufficiently large to flip the sign of the estimate;

iv. An insignificant variable may appear to be significant if it affects misclassification 

probabilities; and/or

v. The estimates may show an impact larger than the true impact.

The HAS1 model should not be employed when the misclassification probabilities are large. 

When mean misclassification probabilities sum to a value greater than 1, violating HAS1 

monotonicity requirement, as shown in tables 2 and 3, HAS1 in general predicts very low or 

zero misclassification. In addition, HAS1 coefficient estimates are not qualitatively different 

from the biased probit estimates. Typically the magnitudes of the misclassification 

probabilities are not known; using HAS1 when the means of the misclassification 

probabilities are large and systematic may mislead a researcher into believing 

misclassification is not a problem.

In addition to its superiority over other models in precisely estimating the coefficients of the 

main equation, GHAS also helps to correctly and precisely estimate the impact of each 

covariate on the two type of misclassification. As the results reported in tables 2 and 3 

indicate, to precisely estimate the parameters of equations (8) and (9) when the 

10These results are available from the authors.
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misclassification probabilities are small, we need a sizable sample. However, when the 

misclassification probabilities are large, those parameters can be estimated with a high 

precision even with a relatively small sample.

As a final check, we tested what damage is done if we use GHAS when the probabilities of 

misclassification are not covariate dependent, so HAS1 would be more appropriate. Not 

surprisingly HAS1 is more efficient than GHAS. However, using GHAS when the 

misclassification is not covariate dependent does little harm. These results are reported in the 

appendix (Tables A1-A3).

4. APPLICATION TO ESTIMATE THE EFFECIVENESS OF A FAMILY 

IMPROVEMENT PROGRAM

We demonstrate the applicability of GHAS by using it to estimate the determinants of 

improvement in family functioning after participating in the Strengthening Families Program 

for Parents and Youth 10-14 (SFP) in Washington State and Oregon. For comparison we 

estimate the same model using HAS1 and ordinary probit. The Strengthening Families 

Program (SFP) is an internationally recognized parenting and family strengthening program 

for high-risk families. The program is designed to be delivered in local communities for 

groups of 7-12 families11. Families attend SFP once a week for seven weeks and participate 

in educational activities that bring parents and their children together in learning 

environments designed to strengthen entire families through improved family 

communication, parenting practices, and parents’ family management skills12.

4.1 Applicability of the Model

The dependent variable of our application is a binary indicator equal to 1 if a participant’s 

self-reported family functionality after the program is higher than the pre-program 

functionality. This indicator variable is derived using the pre-treatment and post-treatment 

scores measured on a Likert scale. One fundamental assumption that we make here is that 

there are true (latent) objective scores before and after the treatment, but neither the 

researcher nor the respondent observes these true values. Each participant makes a 

subjective assessment of her score and then translates it into an integer value within the 

range of the Likert scale used by the researcher. Response bias is the difference between the 

subjective measures of same objective outcome used by different individuals, while response 

shift bias comes from the response bias of the same individual changing at two measurement 

points (Sprangers and Hoogstraten, 1989; Hill and Betz, 2005).

Our study is essentially a “before-after” comparison at the surface. However, under certain 

assumptions the comparison is analogous to a true treatment effect. The family functionality 

of a household, the target of the intervention that we discuss here, in general is a slowly-

changing variable and highly unlikely to change autonomously within a 7-week period, the 

duration of the intervention. This assumption leads two more results. First, any change in the 

11The two variables within-program average and within-program standard deviation we discuss later and use in our estimations are 
based these groups.
12http://sfp.wsu.edu
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family functionality of a participant’s household is due to the program effect since the 

impact of any other potential factors is negligible. Second, the family functionality of non-

participants does not change during this short period. The two results together imply that the 

“before-after” comparison is a good practical measure of treatment effect in our case.

Our concern here is the misclassification of the indicator variable of improvement that we 

derive. Suppose both pre-treatment and post-treatment scores reported by each participant 

include response bias. If the magnitude of the bias remains unchanged after the program the 

reported scores show the true change. The issue we face here is that the intervention not only 

changes the family functionality, but also the knowledge about what good functionality is. 

As a result, participants may recalibrate their metrics used to measure and report family 

functionality after the program. As an example, suppose a participant reports her pre-

treatment score is 2. After the program her family functionality has not changed but due to 

recalibrating her metric she realizes that her initial score should be 3, which she reports as 

her post-treatment score, seeing no improvement in her family functionality from the 

program. A researcher now observes an improvement while she really has not improved, 

contributing to misclassification probability α0i. Suppose another participant reports her pre-

treatment score as 4 but after recalibrating the metric she finds that her true score before the 

program should have only been 3 and now it has improved to 4. The researcher observed no 

improvement while she has really improved and we have misclassification type α1i 
Rosenman et al. (2011) has shown substantial response bias and response shift bias in SFP 

data.

In addition to the misclassification in our binary variable due to response shift bias we 

suspect there is also Likert imbalance bias (Tennekoon and Rosenman, 2012). Likert 

imbalance bias occurs when subjective measures are translated to a Likert scale value and 

may complement response shift bias.

By this nature the misclassification in our variable is probably not random. Any response 

shift change of a participant after the treatment likely depends on family and social 

background including her demographics and the characteristics of her SFP group, making 

HAS1, which assumes constant misclassification probabilities, a poor choice. The impact of 

Likert imbalance bias too is uneven across participants with different reported pre-treatment 

family functioning levels. In particular, the participants at one of the extremes of the Likert 

scale prior to the program are more likely to unintentionally misreport.

Available SFP data are limited and we only have some demographic information and 

reported pre-treatment and post-treatment scores of participants, which impacts not only the 

improvement in family functionality but also the misclassification probabilities. 

Accordingly, we have no way to proceed with the Lewbel (2000) approach, which requires 

at least one continuous variable affecting the improvement but not misclassification, even if 

we ignore the computational complexity of his approach.

In addition to the variables that we have at hand, unobserved individual effects are likely to 

affect the true improvement in family functionality as well as the bias hence a normal 

distribution appears to be the best functional form choice for these unobserved effects. This 
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motivates us to choose normal CDFs for F0,F1 and F. We have one variable, a dummy equal 

to one if the pre-score is near the upper bound, to differentiate  from , which is unlikely 

to affect α0. Since we assume our F0 and F1 are the same function and also assume our F is 

symmetric, we need this exclusion restriction to distinguish (β,γ0,γl) from (−β,−γ0,−γl)13.

4.2 Data

Our data consisted of 1,437 observations of parents who attended one of the 94 SFP 

programs in Washington and Oregon states through 2005-2009. Variables used in the 

analysis, including definitions, and summary statistics are presented in Table 4. The average 

family functioning, as measured by the change in self-assessed functioning from the pretest 

to the posttest increased from 3.98 to 4.27 after participation in SFP. Seventy-one percent of 

the participants showed an improvement in family functioning. The remaining 29% showed 

either a negative or no change in family functioning.

Twenty-five percent of the participants identified themselves as male, 72% as female, and 

3% did not report their gender. Twenty-seven percent of the participants identified 

themselves as Hispanic/Latino, 60% as White, 2% as African-American; 4% as American 

Indian/Alaska Native, and 3% as other or multiple race/ethnicity, while 3% of the 

participants did not report their race/ethnicity. Seventy-four percent of the participants 

reported that they are living with a partner or a spouse, and 19% reported not having a 

spouse or partner. Almost 8% of participating parents did not report whether they are living 

with a partner or a spouse. The average of the within-program average pre-score was 3.99, 

not statistically different from the overall average pre-score of 3.98. The average of the 

within-program standard deviation of pre-score was 0.499, compared to the overall standard 

deviation of pre-score of 0.566. The implications of these statistics are that there does not 

seem to be much variation in the attendees of different cycles. Around 3% of the sample had 

reported pre-score values larger than 4.9.

We used the two gender related variables, the five variables related to race/ethnicity, the two 

variables related to partner/spouse, age, pre-score, within-program average and standard 

deviation of pre-score (despite the seeming consistency in those attracted to the program 

whenever and wherever it was offered) and a constant as the covariates of the main equation. 

Our covariates determining the propensity to record improvement as no-improvement (α0i) 

were three race categories (native and other categories were combined with the category 

who did not report their race/ethnicity)14, age, pre-score, a dummy equal to 1 if the pre-

score is larger than 4.9, and a constant. As the covariates determining the propensity to 

record no-improvement as improvement (α1) we used the same three race related variables, 

age, pre-score and a constant. The choice of these variables was partly motivated by the 

findings of Rosenman et al. (2011). The dummy variable pre-score ≥4.9 was used as a 

covariate because people with very high initial functioning have little room to show 

improvement, even if they improve. This variable helps specifically to capture Likert scale 

13As explained in section 2, our model allows  and  to be subsets of Xi and even one to be equal to to be subsets of Xi. 
Accordingly, our use of GHAS is not constrained by the unavailability of additional exclusion restrictions in vector Xi.
14This combined category was not significantly different from whites. The result was robust when we used the three categories 
separately but the standard errors were very large.
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bias, while serving as an exclusion restriction. A similar variable was not included among 

the covariates of equation (6) because only 3 participants had pre-scores below 1.5 and the 

lowest value of the scale, unlike the highest value, did not appear to be binding.

4.3 Analysis of Results

The results from GHAS, together with the results of HAS1 and traditional probit, are 

presented in tables 5 and 6. According to the traditional probit model, improvement after 

participating in SFP is a function of four covariates. Male participants are less likely to 

improve after the program than are females and those who did not report their gender; 

African Americans are less likely to improve than are other race categories; those who did 

not report whether they are living with a partner or a spouse are less likely to improve than 

the participants who reported that information; and, participants with higher pre-scores are 

less likely to improve than the participants with lower pre-scores.

HAS1 finds improvement covariates qualitatively similar to those found with the ordinary 

probit, but predicts misclassification probabilities as well. According to the results, the 

probability that a participant with no improvement reporting an improvement (α0) takes the 

lowest possible value, zero. The model also predicts a 3.2% probability that participants who 

improved their family functioning after the program may report that they have not improved 

(α1).

The GHAS estimates are noticeably different from those found with ordinary probit and 

HAS1, albeit not without some similarities. In contrast to HAS1, GHAS indicates that the 

misclassification probabilities in each direction are substantial (based on model predictions) 

and depends on several covariates. When considering α0i, the coefficients of Hispanic 

dummy, age and pre-score are significant. However, the coefficient of the constant term is 

not significant at conventional levels. Older participants, participants with Hispanic origin 

and people with self-perceived low initial family functioning levels are more likely to show 

improvement even when they do not improve.

According to GHAS, the probability that true improvement would be reported as no-

improvement (α1i) also depends on several covariates. Among the statistically significant 

determinants of α1i are the constant term, age, pre-score, and pre-score being close to the 

upper bound. The results suggest that older people and people with high initial family 

functioning levels are more likely to misclassify improvement as not happening. Consistent 

with Likert Scale Bias, people with initial functioning levels closer to the upper bound of the 

scale have very little or no room to show any improvement and therefore are also likely to be 

misclassified.

Our most important result, especially in light of the Monte Carlo analysis, is that the 

predictors of improvement found with GHAS model are not the same as those found 

consistently using HAS1 and probit. The male and African American dummies, which were 

significant in HAS1 and probit, are not significant in GHAS. Pre-score and the constant term 

continue to be significant, but with opposite signs. In addition, several variables that were 

indicated not important by HAS1 and probit are significant at conventional levels using 

GHAS. GHAS indicates that Hispanics are more likely to improve than Whites, that the 
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participants from two-parent families are more likely to improve than single parents, as are 

the group that did not report the details of their partner/spouse. Participants who do not 

report their gender or race, however, are less likely to improve than the participants who 

report their information. Finally, programs with participants from initially better functioning 

families and programs with more heterogeneous participants in terms of their pre-scores are 

more successful than other programs.

Of the differences, the most important is that GHAS indicates that better functioning 

families are more likely to improve than poor functioning families, a finding that contrasts 

with what was found with ordinary probit and HAS1. However, when the initial functioning 

increases, it increases not only the propensity to improve, but also the propensity to be 

misclassified and not to show the improvement. This explains why ordinary probit, which 

does not account for this misclassification, and HAS1, which does not account for the 

dependence of misclassification on initial functioning, show the opposite.

The expected values of misclassification probabilities predicted by GHAS, E(α0i)=.755 and 

E(α1i)=.339, are very large and sharply contrast with the HAS1 estimates (α0 = 0 and α1 = 

0.032). The results, however, are in conformity with the findings of the Monte Carlo study, 

which showed a severe underestimation of misclassification probabilities by HAS1 when 

they are systematic and of these magnitudes.

Given the difference in results, one must wonder which model is the most appropriate. 

Overall, GHAS has the best fit among the three models in terms of the log-likelihood, 

adjusted pseudo R-squared (McFadden) and the number of successful predictions (Table 7). 

The model, successfully predicts 1,079 of 1,437 outcomes as reported by the data (75.1%), 

and estimates that 1,264 participants (88.0%) really improve after the SFP program 

compared to the reported 70.8%. The probit estimate of the number of people improved, for 

comparison, is 990 (68.9%) which, perhaps not surprisingly, is very close to the observed 

number. HAS1 lags significantly in the number of correct predictions of the data as a whole 

and reports, by far, the smallest number of participants who actually improved15. Since 

HAS1 reports there is no probability of someone who improved recording themselves as not 

improved and a positive probability someone who improved reporting that they did not, this 

indicates that the main equation seriously underreports the predicted improvement, calling 

into question the validity of its results. Accordingly, the ultimate effect of misclassification 

in our observed data could well be a serious underestimation of SFP’s efficacy, unless 

corrected appropriately, with systematic misclassification.

15As noted in the text, our application is provided as an illustration of GHAS rather than a comprehensive analysis of the SFP. When 
GHAS is used in a purposeful evaluation one needs to weigh all evidence about the appropriateness of the specification. Although the 
measures discussed in the text favored GHAS over HAS1 and ordinary probit, a cross-validation log likelihood test did not favor 
GHAS. However, GHAS asks significantly more of the data than does HAS1 or ordinary probit, meaning one is trading off 
potentialspecification bias against efficiency. As illustrated in our Monte Carlo analysis, the bias costs of using HAS1 when GHAS is 
appropriate can be large while, as we show in the Appendix, the costs (in terms of the expected value of the misclassification 
probability) of using GHAS when HAS1 is the correct model are low.
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5. CONCLUSIONS

When the dependent variable is misclassified, parameter estimates of the binary choice 

model are biased and inconsistent, a condition exacerbated if the misclassification is 

systematic rather than random. Although nonparametric methods can provide consistent 

estimates of model parameters, those that also provide estimates of misclassification (which 

may be of significant interest to policy makers) are cumbersome and often impossible to 

implement because of additional data needs. We provide a straightforward method to 

properly account for endogenous misclassification that provides both consistent estimates of 

the model parameters and yields estimates of misclassification probabilities for the sample 

and for each individual. Our experimental results document the importance of controlling for 

endogenous misclassification, and demonstrate that little harm is done if our approach is 

used for random misclassification. Moreover, our results indicate that possible systematic 

misclassification is not a factor that a researcher can simply ignore. The presence of 

systematic misclassification can toggle overall conclusions and lead analysts to substantially 

underestimate program benefits. Our application to real data from the Strengthening 

Families Program shows how large misclassification can be with subjective self-reported 

data, and how it can radically affect parameter estimates.

The ultimate goal of evaluating the efficacy of a treatment is identifying its costs and 

benefits, whether the treatment is preventive, curative or educational. If the results produced 

are spurious, the researchers and any other users of such results may easily end up with 

wrong conclusions, which may have severe policy implications. The model presented here 

provides an effective and easily implemented way to deal with the issue and estimate 

treatment effects more accurately.

The applicability of GHAS to the research problem we explained does not prove its 

superiority under all situations. Since MLE consistency is an asymptotic property, the 

relative merits of GHAS and HAS1 are not clearly visible when either the sample size is 

small or the misclassification probabilities are small.

In our application we ignored the impact of a potential selection bias that could arise if the 

participants of SFP are systematically different from the non-participants. We can easily 

correct for selection bias by combining a selection probit equation with equation (12) and 

estimating a modified bivariate probit with selection. Limitations of our data did not allow 

us to pursue this extension, although it is straightforward. If there is reason to believe that 

there are unobserved variables that affect the outcome as well as the misclassification 

probabilities, it may be appropriate to allow the error terms to be correlated, which is also 

straight forward. Finally, a misclassified polychotomous variable can be dealt with by 

enhancing the models presented in Abrevaya and Hausman (1999) and Dustmann and van 

Soest (2004) in a manner similar to ours.
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Table 1
Determinants of Pr(y=1) with covariate dependent misclassification (coefficients)

True
Value

Probit HAS1 GHAS

Variable Est. Std. Err. Est. Std. Err. Est. Std. Err.

E(α0i) = E(α1i) = 005

Intercept −1.0 −0.745 0.049 −0.725 0.069 −1.006 0.170

betal 0.2 0.168 0.014 0.187 0.016 0.206 0.020

beta2 1.5 1.419 0.043 1.504 0.083 1.504 0.092

beta3 −0.6 −0.835 0.073 −0.906 0.102 −0.605 0.172

E(α0i) = E(α1i) = 0.1

Intercept −1.0 −0.489 0.049 −0.448 0.070 −0.970 0.148

beta1 0.2 0.142 0.015 0.170 0.019 0.205 0.018

beta2 1.5 1.414 0.043 1.554 0.111 1.488 0.074

beta3 −0.6 −1.138 0.074 −1.283 0.145 −0.631 0.162

E(α0i) = E(α1i) = 0.2

Intercept −1.0 −0.135 0.045 0.037 0.141 −1.012 0.262

beta1 0.2 0.096 0.013 0.142 0.023 0.208 0.026

beta2 1.5 1.267 0.043 1.622 0.215 1.504 0.113

beta3 −0.6 −1.356 0.074 −1.720 0.321 −0.595 0.256

E(α0i) = 0.3, E(α1i) = 0.75

Intercept −1.0 0.606 0.046 0.632 0.054 −1.104 0.474

beta1 0.2 −0.020 0.010 −0.021 0.011 0.222 0.085

beta2 1.5 1.265 0.047 1.290 0.052 1.582 0.795

beta3 −0.6 −3.112 0.091 −3.154 0.086 −0.645 0.694

E(α0i) = 0.75, E(α1i) = 0.3

Intercept −1.0 1.385 0.056 2.204 0.473 −0.995 0.094

beta1 0.2 −0.016 0.010 0.032 0.034 0.201 0.021

beta2 1.5 0.615 0.054 0.984 0.071 1.521 0.162

beta3 −0.6 −1.592 0.087 −2.626 0.630 −0.634 0.252
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Table 2
Determinants of Pr(yo=1|y=0) with covariate dependent misclassification

True
Value

HAS1 GHAS

Variable Est.
Std.
Err. Est.

Std.
Err.

E(α0i) = E(α1i) = 0.05

Intercept −0.50 −0.443 0.210

gamma01 −3.96 −4.779 2.611

E α0 0.05 0.004 0.009 0.052 0.018

E(α0i) = E(α1i) = 0.1

Intercept 0.25 0.306 0.168

gamma01 −5.36 −5.833 1.151

E α0 0.10 0.008 0.014 0.100 0.012

E(α0i) = E(α1i) = 0.2

Intercept 0.50 0.528 0.141

gamma01 −3.49 −3.638 0.596

E α0 0.20 0.012 0.020 0.199 0.016

E(α0i) = 0.3, E(α1i) = 0.75

Intercept 1.00 1.027 0.264

gamma01 −3.60 −3.614 0.304

E α0 0.30 0.001 0.002 0.305 0.039

E(α0i) = 0.75, E(α1i) = 0.3

Intercept 5.00 5.048 0.419

gamma01 −6.64 −6.710 0.606

E α0 0.75 0.000 0.000 0.750 0.010
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Table 3
Determinants of Pr(yo=0|y=1) with covariate dependent misclassification

True
Value

HAS1 GHAS

Variable Est. Std. Err. Est. Std. Err.

E(α0i) = E(α1i) = 0.05

Intercept −0.50 −0.417 0.919

gamall −1.00 −1.472 1.800

gama12 −2.83 −6.605 17.684

E α1 0.05 0.041 0.033 0.060 0.040

E(α0i) = E(α1i) = 0.1

Intercept 0.25 0.410 0.589

gamall −2.00 −2.580 1.295

gama12 −3.63 −4.828 4.695

E α1 0.10 0.058 0.035 0.111 0.040

E(α0i) = E(α1i) = 0.2

Intercept 0.50 0.601 0.443

gamall −1.60 −1.767 0.529

gamal2 −2.40 2.854 1.590

E α1 0.20 0.121 0.049 0.204 0.050

E(α0i) = 0.3, E(α1i) = 0.75

Intercept 1.00 1.571 1.169

gamall −4.00 −4.774 1.298

gamal2 4.15 4.336 0.908

E α1 0.75 0.012 0.014 0.746 0.024

E(α0i) = 0.75, E(α1i) = 0.3

Intercept 1.50 1.542 0.340

gamall −2.00 −2.034 0.259

gamal2 −3.60 −3.688 0.600

E α1 0.30 0.087 0.016 0.301 0.030
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Table 4
Variable Names, Descriptions and Summary Statistics

Name Description Mean Std. Dev.

Improved Observed (misclassified) binary dependent
variable: Equal to 1 if post-test score > pre-test
score

0.708 0.455

Male Equal to 1 if the gender is reported as male; 0
otherwise

0.250 0.433

Gender Not Reported Equal to 1 if the gender is not reported; 0
otherwise

0.030 0.170

Black/African American Equal to 1 if the race is reported as African
American; 0 otherwise

0.023 0.150

Hispanic/Latino Equal to 1 if the race is reported as Hispanic; 0
otherwise

0.269 0.443

Native American Equal to 1 if the race is reported as Native
American; 0 otherwise

0.040 0.195

Other Races Equal to 1 if the race is reported as other or of
multiple ethnicity; 0 otherwise

0.034 0.182

Race Not Reported Equal to 1 if the race is not reported; 0 otherwise 0.034 0.182

Age Integer (17-73) 38.822 7.846

Living with Partner or
spouse

Equal to 1 if reported living with partner or
spouse; 0 otherwise

0.736 0.441

Partner/Spouse Details Not
Reported

Equal to 1 if the partner/spouse details not
reported; 0 otherwise

0.077 0.266

Program Average of Pre-
score

Average of the pre-scores of the participants
enrolled in the same program; Continuous
variable between 1-5

3.987 0.237

Program Std. Dev. of Pre-
score

Standard deviation of the pre-scores of the
participants enrolled in the same program;
Continuous variable

0.499 0.173

Pre-test Score Self-reported pre-test score; Semi-continuous
variable between 1-5

3.979 0.546

Pre-test Score > 4.9 Equal to 1 if the pre-score > 4.90; 0 otherwise 0.033 0.178
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Table 5
Determinants of True Improvement in Family Functionality

Probit HAS1 GHAS

Variable Est.
Std.
Err. Est.

Std.
Err. Est.

Std.
Err.

Improvement

Male −0.250 *** 0.090 −0.300 *** 0.103 0.572 0.517

Gender Not Reported 0.436 0.305 0.548 0.403 −2.032 *** 0.786

Excluded: Female

Black or African-American −0.525 ** 0.239 −0.563 ** 0.252 −0.368 0.744

Hispanic −0.148 0.096 −0.120 0.111 1.139 * 0.680

Native American −0.294 0.194 −0.319 0.213 −0.424 0.735

Other Races −0.115 0.201 −0.052 0.241 3.166 6.290

Race Not Reported 0.375 0.290 0.357 0.326 −1.441 * 0.827

Excluded: White

Age −0.002 0.005 −0.003 0.006 −0.015 0.022

Living with Partner/Spouse −0.158 0.105 −0.162 0.118 1.151 *** 0.402

Partner/Spouse Details Not

Reported −0.500 *** 0.166 −0.573 *** 0.187 2.367 *** 0.832

Excluded: Not Living with

Partner/Spouse

Program Average of Pre-score 0.165 0.199 0.307 0.241 1.568 ** 0.762

Program Std. Dev. of Pre-score −0.337 0.250 −0.225 0.296 2.029 ** 1.023

Pre-score −1.358 *** 0.096 −1.612 *** 0.173 1.454 *** 0.440

Intercept 5.951 *** 0.834 6.527 *** 1.060 −12.635 *** 3.387

***
p<0.01;

**
p<0.05;

*
p<0.10
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Table 6
Determinants of Probabilities of Misclassification

HAS1 GHAS

Variable Est.
Std.
Err. Est.

Std.
Err.

Recording No Improvement as Improvement

Black or African-American −7.831 5.534

Hispanic −15.139 * 9.007

Race Not Reported and other races −3.317 4.032

Excluded: White

Age 0.629 * 0.358

Pre-score −3.922 * 2.088

Intercept 2.849 5.747

E α0 0.000 *** 0.000 0.7549 *** 0.015

Recording Improvement as No Improvement

Black or African-American 0.428 0.368

Hispanic −0.143 0.137

Race Not Reported and other races 0.149 0.202

Excluded: White

Age 0.013 * 0.007

Pre-score 1.139 *** 0.146

Pre-score > 4.9 1.086 *** 0.355

Intercept −5.533 *** 0.702

E α1 0.0320 0.020 0.3387 *** 0.025

***
p<0.01;

**
p<0.05;

*
p<0.10
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Table 7
Overall Comparison of three Models

Probit HAS1 GHAS

Number of observations 1437 1437 1437

Number of free parameters 14 16 27

Log-likelihood −709.091 −707.051 −687.508

Adjusted Pseudo-R2 (McFadden) 0.1683 0.1678 0.1781

Correct predictions
Estimated number of participants

1048 (72.9%) 932 (64.9%) 1079 (75.1%)

improved their family functionality 990 (68.9%) 686 (47.7%) 1264 (88.0%)
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Table A1
Determinants of Pr(y=1) with random misclassification (coefficients)

True
Value

Probit HAS1 GHAS

Variable Est. Std. Err. Est. Std. Err. Est. Std. Err.

E(α0i) = E(α1i) = 0.05

Intercept −1.0 −0.844 0.048 −1.035 0.170 −1.112 0.290

betal 0.2 0.159 0.015 0.207 0.033 0.217 0.042

beta2 1.5 1.290 0.041 1.546 0.182 1.587 0.242

beta3 −0.6 −0.498 0.068 −0.644 0.133 −0.573 0.278

E(α0i) = E(α1i) = 0.1

Intercept −1.0 −0.716 0.050 −1.025 0.207 −1.101 0.376

beta1 0.2 0.128 0.014 0.208 0.046 0.214 0.054

beta2 1.5 1.107 0.040 1.548 0.241 1.580 0.317

beta3 −0.6 −0.411 0.066 −0.652 0.180 −0.553 0.370

E(α0i) = E(α1i) = 0.2

Intercept −1.0 −0.507 0.046 −0.998 0.319 −1.094 0.596

beta1 0.2 0.085 0.012 0.204 0.065 0.217 0.092

beta2 1.5 0.790 0.037 1.509 0.383 1.563 0.549

beta3 −0.6 −0.278 0.066 −0.638 0.263 −0.561 0.525
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Table A2
Determinants of Pr(yo=1|y=0) with random misclassification

True
Value

HAS1 GHAS

Variable Est.
Std.
Err. Est.

Std.
Err.

E(α0i) = E(α1i) = 0.05

Intercept −1.645 −2.165 3.383

gamma01 0.000 −0.024 4.125

E α0 0.05 0.055 0.039 0.062 0.044

E(α0i) = E(α1i) = 0.1

Intercept −1.282 −1.534 0.872

gamma01 0.000 −0.071 0.858

E α0 0.10 0.099 0.050 0.100 0.056

E(α0i) = E(α1i) = 0.2

Intercept −0.841 −1.513 2.326

gamma01 0.000 0.412 2.626

E α0 0.20 0.181 0.070 0.175 0.090
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Table A3
Determinants of Pr(yo=0|y=1) with random misclassification

True
Value

HAS1 GHAS

Variable Est. Std. Err. Est. Std. Err.

E(α0i) = E(α1i) = 0.05

Intercept −1.645 −2.443 1.539

gamall 0.000 −0.524 1.758

gama12 0.000 −0.822 5.328

E α1 0.05 0.049 0.033 0.060 0.051

E(α0i) = E(α1i) = 0.1

Intercept −1.282 −1.725 1.016

gamall 0.000 0.250 1.102

gama12 0.000 −0.125 1.795

E α1 0.10 0.098 0.048 0.100 0.059

E(α0i) = E(α1i) = 0.2

Intercept −0.841 −1.378 1.518

gamall 0.000 0.183 1.256

gamal2 0.000 0.081 1.465

E α1 0.20 0.183 0.069 0.178 0.091
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