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Introduction

Parkinson disease (PD) is mainly characterized by loss of 
dopaminergic neurons in substantia nigra (SN), which leads 
to severe and progressive motor impairment.1 These symptoms 
comprise slowness, stiffness, postural imbalanced and tremor, 
and 80% of cases eventually develop dementia. PD goes beyond 
the movement disorder, and non-motor symptoms, known to be 
part of the disease manifestation, have been proposed to precede 
the classical motor defects.2 During the last decade α-synuclein 
(α-syn), normally expressed in neuronal terminals, has been 
implicated in the etiology of the disease; multiplication and/or 
mutation of the α-syn gene is related to PD3-7; aggregation and/or 
modification of the protein has been shown to contribute to the 
disease8-12; and prion-like spreading of α-syn has been proposed 
to occur and it was shown to induce PD-like neurodegeneration 
in animals.13-17 Indeed, surviving neurons not only in SN but also 
in other areas of the CNS, are characterized by the presence of 
protein aggregates known as Lewy bodies (LB), which are mainly 
composed of fibrilar α-syn.18

Another important factor in PD pathology is neuroinflam-
mation, the chronic activation of microglia that ensures a con-
stant production of IL-1, IL-6, TNF, reactive oxygen species 
(ROS) and NO in the brain, resulting in a persistent detrimental 
insult to neurons trying to deal with α-syn pathology (reviewed 
in ref. 19). Additionally, it is becoming evident that microglia 
interact with the peripheral immune system, and thus probably, 
instrument a detrimental peripheral immune response from the 
infiltrating immune cells.20 The fact that the peripheral immune 
system is involved in PD makes it an ideal target for the modula-
tion of the pathology, as priming it through vaccination could 
result in harnessing of microglia-induced neuroinflammation. 
This would allow neurons to better handle the pathological 
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Parkinson disease is the second most common neurode-
generative disease in the world, but there is currently no avail-
able cure for it. Current treatments only alleviate some of the 
symptoms for a few years, but they become ineffective in the 
long run and do not stop the disease. Therefore it is of outmost 
importance to develop therapeutic strategies that can pre-
vent, stop, or cure Parkinson disease. A very promising target 
for these therapies is the peripheral immune system due to its 
probable involvement in the disease and its potential as a tool 
to modulate neuroinflammation. But for such strategies to be 
successful, we need to understand the particular state of the 
peripheral immune system during Parkinson disease in order 
to avoid its weaknesses. In this review we examine the avail-
able data regarding how dopamine regulates the peripheral 
immune system and how this regulation is affected in Parkin-
son disease; the specific cytokine profiles observed during dis-
ease progression and the alterations documented to date in 
patients’ peripheral blood mononuclear cells. we also review 
the different strategies used in Parkinson disease animal mod-
els to modulate the adaptive immune response to salvage 
dopaminergic neurons from cell death. After analyzing the evi-
dence, we hypothesize the need to prime the immune system 
to restore natural tolerance against α-synuclein in Parkinson 
disease, including at the same time B and T cells, so that T cells 
can reprogram microglia activation to a beneficial pattern and 
B cell/IgG can help neurons cope with the pathological forms 
of α-synuclein.
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processes induced by α-syn dysfunction and help them to sur-
vive by changing the cytokine/growth factor microenvironment, 
removing pathological α-syn, and re-establishing beneficial 
microglia-neuron cell-cell interactions. Therefore immunothera-
pies in PD are extensively studied and debated (reviewed in refs. 
21 and 22).

When considering vaccination strategies for curing/modify-
ing disease progression in PD, one has to take into account that 
the peripheral immune system is affected during the disease, and 
thus, it will not necessarily react as expected. Independently of 
whether the vaccination is done to prevent or modulate the disease, 
T and B cells will react differently when under the PD-induced 
“environment.” It should also be precisely considered what kind 
of immune response one aims to achieve: a prophylactic one 
that will prepare the system to destroy the pathologic entity, i.e., 
α-syn; or a therapeutic one that will modulate the response and 
render the system tolerant. This will be greatly influenced by the 
type of adjuvant used, the dose of antigenic entity, the target and 
the type of the reaction induced (for example Th17 vs. Treg).

In this review we will discuss the particular immune environ-
ment observed in PD (cytokines, T cells compartment, DA regu-
lation, humoral response) and the work done so far in PD animal 
models to design an immunotherapy for PD. We would like to 
note that there are also current immunological therapy studies 
concerning targeted gene delivery of protective molecules such as 
cytokines, antioxidants, and growth factors through monocytes/
liposome, but due to the scope of this review they will not be 
discussed here.

The Immune Environment in PD

The cytokine environment in PD
Numerous laboratories have shown changes in different cyto-

kines, not only in brain and CSF but also in serum from PD 
patients, confirming the systemic involvement of the immune 
system in the disease. These studies suggest a role for pro-
inflammatory cytokines in PD progression, but increased levels 
of other cytokines with anti-inflammatory or repair functions 
such as IL-10 have also been reported (Table 1). In addition to 
the changes in patients, a recent meta-analysis reported that the 
TNFα-1031 gene polymorphism increases the risk of suffering 
from PD, while the IL-6–174 polymorphism and the variable 
number tandem repeat (VNTR) polymorphism in intron 2 of 
the IL-1 receptor antagonist (IL-1RA) may decrease such a risk; 
overall further supporting a role for cytokines in PD.23

Pioneering work by Mogi et al., showed cytokine changes in 
PD relevant areas of the brain, with increased IL-1β, IL-2, IL-6, 
EGF, and TGFα and β1 in striatum (for a review see ref. 24). In 
addition, Hirsch and coworkers showed microglial TNFα upreg-
ulation in SN of parkinsonian patients.25 These seminal studies, 
together with the previously observed microgliosis by McGeer,26 
gave rise to the hypothesis that excess of pro-inflammatory cyto-
kines such as TNFα and IL-1 could sustain the activation of 
microglia and in turn contribute to cell death of dopaminergic 
neurons in PD (for a review see ref. 27). IL-1 is of particular 

interest with respect to the interaction CNS-periphery because 
it primes the epithelium of capillary vessels to express integrins 
(such as ICAM, VCAM) that allow leucocytes to extravasate to 
the inflammatory site.28,29

It is normally accepted that TNFα is elevated in patients 
(Table 1)a and that it has a deleterious impact on neurons. Indeed 
there are many experimental therapies aiming to halt TNFα-
signaling and release.31-33 Interestingly, TNFα levels have recently 
been correlated with the non-motor symptoms, such as cogni-
tion, depression, stress, fatigue and disability in PD, highlighting 
an early role of the immune system in the disease.34,35 Notably 
TNFα is also known immunologically for abrogating regula-
tory T cell (Treg) function36-40 and driving an M1 (phagocytic/
pro-inflammatory) macrophage phenotype, thus reducing IL-10 
secretion by immune cells.39,40

Depression and fatigue were also associated with soluble 
IL-2R levels,35 however, when excluding depressed PD patients, 
the correlation with fatigue was lost, suggesting that IL-2R has a 
role in depression.41 Although IL-2 was shown to be elevated in 
serum, CSF and brain in PD patients,42-44 it was not increased in 
de novo PD patients,45 suggesting that IL-2 elevation is associated 
to later stages of the disease, rather than being an early event. 
This may influence the late response of T-cells in PD, as IL-2 is 
required for T cell activation.46,47 This could explain why there is 
an overly activation of CD4+ T cells in PD patients.48-50 IL-2 is 
also required for Treg survival46,47 and low IL-2 concentrations 
are required for naive T cells in order to differentiate into Treg 
in the periphery upon self-antigen encounter (inducible Treg, 
iTreg).51,52

IL-6 has been correlated with disease severity53,54 and high lev-
els of IL-6 have been observed in the early stage PD patients suf-
fering from depression.55 Moreover, although IL-6 concentrations 
were always higher in PD patients than in controls, the highest 
IL-6 levels were described in idiopathic PD patients with cardio-
vascular risk factor, suggesting a role for the immune system in 
the non-motor problems of PD.43 Indeed, fatigue has been cor-
related with changes in IL-6.56 The increment in IL-6 is of par-
ticular interest when considering vaccination strategies, because 
it signals through Stat3, inducing its phosphorylation and then 
changing the balance between RORγt and Foxp3 expression, the 
transcription factors responsible for inducing Th17 (autoimmune 
inflammation) or Treg (tolerance) cells respectively (reviewed in 
ref. 57).

Chemokines also seem involved in PD, although they may be 
differently regulated in the periphery than in the nigro-striatal 
system, as is the case of RANTES, which is increased in serum 
but decreased in SN.58,59 Since this was directly correlated with 
disease severity, this may suggest that the increase in RANTES 
in serum is a compensatory mechanism to processes happening 
in the brain.

Other research groups have approached the study of cyto-
kines differently, by isolating, culturing and activating periph-
eral immune cells from PD patients or controls. This approach 
allows for a more direct study of the differentiation state of the 
immune system and its capacity to react to antigenic challenge. 
This approach with whole blood or PBMC has shown a decrease 
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in IL2,60,61 TNFα, IL1α, IL1β, IL6,62 and in IFNγ production63 
when un-stimulated. However, other groups report no significant 
change in basal production of IL1β and TNFα,61 nor increased 
production in IL6,61 TNFα, IL-1β, IL-8, and IFNγ.64 Ex-vivo 
stimulation with LPS of PBMC also resulted in variable results: 
some see reduced expression of TNFα, IL-1α, IL-1β, and IL-662 
while others report increased levels of TNFα, IL-1β, IL-8, IFNγ, 
MCP-1, RANTES, and MIP-1α.64

Thus, due to the few studies concerning cytokine profiles 
in PD, the different approaches to determine their concentra-
tions and the contradictory results, further studies are required 
to exactly determine what particular environment will exist in 
the patient when an immunotherapy is approached. It has to 
be noted that both levodopa and amantadine, drugs commonly 
used in PD, can affect cytokine production by blood immune 
cells, suggesting that not only the disease, but also the therapeu-
tic approach can modify the immune system.61,63 This may be 
important to remember as dopamine (DA) regulates T cell func-
tion as discussed below.

Dopamine regulates the adaptive immune system
During the last decade it has become evident and well docu-

mented that DA and other neurotransmitters regulate CD4 T 
cell differentiation, altering the Th1/Th2/Th17/Treg response 
(reviewed in refs. 65 and 66). Human T cells express 2 types of 
functional DA receptors: type I (DR1/DR5) receptors, which are 

coupled to Gαe protein receptors, increase cAMP production, 
and are thus considered stimulatory; type II (DR2/DR3/DR4) 
receptors, which are coupled to Gαi protein receptors, decrease 
cAMP production, and are therefore inhibitory. From ex vivo 
studies it appears that DA helps to direct the outcome of Th dif-
ferentiation by regulating the availability of cAMP in cells and 
thus helps to determine which kinases will be active upon TCR 
stimulation (Table 2).

How and where does DA act on T cells?
T cells can encounter DA at different stages of their activa-

tion pathway: (1) As naive cells in secondary lymphoid organs 
due to sympathetic nerve innervation,67 (2) as resting cells in the 
circulation, where DA is normally found in plasma at a concen-
tration of 10 pg/mL,68 and (3) during activation by dendritic cells 
(DC, specialized antigen presenting cells). DCs produce DA and 
release it upon MHCII-TCR engagement, thus greatly increas-
ing the micro-concentration of available DA.70,71 Additionally, 
immune cells produce catecholamines by an autocrine regulatory 
mechanism, so that the estimated cellular content of DA in T 
cells is 3 × 10−4 pg/cell, 1.1 × 10−5 pg/cell in B cells and 3.1 × 10-3 
pg/cell in macrophages.72,73 Thus, interaction between the dif-
ferent immune cells will also increase the relative concentration 
of DA in a particular microenvironment. Additionally it is also 
documented that under disease/stress DA increases to 80 pg/mL, 
but not during neurodegenerative diseases.68,69 One could thus 

Table 1. Cytokine profiles in PD

Cytokine Changes Notes References

TNF
 serum
↑CSF

↑Brain

Correlates with depression34,35

 TNFR1 in serum and it is directly correlated with disease onset30 25,186-188

IL-1β
↑CSF

↑Brain
42,45

IL-2
↑CSF
 serum
↑Brain

No change in CSF or serum in de novo PD45 42-44

IL-4
↑CSF
 serum

42,43

IL-6
 serum
↑CSF

Correlates with fatigue56

Negative correlation with ADL scale54

Directly correlated with severity of disease53 and higher in early 
stages with depression55

35,42,43,45,53,56,188

IL-10  serum IL-10 directly correlated with IL-12187,189 43,189

IL-12 No change, serum 189

IL-15 No change, serum 58

IFNγ  serum 43

TGFβ1
↑CSF

↑Brain
190,191

TGFβ2 ↑CSF 191

RANTeS (CCL5)
 serum
↓SN

Positive correlation serum RANTeS and disease severity58 58
59

CCL3 CCL11 CCL24 
CXCL8 CXCL10

No change, serum 192

MIF  serum 193

CXCL12 ↑Brain Its receptor CXCR4 is elevated in SN and striatum 59
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expect that depending on the activation state of the T cell, DA 
synthesis and tyrosine hydroxylase (TH) expression will vary, as 
is the case in MS where ex vivo stimulation of T cells with PHA 
resulted in lower DA production if the T cells were active, and 
lower TH expression if they were inactive.74 Dopamine’s effect 
on T cells is of particular interest when considering vaccination 
strategies for PD. CNS DA signaling is decreased during PD dis-
ease progression, thus the available amount of DA in secondary 
lymphoid organs will be much lower than normally encountered 
by T cells upon priming/differentiation and the available DA will 
bind to the receptor with the lowest K

i
 (Table 2). This will lead 

to a shift in the CD4 T cell’s response toward Th1 (IFNγ pro-
ducing cell) and will induce their extravasation through the VLA 
integrins. Additionally, tolerance will be compromised, as IL-10 
production will be suppressed.

At the same time, activated/circulating T cells would become 
inactive if the levels of DA were increased in serum as a con-
sequence of the DA replacement treatment in patients. Indeed, 
there appears to be a higher proportion of activated T cells in PD 
(reviewed in refs. 75 and 76). During PD, due to L-DOPA treat-
ment, a precursor of DA, the amount of available DA in serum is 
elevated to levels normally not encountered by resting T cells (1.2 
± 0.5 × 106 pg/mL)77. T cells express the DA transporter (DAT) 
and are able to uptake L-DOPA,78-80 potentially modifying their 
immune response as shown by different studies. In vitro incuba-
tion of T cells with L-DOPA increases the cellular content of DA, 
leading to suppression of proliferation and cytokine production.72 
When L-DOPA was administrated in vivo to mice, the number 
of T cells producing IFNγ was decreased and an IL-2 indepen-
dent proliferation induced.81,82 The seeming discrepancy between 
these 2 studies may be due to the stage of activation at which the 
T cell encountered DA. But in PD patients this outcome is not 
straightforward because together with L-DOPA, patients may be 
taking additional compounds to block conversion of L-DOPA 

to DA in the periphery (DOPA decarboxylase inhibitors), or to 
inhibit DA degradation (such as MAO or COMT inhibitors). 
Additionally L-DOPA may accumulate in T cells and bind to 
cellular components impairing T cell function. Indeed, despite 
the decarboxylase inhibitors, DA levels in PD patient sera are 
elevated (1.2 ± 0.5 × 106 pg/mL)77 to a concentration above the 
optimal required for T cell signaling (1.5 × 103 pg/mL), as shown 
by in vitro kinetic studies. These same studies have shown that 
high DA doses inhibit proliferation and cytotoxicity.83,84

Why is dopamine signaling relevant for T cell immune reactions 
in PD?

Any therapy aimed at modulating the immune response has to 
take into account how the patient’s unique environment, and the 
drug cocktail used to treat the disease, will modify the patients’ 
immunological status and therefore the outcome of such therapy. 
This is indeed an important factor to consider since it has been 
shown in human PD patients that DR3 (one of the inhibitory 
receptors described above) is significantly reduced in PBMC,63,85,b 
which could imply a compensatory mechanism by which plasma 
T cells deal with excess DA signaling. It has also been observed 
that L-DOPA modulated the T cell proteome in PD patients.86 
Additional studies using MPTP intoxication in DR3 knockout 
mice, showed that there is less microgliosis when CD4 T cells lack 
DR3. This correlates with significant decrease in dopaminergic 
cell death in SN.87 Whether lack of DR3 expression determined 
a protective CD4 T cell phenotype in the periphery, or modified 
T cell-microglia interactions in brain that resulted in an alterna-
tive neuroprotective microglia activation pattern, remains yet to 
be determined. Another possibility is that lack of DR3 protected 
T cells from the immunotoxic effect of MPTP and thus altered 
the immune response normally observed in this PD-like model. 
Studies from the late 80s and 90s showed that MPTP reduced 
the absolute number of PBLs,88 the percentage of T cells in spleen 
and their proliferative capacity when stimulated with ConA (but 

Table 2. effects of dopamine on CD4+ T cell differentiation

DA
affinity
(Ki mM)

Human

Naive/resting (no TCR stimulation) Activated (TCR stimulation)

DR1 2340 Th17 induction,96 induces TNFα/IL-10 194 Impairs proliferation68

DR5 228 IFNγ secretion, induces MMP-9195 Impairs proliferation68

DR2 1705 enhanced production of IL-10/VLA-4&583,194 Inhibition IL-2/IL-4/IFNγ 196

DR3 27 TNFα/IFNγ /VLA-4&5 production83,194 Inhibition IL-2/IL-4/IFNγ196,197

DR4 450 Quiescence198

Mouse

DR1 2340 Inhibit Treg suppression and IL-10/TGFβ production / Induce Th236,70

DR5 228 Inhibit Treg36

DR2 1705 Induce Treg (reviewed in65)

DR3 27 IFNγ production (Th1)197

DR4 450 Induction Th17?/Quiescence65,198

DA, dopamine; DR, dopamine receptor; Ki, dissociation constant; Treg, regulatory T cells; Th, helper T cells; MMP, matrix metaloproteinase; VLA, very late 
antigen, integrin α4β1 (CD49d/CD29) or α5β1 (CD49e/CD29); IL, interleukine.
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Table 3. Immunotherapeutical strategies used in PD animal models (continued)

Model Immunization therapy Immunogen Results

Active Immunization

MPTP 10 mg/kg
4 i.p. injections with 1 h 
intervals

Flank injections of MOG 35–55 
peptide (150 μg) in CFA 6 d before 
treatment.

MOG 35–55 peptide

MOG 35–55 peptide immunization enhanced neuronal 
survival.
CFA alone prevented neuronal cell death but in a smaller 
magnitude.
Better MOG neuroprotection in 10 mo vs. 2 mo mice168

Heterozygous tg α-syn 
mice under the PDGF 
promoter

1st injection recombinant hα-syn 
(80 μg/mL, 100 μL) in CFA. Two 
weeks later injection with the same 
dose hα-syn in IFA followed by 
re-injection every month for the 
subsequent 7 mo with hα-syn (80 
μg/mL, 100 μL) in PBS.

Recombinant hα-syn

Vaccine-induced hα-syn antibodies reduced α-syn 
abnormal accumulation in neurons and ameliorated the 
synaptic loss.
Vaccination reduced hα-syn accumulation in the 
membrane.
Mouse IgG and hα-syn co-localized to the outer membrane 
of neurons.158

Unilateral stereotaxic 
injection (2 μL) of 
rAAV2/5-α-syn into SN 
of rats

Immunization with hα-syn, s.c. 10 
and 6 wk before stereotaxic surgery. 
1st: 150 μg hα-syn/200 μL + 150 
µl CFA)
2nd: 4 wk later (100 μg hα-syn/200 
μL + 150 µl IFA)

Recombinant hα-syn

The vaccination strategy resulted in:
- High-titer anti-α-syn antibody response upon α-syn 
overexpression.
- The accumulation of CD4+/MHC II+ ramified microglia 
in SN. Long lasting infiltration and accumulation of CD4+/ 
FoxP3-+ cells in striatum
- Fewer pathologic TH+ aggregates in the striatum
- GDNF induction in striatum
- Modification of cytokine patterns in serum
- High anti-α-syn antibody titer and deposition98

MPTP (20 mg/kg)
Daily injection for 5 
consecutive days starting 
10 d after vaccination.

Mouse TH cDNA was subcloned 
into a bacterial expression vector 
(peT-15b). Mice received 0.10 mL s.c. 
of the peT-15b (100 μg) in CFA and 
other mice were vaccinated with 
live BCG (2 x 107 cfu) i.p.

TH
BCG

CFA was the major beneficial component and promoted 
neuronal survival
BCG vaccination partially preserved striatal DA and DAT 
expression
BCG vaccination prevented MPTP-induced microglia 
activation in SN169

MPTP (18 mg/kg)
Daily i.p. injections for 5 
consecutive d starting 10 
d after vaccination.

I.p. injections 6 x 106cfu BCG or with 
saline (control)

BCG

BCG vaccination partially protected the striatum for DA and 
DAT loss in a dose dependent manner.
BCG vaccination increased the number and frequency of 
splenic Tregs, which were positively correlated with stratial 
DA and DAT levels.161

Intrastriatal
6-OHDA or saline 10 
d after immunization 
treatment.

S.c. injections (0.10 mL/flank) of CFA 
or vehicle (PBS).

CFA

CFA pretreatment markedly reduced the SN neuronal loss 
and associated microglial activation.
The neuroprotective effects of CFA pretreatment were due 
to transient increases in nigrostratial levels of GDNF and 
pro-inflammatory cytokines associated with the peripheral 
inflammation elicited by CFA.162

MPTP (20 mg/kg)
4 i.p. injections with 2 h 
intervals.

Daily bee venom (BV), 1 mg/kg, or 
PBS i.p. for 6 d starting 12 h after the 
last MPTP injection.
For Treg depletion: 1 mg/kg of 
anti-CD25 rat IgG1 (clone PC61) or 
normal anti-rat IgG1 for 3 d before 
first MPTP injection.

BV

BV prevented nigral dopaminergic degeneration
BV-neuroprotection was associated with microglial 
deactivation and reduction of CD4 T cell infiltration.
BV treatment increased the proportion of 
CD4+CD25+Foxp3+ Tregs in vivo and in vitro.163

Passive Immunization: antibody based therapies

Tg α-syn mice under the 
PDGF-β promoter

Stereotaxic injection of 3 μL of 
either non-immune IgG control 
or the antibody against α-syn 
(clone 274, 1 mg/mL) into the 
hippocampus. Mice survived for 4 
wk after Ab injection.
Passive immunization: Non-
immune IgG control or the mouse 
monoclonal antibody against α-syn 
(100 µL of 1 mg/mL /wk for 4 wk).

α-syn monoclonal 
antibody

Ab against α-syn specifically targeted and aided clearance 
of extracellular α-syn by microglia through FcγR (not by 
neurons or astrocytes).
Stereotaxic administration of Abs into the brains of tg mice 
prevented neuron-to-astroglia transmission of α-syn.
Passive immunization with α-syn Ab reduced neuronal 
and glial accumulation of α-syn and ameliorated 
neurodegeneration.146
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Table 3. Immunotherapeutical strategies used in PD animal models (continued)

Model Immunization therapy Immunogen Results

Tg α-syn mice under the 
PDGF-β promoter

weekly i.p. injections of the CT- 
α-syn Ab (9e4) and IgG1 control (10 
mg/kg) for 6 mo.

9e4 C
Terminus-α-syn 
antibody

Passive immunization with an Ab against the C-terminus of 
α-syn reduced memory and learning deficits and promoted 
α-syn clearance.
Passive immunization reduced the accumulation and 
formation of CT fragments of α-syn167

PDGF- and mThy1-α-syn 
tg mice

Bi-weekly and monthly transfer of 
the antibody AFF1-AF488 or AF488 
for 6 mo. This antibody recognizes 
specifically C-terminal human 
α-syn
AlOH is used as adjuvant.

AFFITOPe PD01® 
(AFF1-AF488)

- Reduced oligomeric α-syn aggregates
- Reduced astroglia (GFAP) and microglia (Iba1) 
immunostaining
- Increased IL-2, IL-27, IL-1Ra and Fraktalkine
- AFF1-AF488 co-localizes with α-syn and microglia180

Adoptive transfer of T cells: modulation of the adaptive immune response

MPTP (20 mg/kg)
4 i.p. injections with 2 h 
intervals.

Splenocytes from wT or D3R ko 
mice were transferred i.v. (2 × 
107 cells/mouse) into RAG1KO-
recipient mice 21 d before 
MPTP-intoxication.

N.A.

D3R-deficiency protected against MPTP-induced 
dopaminergic cell loss and microglial activation.
D3R-deficient mice become susceptible to MPTP upon 
transfer of wt CD4+ T cells.
D3R favored both T cell activation and acquisition of Th1 
inflammatory phenotype.87

MPTP (18 mg/kg)
4 i.p. injections with 2 h 
intervals or PBS (vehicle ; 10 
mL/kg).

Immunization: Cop-1 (200 μg) in 
CFA s.c. Animals were boosted 
twice every 14 d with an equivalent 
amount of Cop-1 in IFA.
Adoptive transfer: Lymphoid 
cells in 250 μL Hank’s solution 
were adoptively transferred i.v 
to separate groups of MPTP-
intoxicated mice 12 to 18 h after 
last MPTP-injection.

Cop-1

Adoptive transfer of T cells from Cop-1 immunized mice 
into MPTP intoxicated mice lead to:
- T cell accumulation in SN
- Reduced dopaminergic neuron cell death
- CD4 subset was responsible for protection.165

MPTP (18 mg/kg)
4 i.p. injections with 2 h 
intervals or PBS (vehicle ; 10 
mL/kg). Twelve hrs after the 
last MPTP injection random 
mice received adoptive 
transfer.

Immunization: 200 μg of either 
Cop-1 or OVA in CFA.
Adoptive transfer: MPTP-intoxicated 
mice received i.v. injection of 
5x107 splenocytes in 0.25 mL 
Hanks’solution.

Cop-1
OVA

Transfer of spleenocytes from Cop-1 Immunization animals 
into MPTP intoxicated host resulted in:.
- Accumulation of T cells in SN
- Lower microglia activation.
- GDNF production
Cop-1 immune cells stimulate the local production of GDNF 
by astrocytes.170

MPTP
Transfer of CD3 activated 
CD4+CD25+ T cells (Treg) into 
MPTP intoxicated mice

CD4CD25+
T cells

Adoptive transfer of CD4CD25+ T cells resulted in:
- Dose dependent neuroprotection of DA neurons
- Reduced microglia activation
- Induction of CDNF and TGFb166

MPTP (16 mg/kg)
4 i.p. injections with 2 h 
intervals, or vehicle PBS 
(10 mL/k) 12 h after the 
last MPTP injection SPCs 
or Tregs were adoptively 
transferred.

Immunization: S.c. injection of 
N-4YSyn in CFA and boosted s.c. 
with N-4YSyn in IFA 2 wk after.
Adoptive transfer: MPTP-intoxicated 
mice received an i.v. injection of 
5x107 SPCs or 1x106 Tregs in 0.25 
mL HBSS.

Nitrated-4YSyn
VIP

Nitrated α-syn-induced neurotoxicity was Th17 cell-
mediated, with CD4+CD25+ Treg dysfunction.
VIP induced natural Tregs and reversed Nα-syn T cell 
nigrostriatal degeneration.
Combinations of adoptively transferred Nα-syn and VIP 
immunocytes or natural Tregs administered to MPTP mice 
attenuated microglial inflammatory responses and led to 
nigrostratial protection.101

MPTP (16 mg/Kg)
2 s.c. injection at 2hrs 
intervals. Twelve hrs after 
the last MPTP injection 
received T cells or Treg.

Immunization: I.p. injection of 
recombinant GM-CSF (50 mg/Kg) 
daily for 5 d.
Adoptive transfer: MPTP-intoxicated 
mice received purified CD4+ (107 
cells) or CD4CD25Foxp3+ cells (106 
cells) i.v.

GM-CSF

Transfer of CD4CD25foxp3+ cells:
- Reduced TH+Nissl+ cells in SN
- Had a very small effect on terminal survival in striatum
- Reduced microglial density in SN
- Laser capture followed by qRT-PCR showed that Treg 
transfer increased IL-27 15.42-fold.182

Abbreviations: DA, dopamine; α-syn, α-synuclein; DAT, dopamine transporter; SN, Substantia nigra; Tg, transgenic; Ab, antibodies; ko, knock out; VIP, 
vasoactive intestinal peptide; GM-CSF, Granulocyte macrophage colony stimulating factor; TH, Thyrosin Hydroxylasa; N.A., not applicable.
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not PHA).84,89,90 MPTP also reduced the LPS induced prolif-
eration and antibody production in B cells.84,90 MPTP-induced 
immuno-toxicity could be reversed by administrating DR ago-
nists in the periphery,84 such as sodium diethyldithiocarbonate 
(antioxidant acting on the monooxygenase signaling pathway),89 
indicating that the adverse effects of MPTP in adaptive immu-
nity are related to DA metabolism and not due to an immune 
response to deal with DA cell death in brain. One should keep 
in mind that low DA doses (15.4–769 pg/mL) reduce ROS pro-
duction and lower T cell propensity to oxidative stress-related 
apoptosis, while high doses (15 380–76 900 pg/mL) induce ROS 
production and increase the apoptotic propensity.91

Why lack of DR3 on lymphocytes protects from MPTP 
induced neurodegeneration may be an important question to 
resolve, since DA production by DCs determine the fate of T 
cell differentiation. In absence of DC-produced DA during T 
cell activation, T cells become Th1, while in its presence they 
become Th2.70 However, with excess of DA (as in the case of 
generalized anxiety disorder) a Th17 phenotype is induced.92 The 
polarization to the Th17 is probably mediated via DR5 (stimu-
latory receptor), as another study using the experimental auto-
immune encephalitis model showed that mice were resistant to 
induction of pathology when DCs lacked DR5.71 Furthermore, as 
mentioned above, not only DCs but also Tregs produce DA and 
this in turn can abrogate their suppression activity.36,93 Another 
lesson to learn from MS is that IFNβ therapy blocks the inhibi-
tory effect of DA on Tregs so they can suppress again and this 
correlated with decreased DR5 and TH expression.94 The use of 
DA has actually already been proposed in the MS field to modu-
late immune responses (reviewed in ref. 95).

Altogether if DA signaling on T cells is an important T cell 
differentiation factor that modulates neuroinflammation in 
PD, we need to elucidate if this is taking place in the periph-
ery, due to increased DA in plasma (by L-DOPA), or in lymph 
nodes where we anticipate that catecholamine innervation 
could be diminished. This is important because in lymph nodes 
most of the T cells will be naive, whereas in serum an impor-
tant proportion will be activated/differentiated T cells. A recent 
study has shown that PD patients have ineffective Tregs96 and 
Kipnis et al.36 showed previously that DA abrogated CCR4 and 
CD44 expression in Treg but not effector cells. In the context of 
designing a vaccine for PD, this is of relevance because CCR4 
is involved in tissue homing and CD44 is a marker for effector/
memory activity, suggesting that DA affects the ability of Tregs 
to become active. If this proves to be the case during PD, this 
could lead to a loss of tolerance. However, comparative studies in 
the MPTP and 6-OHDA model, have shown that only MPTP 
(but not 6-OHDA) is able to alter the number of activated T 
cells, thus implying that other mechanisms before DA imbalance 
due to dopaminergic cell death are also at play during PD49 (or at 
least in this PD-model). Thus if we are to therapeutically target 
the immune system to halt/prevent PD progression we need to 
understand the unique immune characteristics of the PD patient. 
Especially since we have observed that immunization of WT 
mice with WT α-syn and disease associated modified (nitrated) 

or fibrilar α-syn modulates dopamine receptor expression and 
induces specific migration/tolerance related molecules in a type 
and dose specific manner and this correlates with changes of 
microglia activation profiles (Sanchez-Guajardo et al. manu-
script in preparation).

T cells are impaired in PD
The possible involvement of the adaptive immune system in 

PD and the fact that it is affected during PD has been a source 
of debate and much disbelief. However, there is mounting evi-
dence showing the involvement of the adaptive immune system 
in PD: the observation of T cells in postmortem PD human 
brains,26,97 findings in animal PD models97-102 and data sug-
gesting that the peripheral T cell compartment is altered in PD 
patients.48-50,96,103-105 We will here concentrate on the last aspect, 
as we believe it to be crucial to evaluate the strengths and weak-
nesses of the PD patient immune system if we are to harness it 
to modulate processes in the brain. When studying the T cell 
compartment one should consider the changes in absolute cell 
counts, the distribution between the different stages of T cell 
function (naive, activated, effector/memory), the type of CD4 
cells (TCRαβ vs. TCRγδ, CD4+ vs. CD4+CD8lo, CD4:CD8 
ratio), and the type of effector T cells (Th1/Th2/Th17/Treg, 
etc). We will address each aspect separately.

Is it the T cell number or the relative percentage of their different 
activation states that are affected in PD?

Regarding absolute cell numbers, there appears to be consen-
sus of a net reduction in CD4+ T cells in PD, although one study 
also reported decreased CD8+ T cells.49,50,105 This CD4 reduction 
is supported by the altered CD4:CD8 ratio described.48,49,104 It is 
still unclear though, if this net reduction is due to the contraction 
of the CD4 T cell compartment as a whole or a change in balance 
between different activation stages.

The data regarding the activation state of CD4+ T cells in 
PD, i.e., the proportion of naive (CD45RA+), activated (CD25+), 
and effector/memory (CD45RO+) cells in PD seems conflict-
ing. Especially if it is not considered as the percentage within the 
CD4+ T cell population, but as absolute numbers (cell counts 
in plasma). Both the absolute numbers of naive CD4+ cells and 
the percentage of CD45RA+ cells were shown to be reduced.49,96 
Stevens et al. reported a decrease in total counts of effector/mem-
ory cells, but when expressed as the % within the CD4+ cells 
it appeared to be increased, which is in accordance with other 
groups.96,105,106

The strongest discrepancy concerns the activated fractions: 
The percentage of cells expressing CD25 within the CD4+ popu-
lation has been reported to be equal48,105,107 or increased.49,50 Tregs 
are characterized by a high expression of CD25, higher than acti-
vated T cells. The detailed analysis of CD25 by Baba et al. showed 
that although the overall CD25 expression in PD patients was 
not altered, the CD25hi fraction was reduced.48 This Treg specific 
alteration in PD is supported by Saunders at al., who showed ex 
vivo that PD-derived Tregs (CD4+CD25+CD127-) have less sup-
pressive activity than those from healthy controls. They, however, 
did not observe any changes in the percentage of Tregs compared 
with healthy controls.96 Comparing both studies, Baba et al. 
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focused only on the CD25hi fraction within the CD25+, so this 
may explain the different findings and further studies will have 
to resolve this matter. Akt kinase phosphorylation, another acti-
vation marker, is significantly increased in PD,108 which is rel-
evant since phosphorylated Akt prevents the induction of Foxp3 
(reviewed in ref. 109). However, aging studies have reported that 
Treg absolute numbers increase with age, even in PD.110,111

Taken together, there seems to be an increase in the CD45RA 
population (effector/memory) to the apparent detriment of the 
CD45RO population (naive). Furthermore, it appears that the 
Treg compartment may be altered in PD, but further studies are 
needed to elucidate in which way.

Are there changes in the TCR subtypes of CD4 T cells during PD?
Not many studies have addressed the CD4 T cell compart-

ment in PD from the TCR subtype point of view. Nevertheless, 
it was reported that there is an increase in the TCRγδ 103 and 
a decrease in the TRCαβ population,105 thus increasing the net 
proportion of the TCRδγ subtype. This is interesting because: 
(1) TCRδγ cells can be activated in situ, i.e., they do not need to 
migrate to a lymph node or spleen, of relevance when thinking 
about activation processes in brain parenchyma112; (2) women, 
who have a lower incidence of PD, appear to have twice as much 
of this T cell subtype,103 so this could be a reason for the observed 
gender bias in PD; and (3) an increase in activated TCRδγ in PD 
patients’ serum and CFS has been observed,103 pointing to a role 
for them in the disease.

Another subpopulation that has been studied but given con-
flicting results is the CD4+CD8lo: Hisanaga et al. have reported it 
increased, while Stevens et al. unchanged.104,105 So further studies 
could possibly elucidate if these populations could be beneficial 
in PD and whether they should be targeted.

Are T cells in PD more sensitive to oxidative stress and prone to 
apoptosis?

The T cell compartment in PD has also been assessed in terms 
of its apoptotic propensity (CD95 = Fas receptor expression) and 
resistance to oxidative stress. PBMC from PD patients are more 
vulnerable to ex vivo induced oxidative stress and this vulnerabil-
ity was reduced in patients treated with L-DOPA, suggesting that 
DA protects lymphocytes from oxidative stress.113-115 Oxidative 
stress leads often to apoptosis, and there are several studies 
indicating that CD4+ T cells in PD patients have an increased 
potential to become apoptotic, as they have a markedly higher 
percentage of CD95 expression,50. In particular this increase was 
noted in the CD4+CD25-CD45RA- population, which suggest 
that the main population affected may be the memory/effec-
tor.116 Thus the increased effector/memory pool appears to have 
a higher susceptibility to apoptosis, suggesting that the oxidative 
damage observed in PD that leads to cell loss, is not restricted to 
the brain, but it is affecting T cells also.

The humoral response: Do autoantibodies play a role in PD?
B cell numbers are also decreased in PD49,105 and their prolif-

eration is also regulated by DA,117 but little is known about the 
role of B cells and humoral responses during PD progression.

There is a comparable amount of anti-neuronal antibodies 
both in idiopathic and genetic parkinsonism,118 but during aging 
the presence of IgG autoantibodies in serum is increased,119 and 

the presence of autoantibodies may be related to debris clear-
ance, as brain-reactive autoantibodies are found in all humans. 
Actually, there are many autoantibodies that are neither dis-
ease-inducing nor protective. Nevertheless, the elevated load of 
anti-neuronal antibodies found in PD directly correlated with 
depressive and dyskinetic symptoms.120 Accordingly it has been 
proposed to use a panel based on autoantibodies for PD diagnose. 
The panel includes IgG antigens such as FRMD8, a diagnostic 
marker also proposed in AD, supporting a common process in 
neurodegenerative diseases related to protein aggregation.121

IgG deposited in neurons has been observed in brains from PD 
patients, while IgG receptors, FcγRI and II, were expressed on 
nearby activated microglia or lymphocyte-like cells respectively.122 
It has been suggested that IgG infiltration is due to BBB dam-
age/leakage and brain disease.123 Auto-antibodies are also found 
in CSF from PD patients and they are able to react with DAergic 
neurons in SN.124 A deleterious effect of these autoantibodies is 
suggested by the cytotoxic effect of PD derived IgG on DAergic 
nigral neurons in mice,125 which appears to be mediated by FcR,126 
and also by the observation that antibodies from PD patients react 
with proteins oxidized by DA.127 However, the presence of anti-
bodies against neuromelanin in PD and the fact that these levels 
were inversely correlated with disease progresion, suggest a role for 
IgG in the clearance of cellular components upon cell death.128 
Thus the humoral response may also contribute to help the brain 
to cope with pathology, and accordingly IgG deposition correlates 
with neuronal survival.122 Interestingly in MS, B cells and their 
MS related antibodies (reviewed in ref. 129-133) can be both ben-
eficial and detrimental depending on the subtype of B cell,134,135 
(reviewed in ref. 136) and if they are infected by the Epstein–Barr 
virus (reviewed in ref. 137). This aspect should be kept in mind, 
as for example in MS, therapeutic use of rituximab (anti CD20 
antibody) shows variable results, as it depletes both the pathologi-
cal B cells and the ones that are protective.138,139

There is evidence that anti-α-syn antibodies are present in 
serum, albeit the levels and how they relate to disease progres-
sion in PD is still unclear. One research group described elevated 
anti-α-syn in serum from inherited PD but not in sporadic.140 
Elevated autoantibodies against α-syn, myelin related antigens 
and S100B have been found in LB-associated dementia, both 
in serum and CSF.141 Furthermore, antibodies recognizing WT 
α-syn and its fibrilar aggregated form are found early in the dis-
ease to later decrease during PD progression,142 suggesting a pro-
tective role for IgG during the early stages of PD progression. 
Another study suggests on the contrary that anti-α-syn antibod-
ies were decreased in PD serum vs. controls or AD patients.143 
A detailed study of the specificity of the anti-α-syn antibodies 
as regards its aggregated/modified forms, titer, and its relation 
to disease progression is needed to clarify the possible beneficial 
effect of anti-α-syn IgG in PD. One could nevertheless hypoth-
esize that the presence of specific antibodies against α-syn may 
be protective, while other anti-neuronal antibodies that could 
appear in the later stages of the disease, as it was described for 
antibodies against S100, GAFP, NK,P and MP-65,144 could be 
deleterious. For example the presence of anti-heat shock proteins 
65 and 70 found in CSF of PD patients, could be contributing 



©
20

14
 L

an
de

s 
B

io
sc

ie
nc

e.
 D

o 
no

t d
is

tri
bu

te
.

860 Human Vaccines & Immunotherapeutics Volume 10 Issue 4

to the disease,145 while it has been shown that antibodies help 
clearing extracellular α-syn and prevent aggregate transmission 
to other neighboring cells.146

Antibody mediated autoimmune diseases might develop 
because of a failure of Tregs to control antibody production 
(reviewed in ref. 147). In fact, the ability of mature B cells to gen-
erate high affinity self-reactive antigen receptors through somatic 
hypermutation is a constant threat, and it is believed that CD4+ 
T-cell mediated tolerance is the dominant factor preventing auto-
reactive B cells.148 For this reason, it is important to assess the 
role that B cells play in the etiology of PD: Does the activation 
of B cells promote pathology or might B cells have a regulatory/
beneficial role at the early stages of the disease? Is the type of B 
cell response dependent on the sub-type/activation state of the 
cells, as seen in Experimental Autoimmune Encephalitis (EAE), 
or do all B cells mount the same type of response in PD? As we 
discussed above, there are many types of auto-antibodies pro-
duced during PD and not all of them correlate with disease sever-
ity. Additionally, B cell stimulation via TLR-signaling suppresses 
inflammatory T cell responses (both Th1 and Th17) resulting 
in recovery from EAE.149 Indeed, it is known that B cells can be 
used to induce tolerance, program T cell responses, activate the 
Treg response via IgG and act as immune regulators directly.150-153

Immunotherapeutic Strategies For PD

During the last decade the study of the access of immune cells, 
such T-cells, into the CNS has been extensively developed (for a 
review see ref. 154). Pioneering work from several researchers is 
now being exploited to design novel therapies aiming at T-cells 
for the treatment of neurodegenerative diseases (for a review see 
refs. 21,22,155-157)

The current PD immunoregulatory therapies based on vac-
cine design can be divided into 2 strategies: One is based on gen-
erating antibodies against α-syn,98,158,159 and the other one aims at 
the induction of a particular T cell response to modulate the neu-
roinflammatory response.87,98,101,102,160-166 The first strategy has as 
primary goal the removal of α-syn aggregates, as it is has been 
shown that this will modify the course of the disease.146,158,167 The 
second strategy targets microglia, as neuroinflammation has long 
been recognized to exacerbate the disease (reviewed in 19 and 
21). A summary of all the recently designed immunotherapies 
used in experimental animal PD models is presented in Table 3.

Modulating inflammatory processes by inducing Treg
The effect of modulating the adaptive immune response, in 

particular the T cell response, to change the microglia response in 
brain, has been studied by: (1) Vaccination strategies with a broad 
series of antigens using the MPTP, 6-OHDA, rAAV-α-syn and 
α-syn transgenic PD models,98,158,162,168,169 and (2) the adoptive 
transfer of previously in vitro activated T cells or purified from 
immunized mice into MTPT intoxicated animals.101,102,165,166,170 
All these approaches have in common the reduction of neuronal 
cell death and modulation of the microglia response. This was 
achieved whether a non-PD-related antigen was used as immu-
nogen (VIP, CFS, MOG, BCG, COP-1) or α-syn.

Benner, et al., showed that adoptive transfer of lymphoid cells 
from Cop-1c immunized mice into MPTP intoxicated animals 
leads to T cell accumulation, GDNF induction and a modula-
tion of microglial responses,170 and that the Cop-1 activated 
CD4+ T cells were responsible for the neuroprotection.165 Further 
studies from this group later showed for the first time the key 
role of Treg in inducing neuroprotection in the MPTP model. 
Reynolds, et al., transferred CD3 activated CD4CD25+ T cells 
into MPTP intoxicated animals and observed protection of the 
nigrostriatal system correlating with TGFβ and CDNF pro-
duction.166 Using in vitro studies they demonstrated that Treg 
modulated detrimental redox reactions and NF-Kb activation 
by microglia,102 as CD4CD25+ T cells can modify microglia’s 
protein expression profile.171 They further showed in the MPTP 
model that N-4YSyn immunization induced a Th17 cell response 
and resulted in Treg dysfunction, but adoptive transfer of Treg 
from VIP immunized animals attenuated Nα-syn induced 
microglial inflammatory responses and led to nigrostratial pro-
tection in the same model.101 Nα-syn is known to induce cell 
death in SH-SY5Y cells172,173 and to have a pathological effect on 
α-syn influencing its aggregation,174-176 but it is also accumulated 
in DAergic neurons of the SN of monkeys as a normal result of 
aging.177 Thus Nα-syn could help break immune tolerance as it 
accumulates with age and ultimately induce neurodegeneration. 
This principle was elegantly shown by the adoptive transfer of T 
cells from an Nα-syn immunized mice into a lymphocyte defi-
cient MPTP intoxicated mice, where the transfer induced dopa-
minergic cell death in the otherwise resistant MPTP intoxicated 
mice.178

Support for the role of Treg in mediating neuroprotection in 
the MPTP-PD animal model has also come from different vac-
cination strategies by other research groups. BCG vaccination 
resulted in increased number and frequency of splenic Tregs, 
increased DA levels and restoration of DAergic neurons.161 BCG 
is closely related to the active biological component in CFA, 
Mycobacterium tuberculosis, so probably the reported neuropro-
tective effect of CFA was also Treg mediated.162,169 Bee venom 
(BV) has also been used as a vaccine to prevent degeneration 
of dopaminergic neurons.163 The neuroprotective effect of BV 
was associated with microglial deactivation and the significant 
increase in the proportion of CD4+CD25+Foxp3+ Tregs.163 Treg 
are also protective during α-syn induced pathology, as vaccina-
tion with human recombinant α-syn 10 wk prior to the unilateral 
induction of α-syn overexpression in the nigrostriatal pathway 
also led to the infiltration of CD4+Foxp3+ cells and their enrich-
ment in striatum through time, as well as a strong IgG titration 
and deposition. This correlated with 66% reduction of striatal 
α-syn-related terminal pathology and GDNF induction, as well 
as changes of cytokines and other soluble products in serum.98

Inducing a protective humoral response to clear α-syn 
aggregates

Immune protection is also mediated by the humoral response, 
and the induction of therapeutic humoral responses against 
α-syn has been achieved through 2 different approaches: (1) 
Active immunization where one induces the production of 
antigen specific antibodies,158 and (2) passive immunization 
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which involves administration of anti-α-syn antibodies to the 
PD-animal model.146,167 Active immunization consists of gener-
ating an immune response involving both T and B cells toward 
the immunizing agent, as part of this response antibodies against 
the immunizing agent will be produced. This response can be 
directed towards a specific type of immune response by carefully 
choosing the type and dose of the antigen as well as the adju-
vant used. Given the fact that the α-syn aggregates (the main 
target of humoral therapies in PD) are composed of self-proteins, 
these immunotherapies need to consider the possible induction 
of inflammatory autoimmunity mediated by Th17 cells, which 
have been shown to be involved in the neuroinflammatory pro-
cess.101,179 However, in none of the studies using antibodies to 
induce protection has the T cell compartment been studied.

Passive immunization is achieved by the administration of 
antibodies against a specific protein, so as to target the protein 
in question to its removal through complement and/or FcR. 
Passive immunization strategies where α-syn specific antibod-
ies are directly transferred to the host, transgenically express-
ing α-syn, is protective.146,167 Bae, et al., showed that antibodies 
against α-syn targets and aids clearance of the extracellular pro-
tein by microglia.146 Masliah, et al., used an antibody against 
the C-terminal fraction of α-syn, which was able to promote 
clearance of α-syn aggregates and reduce the accumulation and 
formation of C-terminal fragments of α-syn.167 Recently, a new 
vaccination strategy using an antibody that recognizes a pep-
tide sequence small enough to activate B cells but not T cells 
has been used in 2 α-syn transgenic animals to successfully clear 
oligomeric α-syn in brain. This approach modified glial activity 
and cytokine profiles.180 There is currently an ongoing clinical 
trial using this antibody in early PD patients (ClinicalTrials.gov/
show/NCT01568099). The authors further showed that this vac-
cination strategy did not generate Th1/Th2 cells upon ex vivo 
stimulation of immunized WT mice nor induced T cell infiltra-
tion in parenchyma. Unfortunately they did not test for Treg/
Th17 generation nor did they test their vaccination strategy in 
an animal overexpressing the protein for which the vaccine was 
specific (e.i. human C-terminal α-syn). The AFFITOPE® used 
was shown to not recognize mouse α-syn, and thus the antigen 
that would induce brain homing and T cell activation was not 
present in the animals where they checked for T cell migration.

We believe that a complementary strategy to triggering Treg 
is to induce IgG that will help clearing excess α-syn before it 
becomes pathological. Indeed B cells have been described to be 
involved in tolerance induction by acting on DCs.149 Modulation 
of DC may well be a critical factor in reestablishing tolerance 
as seen in a recent article where granulocyte macrophage colony 
stimulating factor (GM-CSF), which is able to induce tolero-
genic DCs that expand and/or induce Treg181, was neuroprotec-
tive in the MPTP PD model182; although in vitro studies suggests 
GM-CSF could have a protective effect directly over dopaminer-
gic neurons.183 Notably, this approach is now on clinical trials for 
PD patients since GM-CSF was already approved for human use 
in cases where enhancement of bone marrow cell production was 
needed (ClinicalTrials.gov/ct2/show/record/NCT01882010). 
IgGs are also able to induce Treg, as shown by the intravenous 

delivery of unspecific Ig (IVIg) that increase the number of 
splenic Tregs.184 Unfortunately, the treatment was not effective in 
the MPTP model; whether this was due to lack of specificity of 
the Treg induced by IVIg (thus did not expand when challenged 
by the antigens induced by MPTP) or the immune response was 
neutralized by MPTP’s immunotoxic effect cannot be discerned. 
So it appears that in order to ensure a good vaccination strategy, 
we have to fine tune the exact T cell activation needed.

What is required to induce a good immunomodulating 
therapy?

We know that CD4+CD25+Foxp3 regulatory T cells inhibit 
autoimmunity and protect against tissue injury,179 in the case of 
PD, against neuronal death caused by the aggregation of α-syn. 
Thus the best therapy for the treatment of PD appears to be the 
one that approaches enhancing Treg cell functions to restore 
tolerance to α-syn and thereby protect the neurons against the 
detrimental chronic inflammatory response mounted by the 
immune system as a response to α-syn toxicity. Tolerance still 
remains a fundamental concept of modern immunology147 and 
one has to consider that the induction of Treg could be coupled 
to therapeutic IgG production. B cells can also influence the T 
cell response indirectly by modulating DCs148 and both effects 
are probably mediated by IL-10 production.148 Alternatively, B 
cells could be directly involved in the generation of Tregs: Mann, 
et al., found that B cell deficiency resulted in a delay in the emer-
gence of Foxp3 expressing Treg cells and IL-10 in the CNS dur-
ing EAE, but not in the periphery, and that reconstitution with 
wild type B cells resulted in disease recovery and normalized 
IL-10 and Foxp3 expression.185

In summary, the need for an adequate vaccine for PD where 
the natural tolerance to α-syn is boosted without inducing auto-
immunity is of extreme importance. To achieve this we need to 
understand the interplay between T and B cells, and how we can 
profit from it to generate a response that will harness the neuro-
inflammatory process and help clear α-syn aggregates.

Conclusion

Almost 10 years ago M Schwartz and J Kipnis hypothesized 
that during neurodegeneration DA or another brain compound 
would peripherally suppress Tregs and give rise to T cells with 
specificity to brain self-protein. These cells would then migrate 
to brain, activate/modulate microglia and once the insult was 
controlled, Treg would again suppress these protective autoim-
mune cells, as the periphery would return to normal.157 We now 
bring forward the hypothesis that in PD the periphery never nor-
malizes, due to loss of DA and increase of oxidation products and 
α-syn in serum. This results in the adaptive immune response 
to engage in a vicious circle of autoimmune inflammation with 
microglia, where the originally protective T cell response becomes 
detrimental, each potentiating the inflammatory reaction of the 
other population. With time this will alter the cytokine levels 
in serum and further damage the T cell compartment. At the 
same time, what appears to be a beneficial humoral response, 
aimed at removing excess α-syn at the beginning of the disease 
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would become detrimental as the number of autoreactive anti-
bodies increases in repertoire. Thus, adding to the pioneering 
work of Mosley and Gendelman in the field, we suggest that any 
immunoregulatory therapy based on manipulation of the adap-
tive immune system should be addressed to restore natural toler-
ance against α-syn, so that Treg can suppress the autoreactive T 
cells in brain and induce a benign microglia reaction. We further 
believe that for the vaccination strategy to be persistently protec-
tive, and as suggested by the work of Masliah and coworkers, IgG 
against α-syn has to be concomitantly generated to aid neurons 
deal with the accumulation of α-syn before the formation of its 
pathological α-syn forms. Boosting only one of these 2 arms of 
the adaptive immunity, in our opinion, would not be beneficial 
in the long run because: either α-syn will continue accumulat-
ing, or the chronic neuroinflammation will persist. After all, for 
a good B cell response you need T cells, and B cells provide help 
to T cells to maintain their effector function.
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Endnotes
aThere is one single study that did not find such increase.
bIn the study in ref. 87 the patients were all taking amantidine 
and in ref. 85 they were under L-dopa treatment.
cCop-1 is a TCR agonist that blocks MHCII function and 
induces Treg.
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