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Abstract

We report on a real-time acoustic radiation force optical coherence elastography (ARF-OCE) 

system to map the relative elasticity of corneal tissue. A modulated ARF is used as excitation to 

vibrate the cornea while OCE serves as detection of tissue response. To show feasibility of 

detecting mechanical contrast using this method, we performed tissue-equivalent agarose phantom 

studies with inclusions of a different stiffness. We obtained 3-D elastograms of a healthy cornea 

and a highly cross-linked cornea. Finally we induced a stiffness change on a small portion of a 

cornea and observed the differences in displacement.

Index Terms

OCT; elastography; ARF; cornea

I. Introduction

The cornea is primarily composed of cross-linked collagen fibers, which provides it with 

high tensile strength and serves as a protective coat to the eye [1]. It is an essential portion in 

the refraction of light entering the eye, and when there is a disruption in the collagen fiber 

network, such as in the case of keratoconus, corneal refractive function is compromised, 

affecting vision [2]. Keratoconus is a disease characterized by changes in the cross-linking 

properties, high corneal curvature, reduced corneal thickness, and tissue topographic 

irregularity [3]. In addition to natural diseases, refractive surgeries such as LASIK alter 

biomechanical properties of the cornea, resulting in conditions such as progressive post-

LASIK keratectasia (PPLK) [4]. PPLK is a progressive deformation of the cornea that 

occurs within two years of surgery, causing disruptions in the collagen cross-linking network 

[4–5]. In both PPLK and keratoconus, a common management solution is corneal collagen 

crosslinking treatment, which allows for biomechanical stability of the cornea by increasing 

the intra- and interfibrillar rigidity [5]. With the increasing popularity of refractive surgeries, 

as well as the natural occurrences of corneal diseases, there is an increasing need for 

understanding the biomechanical properties of ocular tissue for diagnosis and progression 

tracking.

The ocular response analyzer (ORA) has been used to measure the mechanical properties of 

the cornea. It analyzes the response of ocular tissue to an air pressure, focusing on the 

hysteresis of the relaxation [6]. However, factors such as the corneal thickness and curvature 

are not accounted for in ORA. The Corvis tonometer is another technology that visualizes 

and measures the deformation of the cornea in response to an air impulse [7]. However, the 

response measurements are taken for the entire cornea as a whole, and cannot focus on a 

Qu et al. Page 2

IEEE J Sel Top Quantum Electron. Author manuscript; available in PMC 2017 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



small region of interest. This is problematic in diagnosing ocular diseases in their early 

stages. In the last decade, elastography methods have been used to analyze localized 

biomechanical properties of tissues in clinics [8–9].

Several acoustic radiation force (ARF)-based ultrasound elastography techniques by using 

low frequency excitation and high frequency detection methods have been developed to 

characterize the mechanical properties of tissues, such as the cornea and coronary artery 

[10,11]. However, ultrasonic elastography is still limited in resolution and is not ideal for 

detecting small biomechanical changes. Optical coherence elastography (OCE), which 

utilizes optical methods and has micron-scale resolution, has gained momentum in 

characterizing subtle changes in tissue mechanical properties during the early stages of 

diseases [12]. Recently, ultrafast OCE methods have been used to obtain both 2D and 3D 

volumetric data quickly, and are rapidly progressing toward translational research [13–14]. 

These methods use air puff or compression techniques for tissue excitation. In the case of the 

air puff technique, full quantification of a depth resolved corneal image requires 

measurement and modeling of the shear wave across the entire cornea, which may have 

limitations when working with diseased corneas where lateral changes play an important 

role. Compression OCE is highly contact-based and not ideal for translation and in vivo 
studies. OCE has also been performed on corneal tissue by analyzing the propagation of 

shear waves [15–17]. However, these corneal imaging methods do not currently offer real-

time imaging of the elasticity map.

We have recently reported on an OCE method using ARF as dynamic excitation to obtain 

high-speed, high-resolution elastogram mapping of tissues [18–120]. In this method, we 

apply a modulated square wave acoustic force to the sample and detect the phase shifts of 

the sample oscillation using phase-resolved optical coherence tomography (OCT) [18–121]. 

Phase resolved OCT is a noncontact method to track the compression waves and thus the 

tissue elasticity within the 3D imaging region. In this paper, we validate the ARF-OCE 

system detection of axial and lateral changes in mechanical stiffness. We also use the 

imaging system for healthy corneal tissue as well as tissue with induced corneal sclerosis to 

compare the resulting Young’s modulus.

II. ARF-OCE System Validation

A. System Set-up

The OCE system uses an ultrasonic transducer system for excitation of the sample, phase-

resolved OCT system for detection of the vibrational response, and a computer for image 

processing. The schematic diagram is shown in Fig. 1. The axial resolution of the system is 

2.5 µm while the lateral resolution is 15 µm. A function generator feeds a square wave 

modulated signal into an amplifier, which generates an acoustic radiation force via a focused 

ring transducer of 4.5 MHz. The ultrasound transducer has a uniform stress field within 

approximately a 400 um by 400 um lateral region, with a larger axial field of 5 mm. The 

optical system is based on a superluminescent diode source with a central wavelength of 890 

nm, and a bandwidth of 150 nm. The light traveling to the sample and reference arms splits 

in an 80/20 coupler. The light from the reference is delayed and reflected back with a mirror. 

The light in the sample arm goes through the hollow ring in the middle of the transducer and 
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interacts with the phantom or tissue in the focal zone, which overlaps with the acoustic zone 

of the transducer to generate a strong phase signal. The power from the sample arm is 

measured to be 0.89 mW, which is below the safe value determined by the American 

National Institute (ANSI).

The light then travels back into the camera arm, which houses a collimator, a diffraction 

grating, a focusing lens, and a CMOS camera for detection of the interference signal. A line 

scan CMOS detector, which can operate at up to 70k A-lines per second, is used in place of 

the CCD camera in the previous manuscripts for faster imaging. However, in these ex-vivo 
experiments, an A-line rate of 20kHz is used to capture OCT images and the OCE 

oscillations.

B. Transducer Characterization

The acoustic profiles of the ultrasonic excitation transducer and OCT scanning beam were 

arranged in a confocal configuration on the same side of the imaging sample under the 

guidance of a hydrophone. The normalized pressure profile of the transducer is shown in 

figure 2. The region of uniform pressure is small in the lateral direction at the axial focus as 

shown in figure 2a and the axial beam profile is shown in 2b.. The relationship between the 

ARF and the intensity, I, distribution is summarized as F=2αI/c, where α represents the 

absorption coefficient and c is the longitudinal wave speed [22]. During imaging, the 

transducer was pulled away from the focal region in the axial direction in order to achieve a 

uniform stress region of approximately 600 um. Last, Doppler methods are used to 

determine the phase shifts between A-lines, where a larger phase change corresponds to high 

displacement and a softer sample. There is high phase stability of a few milliradians for a 

spectral domain OCT system [18].

C. Phantom Imaging

We had previously verified the lateral contrast of ARF-OCE imaging using a two-sided 

phantom [15–17], but it is still necessary to show feasibility for axial contrast. An agarose 

tissue-mimicking phantom with a stiffer inclusion was fabricated. The stiff inclusion has a 

diameter of about 1 mm, consisting of 0.8% agarose (by weight). It is buried within the 

larger phantom of 0.3% agarose. The completed sample, which is round with a diameter of 

3.5 cm and a thickness of 1 cm, was placed on a holder for OCE imaging.

To determine the feasibility of this agarose phantom, we calculated the displacements of two 

uniform samples under different excitation voltages shown in Fig. 3a. A linear dependency 

of the ultrasound-induced displacement on the excitation voltage was found, and a 500 

mVpp excitation voltage was used for the rest of this study.

The OCT and OCE displacement images of the inclusion phantom are shown in Figs. 3b and 

3c, respectively. The boundary between the two phantoms is evident in the OCT image 

likely because of water at the interface when the phantom was made, which contributes to a 

high scattering signal. In the OCE image, the boundary of the two phantoms is evident 

because of the differences in vibrational response. The shape of the two phantoms is clearly 
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distinguishable from the OCE image in all directions, which proves that our system is able to 

detect differences in the mechanical properties of tissue both laterally and axially.

Mechanical Testing vs. Experimental Results—Using the phase change, represented 

by Δϕ(z,t), and the Doppler relationship, it is possible to extract the velocity, v, of the 

phantom oscillation as shown in equation 1. The displacement can be calculated using the 

velocity measurements and integrating over time, also depicted in equation 1. λ0 is the 

central wavelength, n is the refractive index, τ is the 50 us exposure time, and θ is the 

Doppler angle. The mean displacement ratio of the softer phantom to the stiffer inclusion is 

approximately 3.49 : 1 according to the experimental results in figure 3. The Young’s 

Modulus of a material is defined in equation 2, where σ is the stress, d is displacement, and z 

is axial depth. In this way, the stiffness of a sample varies inversely with its induced 

displacement values, and relative stiffness can be obtained if the displacement is calculated. 

The relative stiffness of the surrounding phantom to the rod inclusion of the agarose 

phantom is 1: 3.49.

[Equation 1]

[Equation 2]

Compression tests were performed using MTS Synergie 100 on both the 0.3% and a 0.8% 

agarose phantom, with resulting Young’s Moduli of 3.68 kPa and 12.24 kPa, respectively. 

This corresponds to a stiffness ratio of 1: 3.33, which is in close agreement with our 

experimental result of 1: 3.49.. A strain of up to 0.1 mm/mm with a strain rate of 50 mm/min 

was used for testing. The feasibility of the ARF-OCE system to detect relative axial and 

lateral contrast in mechanical properties is shown.

III. Imaging of Corneal Tissue

A. Cross-linking Over 12 Hours

To test the feasibility of our imaging system on corneal tissues, we collected fresh rabbit 

eyeballs and obtained 3-D images of the rabbit cornea. All experiments were performed 

within 24 hours of eyeball extraction to ensure freshness. First, the healthy eyeball was 

placed inside a holder and covered with optically clear gel to hold the sample in place during 

excitation. A 3 mm by 3 mm area was scanned in the center of the cornea by using OCT, as 

shown in the 3-D reconstruction in Fig. 4a. OCE imaging was performed within a smaller 

area with a 400 Hz ARF modulation frequency. The 3-D OCE images were reconstructed 

and shown in Fig. 4b, with the color representing the phase shift of the tissue with respect to 

adjacent A-lines.

We also aimed to change the stiffness of the corneal tissue by inducing cross-linking using 

formalin solution. The entire eyeball was removed from the system and soaked with droplets 
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of 10% formalin solution. After soaking for 12 hours, we placed the sample back into the 

system to observe the changes. We assume that after 12 hours, the formalin-induced 

crosslinking is uniform in the entire cornea, and 3D OCE was performed on a small region 

using the same ultrasonic excitation conditions. The results are shown in Fig. 4c, where it 

was apparent that the phase shift has decreased drastically. The displacement amplitude ratio 

of the healthy cornea to the formalin soaked one was calculated to be 6.34 ± 0.22: 1.

Since the cornea was soaked for 12 hours, it was speculated that the mechanical changes 

could have been influenced by other factors, such as changes in the freshness of the cornea 

or instabilities of the system with change in time. In addition, the difference in stiffness 

changed over 6 fold in this case, which makes it easy to detect.

B. Instantaneous Cross-linking

In order to induce a stiffness change within a single cornea to eliminate other factors 

affecting the system and simultaneously image tissue of different stiffness, we injected 0.01 

ml of 10% formalin inside the healthy cornea via a 1-cc disposable syringe with a 30-gauge 

needle. The cornea was allowed to sit for merely ten minutes while we prepared for the 

imaging and zoomed into the area of injection. As shown in Fig. 5a, the OCT image reveals 

that the left side, where the formalin solution was injected, is distinctly thicker than the right 

due to the formalin bubble. The tissue was excited with a 400 Hz modulation frequency and 

a 500 mVpp pre-amplified voltage given to the transducer. The OCE displacement 

magnitude image is shown in Fig. 5b, with a red color representing high displacement. A 

much smaller displacement shift is shown on the left side, where the injection took place. 

Both OCT and OCE images were averaged over 50 B-scans for better representation. The 

displacement shifts of the raw OCE images before magnitude extraction are shown in Fig. 

5c, which corresponds to a smaller displacement on the left side that vibrates much less than 

the right. The displacement ratio of the healthy side on the right to the cross-linked portion 

on the left is approximately 1.82 ± 0.04: 1. There is a gradient in the middle portion of the 

image, similar to that of the phantom studies in Fig. 3. Over time, the formalin solution 

would diffuse across the entire cornea and the OCE image would resemble that in Fig. 4c. It 

was noticed that the displacement ratio of 1.82 ± 0.04 was much smaller. It is likely because 

we did not soak the cornea for nearly as long, so less cross-linking took place within the 

tissue. It is also important to note that the displacement values begin to decrease on the right 

side of the image, which is where the uniform acoustic focal zone ends at approximately 600 

um.

IV. Discussion and Conclusion

We have demonstrated the feasibility of using an ARF-OCE system for assessing the 

mechanical properties of corneal tissue. The feasibility of the imaging system to detect 

mechanical contrast both laterally and axially was tested on an inclusion dual-layered 

agarose phantom with a difference in stiffness in the two layers of 3.33 fold. The 

experimental Young’s moduli ratios corresponded well with the mechanical compression 

test results under acoustic radiation forces. We have performed in vitro imaging of a healthy 

rabbit cornea as well as a cross-linked one. The OCT image changed little, but the OCE 
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showed a 6-fold change. Last, we induced tissue cross-linking on a small area within the 

same cornea, and observed an approximately 2-fold difference in the stiffness.

These results show that our ARF-OCE method has great potential in distinguishing diseased 

corneal tissue from normal ones and quantitatively characterizing the severity of the change 

in mechanical properties. However, there are still a few limiting factors that must be 

improved before this system can be used for diagnosis purposes.

First, the intraocular pressure (IOP) of the cornea may have been altered during the injection 

of formalin. In addition, cross-linking may also have had an effect on the IOP, which in turn 

affected the stiffness measurements. This makes it difficult to distinguish between the 

changes in stiffness caused by the IOP versus tissue properties when we image different 

cornea samples. However, when we are looking at relative elasticity from a single sample 

with the same IOP, the relative values for a single cornea in figure 5 would not be changed 

by the overall IOP change.

Second, the imaging area must be increased to accommodate the entire cornea. Currently the 

uniform stress field occurs within a 400 um window, (600 um with pullback away from the 

focal plane), which is not enough to image an entire rabbit cornea. The rabbit cornea, which 

is typically approximately 14 mm in diameter, with a center of 6 mm. The first solution 

would be to increase this coverage by pulling away from the focal region and inducing a 

larger ARF while compromising the sensitivity. Another alternative would be to perform 

mechanical scanning over the entire tissue sample to cover more area without changing the 

force. This method compromises the imaging time. Therefore, it is necessary to find the 

balance between the two solutions and optimize the system for ocular imaging.

Third, we have not yet considered the effects of the non-uniform ARF in the axial direction, 

which explains why small changes within corneal layers were not detected. In future studies, 

we will do calibration studies and increase the sensitivity of our system.

Next, the mechanical index (MI) for ocular applications is 0.23 as determined by the FDA. 

Based on our results, the MI for the ARF is 1.68. The thermal index (TI) is 1.7 degrees for a 

scan. Current ARF induced displacement is on the order of micrometer, which is similar to 

that of ultrasound. Since OCE has nanometer-resolution, it is possible to achieve a 

sensitivity that is 100 times higher than elastography based on ultrasound. This means that it 

is possible to decrease power by at least a factor of 10 and still be sensitive enough to 

observe mechanical contrast. For this preliminary study, we are aiming to test the feasibility 

of using this technology on the characterization of corneal tissue, so a relatively large 

excitation was used. In the future, we will decrease the ARF when working with in vivo 
models so that both indices satisfy FDA rules.

Finally, in order to translate this technique to live human imaging, it would be necessary to 

work with contact-based probe methods or use ultrasonic coupling gel for the acoustic waves 

to propagate [22–23]. This may cause some discomfort, and biocompatibility factors must 

be considered. This is a limitation that we are currently working on as we move to in vivo 
studies.
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In conclusion, we reported on corneal imaging using an ARF-OCE system, obtaining both 

phantom results for validation and ex vivo tissue tests. These results validate the feasibility 

of using this system for relative mechanical elasticity testing and show its capabilities in 

demonstrating corneal cross-linking. Although a number of challenges remain to translate 

this technology for clinical applications, this technique has great promise for the 

characterization and diagnosis of corneal diseases.
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Fig. 1. 
Schematic diagram of OCE system. RF: radiofrequency, CMOS: camera.
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Fig. 2. 
Ring Transducer Beam Profile. a. Normalized pressure profile at the axial focus. b. 

Normalized axial beam profile.
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Fig. 3. 
Phantom testing. a. Displacement under different excitation voltages for two phantoms of 

different stiffness. b. OCT image of inclusion phantom. c. OCE projection image of 

inclusion phantom.
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Fig. 4. 
3-D images of rabbit cornea with and without formalin crosslinking. a. 3-D OCT 

reconstruction of 3 mm by 3 mm section of cornea. b. 3-D OCE section of healthy cornea. c. 

3-D OCE section of cross-linked cornea.
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Fig. 5. 
Imaging of rabbit cornea with injection of formalin solution. a. OCT image of cornea. b. 

OCE displacement magnitude image of cornea. c. Quantified displacement of cornea.
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