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ABSTR ACT: Over the past 20 years, there has been an exponential increase in the number of biomarkers. At the last count, there were 768,259 papers 
indexed in PubMed.gov directly related to biomarkers. Although many of these papers claim to report clinically useful molecular biomarkers, embarrassingly 
few are currently in clinical use. It is suggested that a failure to properly understand, clinically assess, and utilize molecular biomarkers has prevented 
their widespread adoption in treatment, in comparative benefit analyses, and their integration into individualized patient outcome predictions for clinical 
decision-making and therapy. A straightforward, general approach to understanding how to predict clinical outcomes using risk, diagnostic, and prognostic 
molecular biomarkers is presented. In the future, molecular biomarkers will drive advances in risk, diagnosis, and prognosis, they will be the targets of 
powerful molecular therapies, and they will individualize and optimize therapy. Furthermore, clinical predictions based on molecular biomarkers will be 
displayed on the clinician’s screen during the physician–patient interaction, they will be an integral part of physician–patient-shared decision-making, and 
they will improve clinical care and patient outcomes.
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Introduction
He will manage the cure best who has foreseen what is to 
happen from the present state of matters (Hippocrates, 
The Book of Prognostics, 400 B.C.E.).

For thousands of years, prediction has been central to 
the practice of medicine. Even before there were effective 
therapies, physicians sat at the bedside, observed their patients 
and, based on their observations, predicted their patients’ out-
come. Predictions integrate the complex of facts that consti-
tute a disease and its management in a way that guides clinical 
care.1,2 In fact, the ability to make accurate disease-related 
predictions is the hallmark of medical science. Furthermore, 
predictive medicine is a critical component of precision medi-
cine, and biomarkers, biological predictive factors, are central 
to predictive medicine.

Medical progress requires that we discover and clinically 
use molecular biomarkers that (i)  are necessary components 
of the disease process, (ii) accurately predict clinical disease 
outcomes, and (iii) give rise to biomarker-related interventions 
that retard or halt the disease process.

Over the past 20 years, there has been an exponential 
increase in the number of biomarkers. At the last count, 
there were 768,259 papers indexed in PubMed.gov directly 
related to biomarkers. Although many of these papers 
claim to report clinically useful molecular biomarkers, 

embarrassingly few molecular biomarkers are currently in 
clinical use.3–6 One  reason why this situation exists is that 
researchers may not fully appreciate the complexity inherent 
in the discovery, translation, and use of molecular biomarkers 
to clinical medicine.4–6 The result is studies replete with  
misinformation and a literature that contains incorrect, and 
many times even contradictory, results.4–6 In other words, 
many molecular biomarkers have been called but, so far, few 
have been chosen.

I suggest that a failure to properly understand molecular 
biomarkers has prevented their widespread adoption in treat-
ment, comparative benefit analyses, and their integration 
into individualized patient outcome predictions for clinical 
decision-making.4–7 This study presents a straightforward, 
general approach to understanding how to predict clinical 
outcomes using molecular biomarkers.

Medical Prediction
A prediction is an inference about an unknown pres-
ent or future state or event based on known information.  
Although predictions may be of any character, here we are 
interested in quantitative predictions of medical outcomes 
that are based on empirical clinical information. In other 
words, we want to use current empirical information to pre-
dict the occurrence (or nonoccurrence) of the true outcome, 
where the true outcome can be a patient state or event. 
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Quantitative predictions are usually generated by entering 
a patient’s predictive factors into a trained statistical model, 
the output of which is a patient’s probability of the occur-
rence of the outcome.

All predictions must be time denominated because 
the meaning of a prediction depends on the time interval; 
for example, the meaning of the probability of an outcome 
occurring within one year is different from it occurring 
within 10 years. In other words, a medical prediction that is 
not time denominated rarely has a clinical meaning. Further-
more, the prediction of an individual’s lifetime probability of 
death is usually not clinically useful because it: (1) provides 
information about a population average, which is not neces-
sarily relevant to an individual patient, (2) is strongly affected 
by infant mortality, and (3) does not take into account how 
long the patient has lived to the time of the prediction (ie, 
conditional survival).

Until recently, medicine had not provided highly accurate 
predictions because: (1) it did not possess powerful predic-
tive factors, (2) statistical methods seemed far removed from 
the practice of medicine and, as a consequence, predictions 
were not routinely integrated into the practice of medicine, 
and (3) there was no interest in, or mechanism for, providing 
patients with medical outcome predictions that were specific 
to individual patients.8 The rise of molecular biology, the use 
of computers in medicine, and the discovery of molecular bio-
markers that are directly involved in the disease process (and 
are, therefore, powerful predictors of disease outcomes), for 
example, estrogen receptors in breast cancer, have been major 
advances1,2,8–10 in medical prediction.

Temporal and Biological Determinism
Prior to the advent of molecular biology, the dominant prog-
nostic factors in cancer were anatomic because until relatively 
recently the only treatment for cancer was surgery and ana-
tomic factors could be collected during the surgical procedure. 
These anatomic factors were the location of cancer and its 
spread (surgical exploration) and the tumor’s size and grade 
(surgical pathology). Location was categorized as the solitary 
tumor (local), the presence of involved lymph nodes (regional), 
and evidence of distant metastasis (distant).8 In other words, 
for many years, all predictions were based on patients under-
going surgery, on surgery being their only therapy, and on 
surgical-related predictive factors.8

In 1953, the French surgeon Pierre Denoix proposed to 
the Union Internationale Centre le Cancer that these ana-
tomic factors be standardized, integrated into stages, and used 
across many solid tumor sites.9 The variables tumor size (T), 
lymph node status (N), and distant metastasis (M) were used 
to create a uniform and easy-to-use prognostic system, namely, 
the TNM staging system. The TNM staging system grouped 
patients into four stages (I–IV), where higher stages meant 
worse survival. The patient’s prognosis was predicted to be 
the average survival of all the patients in that patient’s stage. 

As medicine progressed, the disadvantages of this system 
became more obvious and troublesome. Because the TNM 
staging system was based on patients only receiving surgery, it 
did not take other treatments into account in its predictions. 
The system did not do so because if it had, it would have had 
to include predictors for each therapy and each combination 
of therapies, and this would have created a bin system that 
was too complex to be practical.11 In addition, as we learned 
more about the TNM systems, its fundamental assumption 
was called into question. While it was true that many patients 
with large tumors and distant disease died more quickly than 
those with small tumors and no distant disease, it was also 
true that some patients with small tumors and no distant dis-
ease died more quickly as those patients with large tumors and 
no distant disease.

All disease has both a temporal and a biological dimen-
sion. Although these dimensions are clearly distinguishable, 
they are not completely independent. The temporal dimen-
sion indexes how long the disease has existed in the body. The 
biological dimension indexes the disease process itself. If the 
biology of the disease did not change over time, then one could 
observe the temporal course of the disease by simply measur-
ing a temporal factor repeatedly over time and using that 
information to extrapolate in linear time the patient’s prog-
nosis. There are at least four problems with this approach to 
prognosis. First, we cannot measure cancer over time because 
once it is detected it is removed, so we cannot plot its tem-
poral trajectory. Second, we cannot assume that the biology 
of the disease does not change over time. Third, the primary 
tumor is, many times, not what determines the patient’s prog-
nosis, rather, metastases provide lethality. Fourth, an effective 
therapy changes the biology of the disease and, therefore, the 
patient’s prognosis, which means that if the patient receives 
an effective therapy, the predicted progression of the dis-
ease no longer applies because the progression has become 
discontinuous.

Cancer has both a temporal and a biological dimen-
sion. Ideally, in order to know the patient’s prognosis one 
would know both dimensions, namely, how long the tumor 
has been growing and its aggressiveness. We cannot know 
how long it has been growing, but we can learn about its 
aggressiveness by the assessment of molecular biomarkers 
from a tumor biopsy, or a resected tumor, or other types 
of samples. Our current use of anatomic factors tends to 
conflate the temporal and biological dimensions. When we 
see a large tumor, we assume that it has been growing for 
a long time because we know that it is generally associated 
with a shorter survival than a small tumor. Using anatomic 
factors in this way, as temporal indices, is called temporal 
determinism,1 and the TNM staging system is basically a 
temporal system because it does not take into account the 
biology of the disease.

When anatomic factors are used as temporal indexes 
for temporal predictions, the predictions are contaminated 
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by the temporal assumption, ie, the factors index time. This 
phenomenon has been called lead-time bias, but it is not 
actually a bias, rather, it is simply a natural consequence of 
temporal determinism. This temporal effect occurs because 
earlier detection increases the length of time we follow the 
patients, and thus, they appear to live longer with cancer. 
In other words, the earlier the tumor is discovered, the bet-
ter the patient’s prognosis appears to be. The reason for this 
effect is that the temporal determinism assumption con-
founds the temporal prediction. So long as anatomic factors 
are assumed to index time, ie, the larger the tumor, the lon-
ger it has been growing and the worse the prognosis, this 
confounding will continue. Everything else being equal, if 
the anatomic factors were analyzed for biological aggressive-
ness, this confounding would disappear. Aggressiveness fac-
tors would confer a worse prognosis, regardless of when they 
were discovered.

Another issue with the TNM staging system is indi-
vidual patient predictions. It predicts that a patient will 
have the same prognosis as the mean survival of a group of 
patients with the same TNM variables, ie, the same TNM 
stage. The problem is that if one examines the outcomes of 
all the patients in a TNM stage, one finds a wide variability 
in outcomes. In fact, the overlap in outcomes between the 
four stages is such that many patients in one stage would 
have an outcome similar to those in a stage they were not 
assigned to. This means that predictions based on the TNM 
staging system will have low accuracies. For example, the 
TNM receiver operating characteristic (ROC) scores were 
0.69–0.72, 0.74, and 0.53 for breast cancer, colorectal cancer, 
and prostate cancer, respectively.12 Although these predic-
tions were poor, the situation has only gotten worse. With 
the advent of screening and early detection, there has been 
a stage migration away from stages III and IV to stages I 
and II. This has resulted in the TNM staging system being no 
more accurate at predicting breast cancer survival than flip-
ping a coin.13 Finally, the TNM does not recognize the biol-
ogy of an individual patient’s disease, which is the antithesis 
of precision medicine.

We want to know the tumor’s biology, including its 
aggressiveness. In other words, we want to assess biologi-
cal determinism.1 We are interested in aggressiveness to the 
extent that aggressiveness is related to lethality. Molecular 
biomarkers can index the biology of the disease, they can pro-
vide information about the aggressiveness of the disease and, 
as a consequence, they can provide information regarding the 
individual patient’s prognosis. Although we have been using 
the term aggressiveness to illustrate biological determinism, 
in reality, it is not that simple. It is important to realize that 
the growth rate of the primary tumor is related to, but not 
identical with, lethality. Lethality is a great deal more compli-
cated than the primary tumor’s growth rate because, for many 
cancers, it is not the primary tumor that kills the patient but 
rather the tumor’s metastases. Aggressiveness and lethality 

are determined by biological factors that are directly related to 
both the disease and the patient-host.

Medicine must move from predictions based on temporal 
determinism to predictions based on biological determinism.1 
Cancer should not be defined by the anatomic stage of the 
disease at the time of detection. Rather, it must be defined by 
the molecular characteristics of both the tumor and the host. 
Biological determinism takes the view that the characteristics 
of the disease at detection must be related to the biology of 
the disease rather than to our methods of tumor detection. 
Biological determinism is the systematic combination of the 
molecular biomarkers that index the biology of the disease and 
of the patient-host and the use of this information to make 
individual patient outcome predictions, including the selec-
tion of an effective therapy for the individual patient. In other 
words, treatment must be driven by the molecular biology 
of the tumor and host rather than by the method of disease 
discovery.

Clinically Predictive Biomarkers
It appears to me a most excellent thing for the physician to 
cultivate Prognosis; for by foreseeing and foretelling, in the 
presence of the sick, the present, the past, and the future, and 
explaining the omissions which patients have been guilty of, 
he will be the more readily believed to be acquainted with the 
circumstances of the sick; so that men will have confidence to 
entrust themselves to such a physician (Hippocrates, The 
Book of Prognostics, 400 B.C.E.).

In terms of clinical use, a predictive factor is any mea-
sureable attribute of an individual that can be used to infer 
a health-related outcome. Here, we are interested in disease-
related attributes that predict a disease-related outcome. 
There are at least three levels of medically related predic-
tive factors, namely, demographic (eg, race, gender, socio-
economic status, etc.), anatomic/cellular (eg, tumor, stroma, 
cellular attributes, etc.), and molecular (eg, proteins, genes, 
etc.).8,9 A predictive biomarker is a biological predictive 
factor. A molecular biomarker is any measurable molecu-
lar attribute of an individual that can be used to predict a 
disease-related outcome by virtue of its relationship to the 
disease process over a specific time interval.14 All predictions 
must be accompanied by a time interval. If the prediction is 
of a current outcome, then the interval is instantaneous; if 
the prediction is of a future outcome, then there must be for 
a specified duration of time.

There are three types of medical predictions, risk, 
diagnosis, and prognosis (Table 1).8,15 They differ in their 
clinical uses, their outcomes, and their accuracy. Risk, as 
the term is commonly used, is ambiguous. It can refer to the 
risk of the occurrence of incident disease, or it can refer to 
the chance of occurrence of a medical outcome. Here, risk 
is used to refer to the risk of incident disease over a speci-
fied interval of time. In place of the word risk in the phrases 
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risk of recurrence and risk of death, the word probability will 
be substituted, as in the probability of recurrence and prob-
ability of death.15

A risk biomarker predicts that the patient who has not 
been diagnosed with the disease will exhibit incident disease 
over a specified time interval.15 The risk biomarker, either 
alone, or in combination with other risk biomarkers, is always 
less than 100% accurate in predicting incident disease over 
a specified time interval. If a risk biomarker’s prediction is 
close to 100% accurate, it is a diagnostic biomarker. There 
are three clinical uses of risk biomarkers. A natural history 
risk biomarker predicts the probability that the patient will 
exhibit incident disease if the patient does not receive a pre-
vention intervention over a specified period of time. The goal 
of a natural history risk biomarker is to determine whether 
a prevention intervention is necessary, ie, does the patient 
have a sufficiently high likelihood of incident disease that a 
prevention intervention should be considered. A prevention-
specific risk biomarker predicts the probability that the patient 
will respond to a prevention intervention over an interval of 
time. The goal of a prevention-specific risk biomarker is to 
determine the optimal prevention intervention. A post-pre-
vention risk biomarker predicts that the patient responded 
to a preventive intervention over a specified interval of time. 
The goal of a post-prevention risk biomarker is to determine if 
the intervention was effective without waiting for the occur-
rence of a clinical outcome. The risk biomarkers that are the 
most powerful predictors are usually directly connected to 
the development of the disease and they are the best targets 
for prevention.16

In other words, risk has three subtypes of predictions: 
(1) the probability that a patient who does not currently have 
the disease will exhibit the disease over a specified time 
interval; (2) the prediction that a prevention intervention will 
reduce the probability of incident disease over a specified time 
interval; and (3) the prediction of whether the administered 
prevention intervention reduced the probability of incident 
disease over a specified time interval.

The reason that most risk biomarkers possess poor pre-
dictive accuracy is because no matter how carefully the at-risk 
population is selected it will almost always be heterogeneous 
for the occurrence of incident disease by the end of the time 
interval. Even strong risk biomarkers exhibit poor predic-
tive accuracy when assessed in a heterogeneous population. 
For example, tobacco smoking is a very strong risk factor for 
lung cancer, but most smokers will not be diagnosed with lung 
cancer. The better the at-risk population is defined, for exam-
ple, using lung cancer susceptibility genes in smokers to define 
a risk group, the more homogeneous it is.

A diagnostic biomarker predicts that the patient who was 
not known to have the disease currently has the disease at 
this instant in time.15 The diagnostic biomarker, either alone, 
or in combination with other diagnostic biomarkers, must be 
close to 100% accurate in predicting incident disease at that 
moment in time. The goal is to diagnose the disease in the 
patient. A biopsy that demonstrates invasive cancer is close to 
100% predictive of incident disease at the moment the biopsy 
is taken.

A prognostic biomarker predicts a future disease-
related patient outcome in a patient with the disease.8,15 

Table 1. Clinical type (risk, diagnosis, and prognosis) and clinical use (natural history, prevention/therapy-specific, and post-prevention/therapy-
specific) of predictive factors, their patient predictions, and clinical rationale.

CLINICAL TYPE 
AND USE

INDIVIDUAL PATIENT PREDICTION CLINICAL RATIONALE

RISK Predicts that the patient will in the future exhibit incident 
disease, over a specified time interval, the probability is 
much less than 100%

To identify patients who have a high likelihood of disease, the 
goal is to prevent or retard the occurrence of incident disease

Natural history 
risk

Probability of incident disease if the patient does not receive 
a prevention intervention, over a specified time interval

To determine whether a prevention intervention is necessary 

Prevention- 
specific risk

Probability that the patient will respond to a specific 
prevention intervention, over a specified time interval

To determine the optimal prevention intervention 

Post-prevention 
risk

Probability that the patient responded to the prevention 
intervention, over a specified time interval

To determine whether the prevention intervention was effec-
tive without waiting for the occurrence of a clinical outcome

DIAGNOSTIC Predicts that the patient currently has the disease at this 
instant in time, the probability is close to 100%

To diagnose the patient

PROGNOSTIC Predicts a future disease-related outcome in a patient with 
the disease, over a specified time interval, the probability is 
variable

To identify patients who have a high likelihood of an adverse 
outcome, the goal is to retard or stop the progression of the 
disease in those patients

Natural history 
prognostic

Probability of a disease-related outcome if the patient does 
not receive any therapy, over a specified time interval

To determine whether therapy is necessary 

Therapy-specific 
prognostic

Probability that the patient will respond to a specific therapy, 
over a specified time interval

To determine the optimal therapy

Post-therapy 
prognostic

Probability that the patient responded to the therapy, over a 
specified time interval

To determine whether the therapy was effective without 
waiting for the occurrence of a clinical outcome
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The prognostic biomarker, either alone, or in combination 
with other prognostic biomarkers, predicts the probability 
of a disease-related outcome over a specified time interval. 
Although prognostic biomarkers are usually stronger predic-
tors than risk biomarkers because all the patients in the popu-
lation have the disease, when the disease process is complex, 
as it is in cancer, it is rarely the case that a lone biomarker will 
accurately predict a disease outcome.

There are three clinical uses of prognostic biomarkers. 
A  natural history prognostic biomarker predicts the prob-
ability of a disease-related outcome if the patient does not 
receive any therapy over a specific period of time. The goal 
of a natural history prognostic biomarker is to determine if 
a therapy is necessary, ie, does the patient have a sufficiently 
high likelihood of a poor outcome that a therapy should 
be considered. A  therapy-specific prognostic biomarker pre-
dicts that the patient will respond to a specific therapy over 
a specific period of time. The goal of a therapy-specific 
prognostic biomarker is to determine the optimal therapy. 
A post-therapy prognostic biomarker predicts that the patient 
responded to a therapy over a specific period of time.8,15 The 
goal of a post-therapy prognostic biomarker is to determine 
whether the therapy was effective without waiting for the 
occurrence of a clinical outcome. The prognostic biomark-
ers that are the most powerful predictors are usually those 
directly connected to the disease process and they are the 
best targets for therapy.16

It should be noted that there is no necessary reason why 
a biomarker that is predictive at the time of the biomarker is 
acquired and measured will continue to be predictive through-
out the disease process. In other words, one cannot assume that 
a biomarker, once discovered, will continue to be an accurate 
predictor as the disease progresses. In fact, it is more likely that 
an early prognostic biomarker will not participate in later dis-
ease and, as a result, will lose its predictive power and that a 
late prognostic biomarker will not be in evidence early in the 
disease process. 

It  is important to understand that an effective therapy 
always changes the patient’s prognosis by improving the 
patient’s outcome. To the extent that the patient’s progno-
sis has been changed by the therapy, the predictive power of 
the natural history biomarker must commensurately change 
(because the patient’s outcome has changed). This change 
is almost always a reduction in the biomarker’s prognostic 
power. Finally, natural history molecular biomarkers can be 
used to measure disease aggressiveness and this, in turn, can 
be used to stratify patients into biologically meaningful sever-
ity of illness groups.

A therapy-specific prognostic biomarker is, as its name 
implies, specific to a particular treatment. It predicts that 
a patient will respond to that therapy over a specified time 
interval.8,15 For example, estrogen receptor status in breast 
cancer patients predicts a patient’s response to antihormone 
therapy and, to the extent that she responded to the therapy, 

her post-therapy outcome will no longer match her natural 
history outcome. This highlights the importance of taking 
therapy into account in every prediction model. Every 
effective therapy the patient receives must be modeled in order 
to accurately predict his or her outcome.

A post-therapy prognostic biomarker measures whether 
the therapy changed the patient’s outcome without having to 
wait for the occurrence of a clinical symptom.8,15 A therapy-
specific prognostic biomarker can be assessed for a change 
in its value, and the direction of the change, over a speci-
fied time interval before and after therapy. A change in the 
biomarker may predict a change in the patient’s outcome. 
The nature of, and relationship between, therapy-specific and 
post-therapy-specific biomarkers is quite complex due to the 
biological mechanisms that drive cancer.

Our ability to target a molecular biomarker and observe 
a change related to therapy, a change that indicates a change 
in the patient’s outcome, is limited by: (1) the fact that there 
can be multiple alternative pathways such that if one pathway 
is blocked, another can come to the fore, (2) the role of the 
biomarker in the disease process can change over time, and 
(3) how effective the therapy is at affecting the biomarker, eg, 
whether the biomarker was the target of the therapy. These 
become critical issues when one attempts to use a post-therapy 
biomarker as a surrogate outcome.

In other words, prognosis has three subtypes of predic-
tions: (1) the prediction of the probability of a disease-related 
outcome occurring without the patient receiving any treat-
ment over a specified time interval; (2) the prediction that a 
therapy will reduce the probability of a disease-related out-
come over a specified time interval; and (3) the prediction that 
the administered therapy reduced the probability of a disease-
related outcome over a specified time interval.

There has been some confusion regarding the meaning 
of the words prognostic and predictive. Gasparini et al17 sug-
gested ad hoc definitions for prognostic indicator and predic-
tive factor. He said that prognostic is an indicator at the time of 
diagnosis that provides information regarding clinical out-
come and that predictive is a factor that selects patients that 
are likely to respond to a therapy. There are several problems 
with Gasparini’s nomenclature. Prognosis is a prediction, 
which means that prognosis must be a subset of prediction. 
Furthermore, since prognosis is a subset of prediction, pre-
dictive factors and prognostic factors cannot be completely 
different. In  addition, risk is a prediction and therefore it, 
like prognosis, must also be a subset of prediction. Finally, 
if as Gasparini suggests, a predictive factor must always be 
a factor that provides information regarding treatment in 
patients with disease, then risk factors cannot be a subset of 
predictive factors. These contradictions suggest that Gaspa-
rini’s nomenclature is incorrect. What Gasparini was trying 
to do but failed to accomplish, was to distinguish between 
natural history prognostic factors and therapy-specific 
prognostic factors.
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Three of the most important aspects of a predictive bio-
marker are: (1) how strongly is it connected to the disease, 
(2)  its relationship to other disease-specific prognostic 
biomarkers, and (3) its clinical use.16 The disease-related 
predictive power of a biomarker is determined, in part, by 
how strongly it is connected to the disease process. The less 
connected the biomarker is to the disease, the less predic-
tive it is.14 There are three types of connectedness relation-
ships between a biomarker and its disease. The strongest 
connection occurs when there is a direct relationship, where 
the molecular biomarker is a part of the causal disease pro-
cess. This means that the molecular biomarker is an inte-
gral (ie, necessary and/or sufficient) part of the biology of 
the disease.14 A weaker connection occurs when there is 
an indirect relationship, where the molecular biomarker is 
involved in the disease process but is neither necessary nor  
sufficient for the activity of the disease. An indirect connec-
tion means that it is not an integral part of the disease pro-
cess, but it is related to it in some way, for example, being an 
occasional component of the disease process.14 The weakest 
connection occurs when there is an epiphenomenon relation-
ship, for example, pus to an infection. The biomarker is a 
byproduct of the disease process but does not participate in 
the disease process.

Direct biomarkers are the most predictively powerful 
because they directly participate in the disease process, indirect 
biomarkers are less powerful, and epiphenomenon biomark-
ers are the least powerful. In addition, direct biomarkers are 
the best targets for therapeutic intervention. In fact, one can 
use the strength of association between the biomarker and the 
true outcome, as measured by its accuracy, to determine which 
molecular biomarkers to target for therapeutic interventions.16

The clinically related predictive power of the molecular 
biomarker depends on the clinical question being addressed, 
ie, the biomarker–outcome relationship being assessed.14,18 For 
some questions, the biomarker–outcome relationship will be 
clinically weak. For example, a biomarker taking part in the 
initiation of the disease process may become less associated 
with the disease as the disease changes during its progression, 
whereas, it may be a strong risk factor for the early detection of 
the disease. Furthermore, if there is no effective therapy, then 
only the natural history biomarkers will have clinical utility.

Generally, determining whether a molecular biomarker is a 
predictive biomarker requires that: (1) the biomarker is measured 
in a defined population, (2) the population is followed until a 
sufficient number of outcomes have occurred (eg, deaths), and 
(3) the relationship between the biomarker and the outcome is 
determined.14,15 If the biomarker predicts the outcome with suf-
ficient accuracy (where sufficient depends on the clinical question 
being addressed),15,18 it is called a predictive biomarker.

Prognostic Outcomes
There are several types of prognostic outcomes includ-
ing a recurrence after a response to therapy, disease-specific 

mortality, and all-cause mortality. Prognostic biomarkers 
obtain their prognostic power by virtue of their relationship 
to the disease; thus, it is critical that outcomes be related to 
the disease (and the host) if we are to observe the biomarker’s 
power in predicting the clinical outcome. The problem with 
all-cause mortality is that if many of the patients die of causes 
other than the disease then the biomarker, which cannot 
predict the nondisease-related outcomes, will appear to be a 
weaker predictor than it actually is.

Surrogate Outcomes
Determining whether a molecular factor is a predictive bio-
marker can take a long time since one must wait for the pre-
diction time interval to have elapsed. One way to shorten the 
initial investigation of the relationship between a putative pre-
dictive biomarker and the true outcome is through the use of 
large, long-term, comprehensive, annotated specimen banks.19 
Additional guidance regarding the acquisition and use of 
archived specimens for evaluating prognostic biomarkers has 
been proposed.20,21 Another approach is to use biomarkers as 
surrogate outcomes.

A surrogate outcome is the use of a disease-related predic-
tive biomarker as if it was the true outcome.15 When a predic-
tive biomarker takes the place of the true outcome it is called a 
surrogate outcome since it is acting as a surrogate for the true 
outcome.15,22 The key concept is that a surrogate outcome is 
only useful to the extent that it is directly related to the true 
outcome. If a predictive biomarker is not related to the true 
outcome then it is useless as a surrogate outcome. On the other 
hand, if it is perfectly related to the true outcome, then it can 
always take the place of the true outcome. This means that if a 
biomarker changes its value after a preventive intervention or 
treatment and, if the biomarker is perfectly associated with the 
true outcome, then by observing the change in the biomarker 
we are observing a change in the true outcome. For example, 
if a circulating serum biomarker that is perfectly connected 
to the disease process disappears after treatment then, with-
out any direct knowledge of the true outcome, we would say 
that the patient’s prognosis has improved. Surrogate outcomes 
(in clinical trials, they can be called surrogate end points or 
intermediate end points) are usually employed in an attempt 
to shorten the duration of, or reduce the number of patients 
in, a prospective risk or prognosis trial. We must be careful 
with the word associated, for there are many ways by which 
a biomarker and an outcome can be associated. Only some of 
these associations will lend themselves to the biomarker being 
a surrogate outcome.

Several criteria for a surrogate outcome have been 
proposed. Prentice23 proposed that the surrogate outcome 
must be associated with the final outcome, that the treat-
ment must affect the outcome, and that the full effect of 
the treatment on the final outcome is fully explained by 
the surrogate outcome. Prasad et al24 recently proposed 
three levels of evidence, namely, a biological rational, the 
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correlation of the surrogate and the final outcome, and a 
high correlation of the treatment effect on the surrogate 
outcome and the final outcome.

In order to assess the strength of a biomarker as a sur-
rogate outcome, one must have the following information: 
(1)  a necessary and sufficient definition of the biomarker 
as the surrogate outcome including a description of how to 
detect and assess it (but just because one can measure it does 
not mean one should measure it)25 and a method for dealing 
with error in the biomarker detection and assessment process, 
(2) a necessary and sufficient definition of the true outcome 
including a description of how to detect and assess the true 
outcome and a method for dealing with the error in the true 
outcome detection and assessment process, and (3) a quantita-
tive understanding of the strength and direction of the rela-
tionship between the surrogate outcome and the true outcome 
over a specified time interval.15

Prasad et al24 reviewed the evidence related to the strength 
of the association between selected surrogate outcomes and 
their true outcomes. They defined three levels of correlation 
between the two, namely, less than or equal to 0.70, which 
they termed low strength, greater than 0.70 but less than 0.85, 
which they termed medium strength, and greater than or 
equal to 0.85, which they termed high strength. They found 
that most surrogate end points in oncology have a low correla-
tion with overall survival. They conclude, “Our findings call 
into question the widespread use of surrogate end points in 
oncology as the basis for treatment decisions” (p. 1392). It is 
instructive that Prasad et al24 used overall survival as their true 
outcome. In terms of prediction, proper disease outcomes are 
disease-specific, they are not all-cause. If one does not want to 
show an association between a disease-related biomarker and 
a true disease outcome, one uses all-cause mortality because 
it contains many causes of death that are not related to the 
disease. Furthermore, Prasad et al used linear correlation to 
assess the connection between the surrogate outcome and the 
true outcome, but the association between a disease-related 
biomarker and a disease-related outcome is, many times, not 
linear. This is because complex systems, and cancer is a com-
plex system, are usually nonlinear and interactional, neither of 
which are taken into account by a linear model.12

It is relatively straightforward to use molecular biomark-
ers as surrogate outcomes when they are direct biomarkers, 
when they affect a single prevention or therapy-mediated bio-
logical pathway, and when the targeted pathway is the only 
pathway driving the disease. But this almost never occurs. One 
reason is because a disease usually has multiple possible path-
ways and a therapy may only affect one of its pathways.22,26 
One possible solution to the multiple pathway problem is to 
obtain a set of relevant pathways and observe the effect of pre-
vention or treatment on each of the pathways.23,27

An important issue is how long must one must wait 
for a change in the surrogate outcome. An optimal surro-
gate outcome changes its value shortly after the treatment. 

This  means that if there is no change after the treatment, 
another treatment should be instituted without delay.

Explanatory Levels of Analysis
Molecular biomarkers do not exist in isolation from other 
predictive factors, every factor is imbedded in a hierarchical 
matrix of interconnected factors and a factor’s relationships 
with other factors affect the factor’s power.8,9,16 As discussed 
previously, prognostic factors can be viewed in terms of at 
least three explanatory levels of analysis. Demographic factors 
exist across patients and include social, cultural, and environ-
mental factors, anatomic/cellular biomarkers exist within an 
individual as tissue and include the tumor cells, surround-
ing stroma, and lymphatics, and molecular biomarkers are 
biochemical entities and include genes and proteins.8,9 These 
levels are important because of their hierarchical relationship. 
Molecular biomarkers are the origin of anatomic factors in a 
reductionist manner. Thus, anatomic factors are a realization 
of the molecular factors and the molecular factors’ rules of 
organization. Anatomic factors can be thought of as molecu-
larly compound factors. Because anatomic factors are composed 
of numerous lower level (molecular) factors, and because 
different lower level factors can give rise to the same higher 
level factor, there need not be a one-to-one correspondence 
between what is observed at the intersection of the anatomic 
and molecular levels. In addition, the number and complexity 
of the factors increases as one moves from the anatomic to the 
molecular level.8,9,16

Because anatomic factors are a level away from the molec-
ular disease process, they tend to be less powerful predictors 
than the molecular factors from which they are constituted. 
Although the movement to a lower level of analysis usually 
increases predictive power, it also results in the proliferation of 
factors, which are more difficult to operationalize both statis-
tically and clinically. Furthermore, there can be analytic com-
plications, for example, if a compound factor from a higher 
level and one of its components from a lower level are placed 
in the same statistical model, the model will exhibit colinear-
ity and the predictive power of the two factors will be dimin-
ished. In other words, a factor’s predictive power is related to 
how it affects, and is affected by, other factors both at its level 
and at other levels. In addition, because the disease process 
changes over time, the relationship between a factor and the 
disease changes over time.8

Predictive Accuracy
Predictive accuracy measures the relationship between the 
prediction of the occurrence of the outcome and the actual 
occurrence of the outcome. The outcome can be a patient 
state or event. The closer a prediction is to the outcome, 
its target, the greater its accuracy. For a specific disease, 
for its relevant outcome, and for a specified time interval, 
the predictive accuracy of a biomarker depends on: (1) how 
intimately it is connected to the disease process (its power), 
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(2) its orthogonality with relation to other known biomarkers 
(degree of predictive overlap), and (3) how precisely it can be 
measured.14 Clearly, connectedness is related to power. To the 
extent that two biomarkers are related to the disease process 
in the same way, when they are placed in the same predictive 
model, they will dilute their individual predictive power but 
not the power of the model. If two biomarkers are connected 
to the disease process in different ways (orthogonal), then 
when they are placed in the same predictive model, they will 
be additive in the model.

There are quite a few ways to measure accuracy. Percent 
correct is a commonly used measure of accuracy. For a binary 
outcome with an event rate close to 50%, for example, for sur-
vival where half the patients are dead and half are alive at 
the end of the specified time interval, percent correct is an 
acceptable method for assessing the predictive accuracy of 
survival predictions. But in the context of statistical models 
that learn from the data, percent correct can be influenced by 
the frequency with which the event appears in the popula-
tion because the model can learn to predict the most frequent 
event. For example, if 99% of patients are alive in five years, 
a model can learn to predict the most frequent event, namely, 
predicting that all the patients will be alive and, in this situ-
ation, it will have an almost unbeatable 99% correct rate. It 
should be noted that in situations where there is a high event 
rate, it will always be difficult for any predictive model to do 
better than betting the frequency.

A well-developed method for assessing the accuracy 
of a predictive model in terms of its discrimination, and for 
comparing models, is the receiver operating characteristic 
(ROC).28 It was discovered by Somer,29 and it can be directly 
calculated by the Somer’s D formula. In addition, it can be 
approximated by a trapezoidal area calculation.30 The ROC is 
a nonparametric measure of discrimination. It is independent 
of both the prior probability of each outcome and the thresh-
old cutoff for categorization. Its computation requires only 
that the prediction method produces an ordinal-scaled rela-
tive predictive score. In terms of mortality, the ROC estimates 
the probability that the prediction model will assign a higher 
mortality score to the patient who died than to the patient 
who lived. The ROC varies from zero to one. When the pre-
dictions are unrelated to survival, the ROC is 0.5, indicating 
no predictive accuracy (flipping a coin). The farther the ROC 
is from 0.5, the better the accuracy. The c index31 is equivalent 
to the ROC, and it is useful in situations in which there is cen-
soring, for example, in assessing the results of a proportional 
hazards model.

It should be noted that ROC values are nonlinear. This 
means that it is easier to achieve an ROC of 0.50 than 0.60, 
and it is easier to achieve an ROC of 0.60 than 0.70. In other 
words, it becomes progressively more difficult to achieve 
higher ROC values. The reason for this is that prediction is 
easiest at the extremes and harder as one moves toward the 
indeterminate middle. For example, it is relatively easy to 

predict who will die of breast cancer within one year and 
who will live at least 10 years, but it is much harder to predict 
when patients will die in the time interval between two and 
10 years. Initially, the model predicts the extremes and it 
achieves a certain ROC score, but as it moves more toward the 
indeterminate outcomes it becomes harder and harder to pre-
dict correctly, resulting in more errors and less improvement 
in the ROC score.

There is an intimate relationship between the ROC, sensi
tivity, and specificity. The ROC can be thought of as all pos-
sible sensitivity/specificity pairs. The ROC can be used to assess 
individual variables, individual models, and to compare models. 
Significant differences in the ROCs between two models can be 
tested by following Hanley and McNeil,32 or by calculating their 
asymptotic variances, or by calculating the empirical variance 
using the bootstrap method.33

Discrimination is how well the predictions are ordered 
in terms of the true outcomes and calibration is how close the 
predicted values are to the true outcome values. Although both 
discrimination and calibration should be used to assess model 
accuracy,34,35 one should not initially assess calibration because 
a well-discriminating model can always be calibrated (post-
processor calibration), but the accuracy of a well-calibrated but 
poorly discriminating model can rarely be improved.36

Accuracy allows one to assess the predictive power of 
individual biomarkers in a multivariate model. Here, we are 
interested in a biomarker’s predictive power and not its statisti-
cal significance. One way to assess the predictive power of indi-
vidual biomarkers in a model is to perform the serial removal 
with replacement of the biomarkers. The method to accomplish 
this is as follows. All the biomarkers are placed in a statistical 
model and the model’s ROC is determined. A biomarker is 
removed, the model is run, the model ROC is determined, the 
biomarker is replaced, and another biomarker is removed and 
the model ROC is determained. This process is repeated until 
all the biomarkers have been assessed in terms of their contri-
bution to the overall accuracy of the model. If the removal of 
the biomarker has little or no effect on the model ROC, then 
it does not contribute to the accuracy of the predictive model. 
The reason it does not contribute may be because it has no pre-
dictive power or because it is correlated with other biomarkers. 
Furthermore, it can be the case that biomarkers that are not 
significant in the model contribute to predictive power, so a 
biomarker should not be removed from a model just because it 
lacks statistical significance. Finally, to determine whether the 
observed model accuracy is due to chance, the significance of a 
model can be assessed.32,33

Although I have been discussing the accuracy of individual 
biomarkers, it is important to realize that we are usually not 
interested in a single biomarker because cancer is a complex 
system. The biomarker components of a complex system do 
not act alone—they act in concert. Biomarkers are interacting, 
interdependent, multipurpose parts of a biological system and 
by modeling them we index the cancer. The model’s accuracy 
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measures how well the model captures the clinical behavior of 
the cancer. Furthermore, there is not one unique model, there 
are many models of a complex system like cancer.

Significance and Accuracy
Some investigators believe that if a biomarker or a group of 
biomarkers can stratify patients into two statistically different 
outcome groups, then the biomarker or a group of biomarkers 
is an accurate outcome predictor. Furthermore, they believe 
that the greater the statistical significance of this stratification, 
the higher the predictive accuracy of the biomarker. This belief 
is incorrect. The ability of a biomarker to separate patients into 
two groups at a nonchance level tells us very little about how 
good the biomarker is at making individual patient predic-
tions. In other words, significance tells us how probable the 
observed perimeter estimates are if the null hypthesis is true, 
whereas accuracy tells us how good we are at predicting indi-
vidual patient outcomes. It is rarely the case that there is an 
invariant relationship between significance and accuracy, for 
example, that a greater significance always means a higher 
accuracy.14,16 One reason for the discrepancy between signifi-
cance and accuracy is that significance is usually enhanced by 
middle values because they affirm the parameter estimate and 
minimize its variance and it is usually degraded by extreme 
values. On the other hand, accuracy is enhanced by extremes, 
because extreme outcomes are the easiest to predict, and accu-
racy is degraded by middle values because they are usually the 
hardest to predict.

Another issue related to significance is the truth of the 
assessment. By increasing the sample size, one may improve 
significance, but it should not be the case that truth depends 
on the sample size. Generally, accuracy only depends on 
achieving a minimum event (outcome) rate, ie, a rate sufficient 
to define the relationship between the predictor variable and 
the true outcome. This rate is usually 10–20 events per inde-
pendent variable.37 The event rate for a binary variable is the 
outcome that has the lowest frequency. If the population has 
a sufficient event rate, then adding patients to the population 
does not affect variable or model accuracy.

Validation
A molecular biomarker must go through three stages of 
assessment. The first stage is its discovery and initial charac-
terization of the biomarker. The second stage is to train and 
test a model. The third stage is its validation on an indepen-
dent dataset. The assessment of molecular biomarkers has 
been a concern since the earliest days of molecular research. 
Over the last 20 years, significant problems have been noted, 
and recommendations regarding solving these problems have 
been made, but few of these proposals have been adopted. 
Pepe et al38 proposed a model for clinical validation of bio-
markers for the early detection for disease, yet subsequent 
publications on early detection suggest that the confusion did 
not recede after this publication.39–42

A word about the initial dataset and its use. One should 
always randomly split one’s data into two subsets, namely, 
train (two-thirds to three-fourths of the data) and test (the 
balance of the data). An investigator can do anything with 
the train dataset, including looking at the data, optimizing 
thresholds, and developing models. But the results on the 
training dataset cannot be reported because the investigator 
looked at the data and optimized the analysis. The investi-
gator applies the optimized model derived from the training 
dataset on the test dataset once. The test dataset results are 
reportable. Note that because the train and test datasets are 
essentially the same dataset, validity has not been established. 
For validity, one must take apply the optimized model to an 
independent dataset.

Clinical Acceptability
Whether a molecular biomarker is clinically acceptable 
depends on its accuracy, independence, and clinical utility.8,9,16 
Accurate means that the biomarker, at its lowest accuracy, is a 
powerful predictor for a specified group of patients. A helpful 
heuristic is that a validated ROC of 0.60 is usually required 
to surmount a predictive model’s variance, a validated ROC 
of 0.70 is the lower bound of a clinically useful model, and a 
validated ROC of 0.75 and above indicates excellent clinical 
accuracy.2 It is interesting to observe that most ROCs in 
medicine fall below 0.80. Achieving ROCs above 0.80 can 
occur due to low task difficulty, ie, the outcomes are easy to 
predict in a particular dataset, or to reporting on training 
data, or to special methods of analysis.

Independent means that the biomarker retains its pre-
dictive value when it is placed in a multivariate model that 
contains other relevant predictive biomarkers. Clinical utility 
means that it addresses a clinically important problem, that 
is, it improves patient care and outcomes.14,19 Clinical util-
ity does not require that there be an effective therapy. When 
there is no effective therapy, a biomarker’s utility is its ability 
to inform patients of their outcome, ie, to predict the natural 
history of the disease, so that patients can properly prepare for 
their fate. The importance of a biomarker in providing infor-
mation to patients regarding their outcomes, even when the 
outcome cannot be changed, should not be underestimated.

Biological function and clinical utility are distinguish-
able. Although it has been suggested that biological plausibility 
is a criterion in the evaluation of a predictive biomarker,43 it is 
not necessary to understand the function of the biomarker in 
order to use it to make clinical predictions.16 It is certainly the 
case that a biomarker’s predictive value rests on its function in 
the disease process, but it is not necessary to know its function 
in order to use it predicatively.

Reporting Guidelines
A number of reporting guidelines have been proposed,44 
including REMARK6 and TRIPOD.45,46 We proposed 
reporting criteria,8,16 several of which have been incorporated 
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into reporting guidelines. In summary, the report of the 
clinical use of a molecular biomarker should contain, at a 
minimum, the following information: (1) The disease, the 
method of patient identification and inclusion, the number 
of patients, a detailed description of all the relevant demo-
graphic, anatomic, and molecular variables, and the therapies 
received by patients in this population. (2) The biomarker, the 
method used to assess it and, if it is not treated as a continu-
ous variable, its prespecified threshold. (3) The type, ie, risk, 
diagnostic, or prognostic, and the clinical use, ie, natural his-
tory, therapy-specific, post-therapy, of the biomarker. (4) The 
clinical outcome, the specific time interval, and the event rate. 
(5) The type of statistical method used to create the model that 
makes the predictions and the justification of any important 
assumptions. If  all the relevant variables were not included 
in the multivariate model, then there must be a justification 
for why they were not included. (6) The method of predictive 
accuracy assessment, the accuracy value of each variable and 
of the statistical model, including confidence intervals, the 
method of assessing the significance of the accuracy values of 
each variable and of the model, and their significance values. 
Ideally, this information should be used to design, as well as 
report, prediction studies.

Limitations
Specific cancer sites and their molecular biomarkers are not 
discussed for two reasons. First, such a discussion would have 
entailed a substantial increase in the size and complexity of 
the manuscript. Second, there are many excellent reviews 
of molecular biomarkers by cancer site.47–50 The goal of this 
exposition is to promote an understanding of how to clinically 
use molecular biomarkers.

Conclusion
Vast sums of money have been spent on the discovery of almost 
a million biomarkers. Unfortunately, very few molecular bio-
markers are in clinical use. One reason for this profoundly 
embarrassing situation is that many people believe that the 
hard part of molecular biomarkers is their discovery and the 
easy part is their use. They believe that the translational process 
involves simply integrating a biomarker into a clinical study 
and publishing the study results. The reason for this mistake is 
that they do not understand the complexity inherent molecu-
lar biomarkers. This failure to properly understand, and clini-
cally assess and utilize, molecular biomarkers has prevented 
their widespread adoption in treatment, in comparative benefit 
analyses, and their integration into individualized patient out-
comes predictions for clinical decision-making. 

A straightforward, general approach to understand-
ing how to predict clinical outcomes using risk, diagnostic, 
and prognostic molecular biomarkers has been presented. It 
must be acknowledged that this exposition is only a small first 
step in the process of understanding how to discover and use 

powerful, accurate, and clinically acceptable molecular bio-
markers into the practice of medicine to improve clinical care 
and patient outcomes. 

In the future, molecular biomarkers will drive advances 
in risk, diagnosis, and prognosis, they will be the targets of 
powerful molecular therapies, and they will individualize and 
optimize therapy. Furthermore, clinical predictions based 
on molecular biomarkers will be displayed on the clinician’s 
screen during the physician–patient interaction, they will be 
an integral part of physician–patient shared decision-making, 
and they will improve clinical care and patient outcomes.
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