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Introduction

Following repeated infections, various populations of mem-
ory CD8+ T cells develop and might be separated into major 
sub-populations that differ in their phenotype, effector func-
tions, proliferative capacity, anatomical locations, and long-term 
fates.1-4 However, the continuous evolution of the CD8+ T cell 
population over time following an infection often makes it diffi-
cult to track the developmental lineage of memory CD8+ T cells. 
Several research groups are presently studying the mechanisms of 
establishment, persistence, and regulation of local memory CD8+ 
T cells (i.e., tissue resident memory CD8+ T cells [T

RM
] and 

effector memory CD8+ T cells [T
EM

]). Local T
RM

 and T
EM

 cells 
reside within infected muco-cutaneous tissues and are relatively 
important, compared with central memory CD8+ T cells (T

CM
), 

in providing immediate protection against subsequent re-infec-
tion and reactivation.5 However, until our recent work on HSV-1 

and HSV-2-specific memory CD8+ T cells,6 the segregation of 
memory CD8+ T cells into asymptomatic (ASYMP) memory 
CD8+ T cell sub-population (i.e., those memory CD8+ T cells 
that actually lead to protection against herpes) and symptomatic 
(SYMP) memory CD8+ T cell sub-populations (i.e., those mem-
ory CD8+ T cells that, in contrast, lead to immunopathology and 
perhaps even lead to the exacerbation of herpetic disease) has not 
been reported.

Ocular HSV-1 infection is the leading cause of viral induced 
corneal blindness in the United States.6-16 Genital HSV-2 infec-
tion is among the most common sexually transmitted viral infec-
tions.8,9,17-19 The prevalence of HSV seropositive adults, 15 y and 
older, is estimated to be at least 61 million within the United 
States, and over half billion worldwide.20-22 After the initial viral 
exposure, HSV-1 and HSV-2 replicate in mucosal epithelial cells 
causing primary clinical inflammatory manifestations character-
ized by painful mucocutaneous vaginal blisters, corneal disease, 
and oro-facial herpes (cold sore).23-29 Newly infected seronega-
tive pregnant women can vertically transmit the virus to their 
newborns, causing encephalitis and death.19,30,31 Once the pri-
mary infection is cleared the HSV establishes life-long latency 
in sensory neurons of dorsal and trigeminal ganglia.32,33 Several 
factors, including stress, elevated body temperature, UV expo-
sure, and hormonal changes trigger HSV-1 and HSV-2 reacti-
vation from latently infected sensory neurons. The reactivated 
virus travels back and re-infects the primary site of infection 
resulting in recurrent painful inflammatory lesions.32 The infec-
tion process and the therapeutics currently used against HSV-1 
and HSV-2 replication and fusion have been recently reviewed.34 
Infected individuals must rely on sustained or intermittent anti-
viral drugs (Acyclovir and derivatives), sexual behavior education 
and barrier methods to limit the spread of HSV-1 and HSV-2.35,36 
The effectiveness of antiviral therapy is sometimes limited by 
the development of antiviral resistance. Controlling the spread 
of herpes through vaccine or immunotherapeutic approaches 
still remains a challenge.18,22,37-39 It is generally known that: (1) 
Natural immunity does not efficiently protect against new or 
recurrent herpes infection or disease,38,40-45 suggesting that an 
effective vaccine will have to induce a more vigorous immune 
response than sub-optimal natural immunity. (2) The immune 
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Generation and maintenance of high quantity and quality 
memory CD8+ T cells determine the level of protection from 
viral, bacterial, and parasitic re-infections, and hence consti-
tutes a primary goal for T cell epitope-based human vaccines 
and immunotherapeutics. Phenotypically and functionally 
characterizing memory CD8+ T cells that provide protection 
against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-
2) infections, which cause blinding ocular herpes, genital her-
pes, and oro-facial herpes, is critical for better vaccine design. 
We have recently categorized 2 new major sub-populations of 
memory symptomatic and asymptomatic CD8+ T cells based 
on their phenotype, protective vs. pathogenic function, and 
anatomical locations. In this report we are discussing a new 
direction in developing T cell-based human herpes vaccines 
and immunotherapeutics based on the emerging new concept 
of “symptomatic and asymptomatic memory CD8+ T cells.”
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system causes the majority of mucocutaneous herpetic lesions.46 
(3) Recurrent herpetic corneal disease is mediated by T cells47-52 
and in mice CD4+ and CD8+ effector T cells can either protect 
against or potentiate herpetic corneal disease.53-56 (4) Inducing 
local HSV-specific CD8+ T cell immunity at the sites of infection 
(i.e., the ocular, oral, and vaginal muco-cutaneous tissues, and 
sensory ganglia) or in the draining lymph node is necessary to 
prevent virus transmission/reactivation and/or limit the severity 
of ocular herpes.16,57-60

This review: (1) describes our novel concept of “development 
of symptomatic/asymptomatic CD8+ T cell sub-populations”; 
(2) describes the spatial and temporal position of the new symp-
tomatic and asymptomatic memory CD8+ T cell sub-populations 
within the widely known T

EM
, T

RM
, and T

CM
 CD8+ T cell pop-

ulations; (3) sheds the light on the mechanisms of induction, 
establishment, persistence, and regulation of symptomatic and 
asymptomatic memory CD8+ T cells in ocular, oral, and genital 
herpes infection models; and (4) discusses how the new “symp-
tomatic/asymptomatic CD8+ T cell sub-populations” concept 
provides new immunological insights and a new direction for 
the design of efficient and safe T cell-based human vaccines and 
immunotherapeutics.

Heterogeneity of Symptomatic and Asymptomatic 
Memory CD8+ T Cells

After the clearance of pathogens, the vast majority (often as 
much as 90 to 95%) of effector CD8+ T cells die, leaving behind 
only 5 to 10% of effector CD8+ T cells to differentiate into a het-
erogeneous pool of memory CD8+ T cells.61-65 The level of hetero-
geneity of memory CD8+ T cells is an important aspect that has 
come to light over the past few years. Tracking the developmen-
tal lineage of CD8+ T cells between effector and memory stages 
is complicated by the continuously evolving memory CD8+ T 
cell sub-populations that develop long after the infections are 
cleared.66-73 These diverse populations of memory CD8+ T cells 
can at times be categorized into sub-populations that differ in 
their phenotype, effector functions, proliferative capacity, ana-
tomical locations, and long-term fates.61,74

Phenotypic markers
Several phenotypic markers are used to separate diverse sub-

populations of memory CD8+ T cells include: CD62L, IL-7R 
(CD127), CD69, CD11a, CCR5, CCR7, and CD103+ (known 
as α4β7 integrin) (anatomical localization), IL-2/IFN-γ/TNF-
α, perforin, granzymes A/B/C/K, programmed death-1 (PD-1) 
(effector functions/dysfunction), Bcl-2, CD122, CD28, CD57, 
CD27, KLRG1, CXCR3, and CD43 (survival and/or prolifera-
tive capacity).75-77 Various factors affect the expression of these 
markers, including: (1) the type and duration of infection; (2) 
inflammatory cytokines; (3) antigen specificity; (4) naïve T cell 
precursor frequency; and (5) anatomic location within the host’s 
body.9 Thus, CD8+ T cells may exhibit a range of differentiated 
phenotypes spanning from IL7RlowKLRG1high short-lived effector 
cells (SLECs) to IL7RhighKLRG1low memory precursor effector 

cells (MPECs) that are capable of generating long-lived memory 
CD8+ T cells,71,78-80 T

CM
, T

EM
, and T

RM
 cells.81,82

In addition to the 5 factors above, we recently found that 
symptomatic and asymptomatic epitope stimulations are among 
the major factors that affect the development of memory CD8+ 
T cell sub-populations and hence, they define the fate of anti-
gen specific symptomatic and asymptomatic memory CD8+ T 
cells post-infection. For instance, following intravaginal infec-
tion with HSV-1 or HSV-2, asymptomatic epitopes appear to 
preferentially induce effector memory CD8+ T

EM
 cells (Fig. 1). 

These asymptomatic CD8+ T
EM

 cells are destined to survive and 
become long-lived CD8+ T cells that reside within the vaginal 
mucosal tissues, which are the sites of recurent infections and 
disease (Fig. 1). In contrast, symptomatic epitopes appear to pref-
erentially induce central memory symptomatic CD8+ T cells that 
are not destined to survive within the mucosal tissues, but rather 
reside in the lymphoid organs (Fig. 1).

Functional assays
Functional assays, such as cytokine production, are combined 

with IL7R (CD127) and KLRG1 phenotyping to assist discrimi-
nation between MPECs and SLECs subsets. For instance, the 
IL-6 receptors is used to help distinguish memory precursor cell 
subsets, as the IL-6RαhighIL7Rhigh pre-memory CD8+ T cells sur-
vive after priming and contribute to the majority of functional 
memory CD8+ T cells after the contraction phase.83 Compared 
with mono-functional CD8+ T cells that only produce one cyto-
kine; poly-functional CD8+ T cells produce IFN-γ, TNF-α, and 
IL-2 and preferentially survive and develop into MPECs. While 
MPECs can give rise to long-lived T

CM
, some SLECs can give rise 

to a terminally differentiated population of T
EM

 cells.71,84,85 We 
recently showed that induction of polyfunctional CD8+ T cells 
is more protective against ocular and genital herpes than mono-
functional CD8+ T cells.6,17 These poly-functional CD8+ T cells 
appeared to be a differentiated population of T

EM
 cells. It remains 

to be determined whether symptomatic and asymptomatic epit-
ope stimulation can lead to vaginal mucosa (VM)-resident CD8+ 
T cells differentiation into MPECs or SLECs.

Lectins and integrins
Lectins and integrins also contribute to heterogeneity of mem-

ory CD8+ T cells in the mucocutanoues tissues.17,86 High levels 
of α4β7 integrin (CD103) are expressed on mucosal tissue resi-
dent memory CD8+ T cells. CD103 binds to epithelial cadherin 
(E-Cadherin) expressed by epithelial cells. We found that com-
pared with CD8+ T cells from HSV-seropositive symptomatic 
individuals, CD8+ T cells from HSV-seropositive asymptomatic 
individuals express high levels of CD103 (CD103high) (Fig.  1). 
Thus, CD103 and E-Cadherin interaction is crucial for retention 
of asymptomatic memory CD8+ T

EM
 cells in the epithelium. The 

rapid upregulation of CD103 on asymptomatic CD8+ T
RM

/T
EM

 
cells is mediated by TGF-β, which plays a critical role during 
T

RM
/T

EM
 differentiation and rapid control of infection in barrier 

tissues, such as skin and mucosa.87,88 We are currently investi-
gating the underlying mechanisms of retention of asymptomatic 
memory CD8+ T

RM
/T

EM
 cells within the ocular and vaginal 

mucosal tissues as well as the possible regulation by TGF-β of 
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CD103 expression on ocular and vaginal tissue-resident HSV-
specific memory CD8+ T

RM
/T

EM
 cells.

Cytokines
The progression of the anti-viral CD8+ T cell response is con-

trolled by cytokine milieu.89-94 The decision of an effector CD8+ 
T cell to develop into SLECs or MPECs appears to be regulated 
by the amount of inflammatory cytokines (i.e., IL-6, IL-8, and 

IL-12) present during T cell priming.71 Memory T cell survival 
depends on IL-15, however, this alone is not sufficient for long-
term maintenance of these cells.69,71,95 The reliance of CD8+ T 
cell expansion on inflammatory cytokines (IL-12, IFN-α/β, 
and IFN-γ) or on IL-2, depends on the tissues in which they 
reside.95-99 In fact, a handful of inflammatory cytokines have 
been found to influence CD8+ T cell transition from the effector 

Figure 1. (A) Following intravaginal infection with HSV-2; stimulation with pathogenic symptomatic and protective asymptomatic human epitopes, 
expressed by the virus, greatly contributes to development of HSV-specific memory CD8+ T cell subsets, with either VM-resident effector memory (TEM) 
and tissue-resident memory (TRM) or lymphoid resident central memory CD8+ T cells (TCM). (See text for details). We hypothesize that virus derived symp-
tomatic epitopes boost primarily CD8+ TCM, that reside primarily in the secondary lymphoid tissues, such as GT-DLN, which, once re-activated, re-circu-
late through the bloodstream into the vaginal mucosa (VM). In contrast, virus derived asymptomatic epitopes boost primarily VM-resident CD8+ TEM/TRM 
that are retained in the mucosal site of viral entry. (B). Anatomic-distribution, phenotypic, and functional characteristics of HSV-specific symptomatic 
central memory CD8+ T cells (TCM) vs. asymptomatic effector memory (TEM) CD8+ T-cells induced following intravaginal infection with HSV-2. Intra-vaginal 
(VAG) infection with HSV-2 bearing both symptomatic or asymptomatic epitopes prime naïve T cells into effector T cells to clear the virus infection while 
simultaneously generating memory CD8+ T cells to protect against subsequent encounter with the virus following re-infection or reactivation from 
latently infected sensory ganglia. We hypothesize that after the clearance of the virus, there is an optimum equilibrium between SLECs (IL7RlowKLRG1high) 
and MPECs (IL7RhighKLRG1low) cells derived from an early effector cells (EECs, IL7RlowKLRG1low), which then transit to 2 main categories of memory CD8+ T 
cells: TCM CD8+ T cells specific to symptomatic epitopes and TEM CD8+ T cells specific to asymptomatic epitopes. TEM CD8+ T-cells are mainly retained in 
the vaginal mucosa (see text for detail).
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Figure 2. For figure legend, see page 949.
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state to the memory state.9 TGF-β also affects differentiation of 
memory T cells within the mucosa.100 The mechanisms by which 
cytokine milieu controls the heterogeneity of symptomatic and 
asymptomatic memory CD8+ T cell subsets remain to be fully 
elucidated.

Intrinsic (transcription) factors
Many survival and transcriptional factors are involved in the 

regulation of effector state to memory state transition.71,101 These 
include Bcl2, Eomes, Tcf1, Blimp1, Id2, Id3, and T-bet.102 T-bet 
is a key lineage-determining transcription factor that controls the 
fate SLECs/MPECs during infection.68,71,103 Depending on the 
amount of inflammation, a gradient of T-bet is created in which 
high T-bet promotes SLECs and low T-bet promotes MPECs.71,104 
The control of intrinsic (transcription) factors in the heterogene-
ity of symptomatic and asymptomatic memory CD8+ T cells also 
remain to be elucidated.

Anatomical locations
Anatomical locations play a crucial role in the distribution of 

memory CD8+ T cell subsets in different organs. Mucosal sur-
faces, that constitute an impressive and powerful first-line of 
defense system that is frequently exposed to an array of exogenous 
antigens and pathogens, contain mainly CD8+ T

RM
/T

EM
 cells.6,9 

The mucosal immune system is largely separate and distinct 
from the systemic immune system. Several infectious diseases 
with the highest rates of morbidity and mortality begin primar-
ily as local infections at one of the mucosal barrier sites. CD8+ 
T

RM
/T

EM
 cells from muco-cutaneous tissues, such as the skin or 

mucosal lining of the respiratory tract, gut, and genital tract, 
defend against pathogen invasion. As illustrated in Figures 1 and 
2, with respect to symptomatic/asymptomatic memory CD8+ T 
cells, most asymptomatic CD8+ T cells appear to reside in non-
lymphoid mucosal tissues. Additionally, they have a decreased 
ability to traffic to lymphoid tissues and appear more terminally 
differentiated due to a lower proliferation capacity in response to 
Ag or homeostatic cytokines (IL-15 and IL-7).95,105-107 In contrast, 
most symptomatic CD8+ T cells that are traditionally defined 
by the presence of CD62L and/or CCR7 lymph-node-directing 
molecules and low expression of chemokine receptors, such as 
CCR5, appear to be associated with homing to inflammatory 
sites.108

Establishing HSV-Specific Asymptomatic Memory 
CD8+ T Cell Responses at the Mucosal Tissues

Based on T cell circulation, tissues are characterized into 3 
classes: permissive tissues, effector permissive tissues and restric-
tive tissues.9

Permissive tissues
Permissive tissues are readily accessible by both effector and 

CD8+ T
EM

 cells, even in the absence of local inflammation or 
antigens. These constitute the spleen, lung, liver, kidney, and adi-
pose tissue.109-111

Effector permissive tissues
Effector permissive tissues are attainable by effector CD8+ T 

cells, but not by asymptomatic memory CD8+ T
EM

 and T
CM

 cells. 
These tissues are generally colonized by CD8+ T cells early dur-
ing the effector phase and consist of the gut, brain, and peritoneal 
cavity. Though the presence of antigens or inflammatory factors 
may enhance recruitment, migration of effector CD8+ T cells to 
these tissues does not require direct infection. These tissues also 
become inaccessible to circulating symptomatic memory CD8+ T 
cells after resolution of infection.72,112-114

Restrictive tissues
Restrictive tissues are inaccessible by either effector or mem-

ory CD8+ T cells at steady-state of infection and are only acces-
sible to effector CD8+ T cells when there is a local inflammation. 
These tissues include the skin epidermis, vaginal epithelial layer, 
salivary glands, lung airways, cornea, and the sensory ganglia—
all of which lack tissue tropic chemokines or adhesion molecules. 
Thus, systemic and local immunization at distal sites may often 
result in a diminished level of access for effector T cells into 
restrictive tissues.72,112-114

Many infections, including HSV-1 and HSV-2, occur at the 
ocular, oral and vaginal mucosal tissues.17,18,115,116 At the steady-
state, the mucosal epithelial layer and the sub-mucosa are pro-
tected by innate leukocytes and lymphocytes. The restrictive 
mucosal tissues are inaccessible to effector and memory CD8+ T 
cells at a steady-state but can be reached by effector CD8+ T cells 
when there is a local inflammation induced, for example, by pri-
mary or recurrent herpes infection.115-117 Thus, the female genital 
tract is an immunologically restrictive tissue that normally pre-
vents entry of activated T cells in the absence of inflammation 
or infection.115 Recruitment of HSV-specific CD8+ T cells to the 
vaginal mucosal (VM) tissues is therefore thought to be restricted 
because effector and memory CD8+ T cells does not circulate 
through the genital tract.115-117 However, while the VM tissue is 
considered mainly an effector site for CD8+ T cells, recent data 
demonstrates that the VM tissue may also be an inductive site 
for CD8+ T cells (Wang Y., AAI 2013, Abstract #3186). CD8+ 
T cells persist in the VM tissue at the dermal–epidermal junc-
tion (DEJ)—the portal of release of viral particles that reactivate 
from latently infected neurons of sensory ganglia—for prolonged 
periods of time after herpes lesions are cleared.118,119 However, the 
mechanisms by which vaginal DEJ-resident memory CD8+ T 
cells are generated and maintained remain to be fully elucidated. 

Figure 2. A proposed model of phenotypic and functional characteristics of HSV-specific CD8+ T cells in HSV-seropositive symptomatic vs. asymp-
tomatic individuals: (A) Majority of women are asymptomatic and clear the virus from the VM by mounting a protective T cell responses while some 
women are symptomatic and develop genital herpes. Significant differences in the quantity, the quality and the durability of effector memory (TEM), 
tissue-resident memory (TRM) and central memory(TCM) CD8+ T cells specific to symptomatic vs. asymptomatic human HSV-2 epitopes are detected in 
symptomatic and asymptomatic women. (B) Potential interactions between an APC, presenting an asymptomatic vs. symptomatic epitope, (right) and a 
memory CD8+ T cell (left) occur in HSV-2 infected vaginal mucosa, and appear to be mediated by TCR/MHC, CD103/E-Cadherin, and CD127-IL7 pathways. 
(C) The balance between the asymptomatic vs. symptomatic epitopes will determine herpes protection vs. immunopathology.
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Recently, it has been reported that CD8αα+ T cells resident in 
DEJ tissue play an important role in immune surveillance and 
in initial containment of HSV-2 reactivation in human VM 

tissue.119 Generation of long-term VM-resident memory CD8+ T 
cell immunity against sexually transmitted pathogens depends 
on the formation of long-lasting asymptomatic memory T

EM
 and 

Figure 3. Models for generating diverse differentiated states of effector and memory CD8+ T cells following stimulation by symptomatic vs. asymptom-
atic epitopes. (A) First working model of de-differentiation for generating CD8+ T cell diversity proposes that soon after symptomatic or asymptomatic 
activation daughter naïve CD8+ cells become fully differentiated and functional by producing cytokines and exhibiting cytotoxic activity. The majority 
of effector CD8+ T cell then die. While a minority of asymptomatic epitope specific CD8+ T cells will de-differentiate into MPEC and long-lived memory 
CD8+ T cells. (B) Second working linear model for generating CD8+ T cell diversity proposes that degree of effector cell differentiation is regulated by the 
duration of exposure of daughter cells to symptomatic and asymptomatic epitopes following repetitive reactivation of HSV-2 from latency. The majority 
of terminally differentiated effector CD8+ T cell will die following cumulative encounter with the virus. While a minority of asymptomatic epitope specific 
CD8+ T cells which did not reach the end stage of differentiation will develop into MPEC and long-lived memory CD8+ T cells. The memory CD8+ T cell 
phenotypes vary according to the differentiation state of the effector cells from which they descended; curved arrows with bold, thin, or dashed lines 
indicate a high, medium, or low degree of proliferative potential and longevity. (C) Third working divergent model for generating CD8+ T cell diversity 
is similar to B, except that the strength of symptomatic vs. asymptomatic signal (instead of the cumulative symptomatic vs. asymptomatic stimulation) 
will determine the degree of effector cell differentiation and formation MPEC and long-lived memory CD8+ T cells.
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T
RM

 CD8+ cells.68,71,95,120,121 Compared with other mucosal tissues, 
such as the gut, induction of VM-resident CD8+ T cell immunity 
has received much less attention. In general, parenteral immu-
nization induces systemic but not mucosal immune responses, 
while mucosal immunization induces both systemic and mucosal 
immune responses.9,17,122-124 We have recently described, for the 
first time, a Lipo/rAdv5 prime/boost mucosal vaccine deliv-
ered intravaginally (IVAG) that induced robust and long-lived 
HSV-specific asymptomatic CD8+ T cell responses which pro-
tect against genital herpes infection and disease.17,18 The induced 
long-lasting memory CD8+ T cell responses persisted in both 
the VM and GT-DLN for up to 8 mo post immunization. To 
avoid exacerbation of vaginal mucosal disease it is imperative to 
avoid inducing pathogenic symptomatic CD8+ T cells. Our lab 
is curently exploring the determining factors that regulate the 
induction, persistence, and retention of asymptomatic CD8+ 
T

EM
 cells witin the ocular and genital mucosal tissues, the sites 

of primary and recurent HSV-1 and HSV-2 infections, respec-
tively (Fig.  1). Additionally, the development of asymptomatic 
CD8+ T cells whithin the ocular and genital mucosal tissues most 
likely displays a more profound complexity and is more uniquely 
regulated in comparison to the development on other mucosal 
surfaces.115,125

In the following paragraphs we will discuss our novel con-
cept of “symptomatic/asymptomatic CD8+ T cell develop-
ment” within the widely known T

EM
, T

RM
, and T

CM
 CD8+ cell 

populations. It will also shed some light on the mechanisms of 
induction, establishment, persistence, and regulation of “asymp-
tomatic” memory CD8+ T cells at the ocular and genital muco-
cutaneous tissues and the new direction for the design of efficient 
and safe “asymptomatic” T cell-based human vaccines and  
immunotherapeutics.

Contribution of Memory Precursor Effector 
Cells (MPECs) and Short-Lived Effector Cells 

(SLECs) in the Development of Symptomatic vs. 
Asymptomatic Memory CD8+ T Cells

T cell responses to a primary viral infection are optimally 
designed to generate large numbers of effector CD8+ T cells that 
clear the virus infection while simultaneously generating memory 
CD8+ T cells that protect against subsequent encounter with the 
virus following re-infection or reactivation. During a primary T 
cell response, the effector T cell pool contains 2 cellular subsets: 
short-lived effector cells (SLECs), a majority of which undergo 
apoptosis, and the memory precursor effector cells (MPECs) 
that differentiate into memory cells.126-129 To ensure the balance 
between these equally essential processes, CD8+ T cells inte-
grate multiple signals and undergo an exponential increase in 
the number of T cells that is associated with a dynamic CD8+ 
T cell differentiation process.130 Such regulation results in the 
equilibrium between SLECs (IL7RlowKLRG1high) and MPECs 
(IL7RhighKLRG1low) that are derived from early effector cells 
(EECs, IL7RlowKLRG1low).130 What properties distinguish termi-
nally differentiated CD8+ T cell sub-populations and how this 

process influences HSV-specific memory CD8+ T cell develop-
ments in the ocular, oral, and genital mucosal tissues are impor-
tant questions that remain to be answered. Interestingly, recent 
results from our laboratory suggest that CD8+ T cells specific 
to herpes asymptomatic epitopes tend to have mainly a SLECs 
phenotype while CD8+ T cells specific to herpes symptomatic 
epitopes tend to have mainly a MPECs phenotype (Khan et al., 
unpublished data).

In general, after several rounds of cell division, the prolifera-
tive potential of effector CD8+ T cells declines and they become 
highly sensitive to apoptosis and death.95,131 In contrast, memory 
CD8+ T cells are multi-potent and, thus, are less terminally dif-
ferentiated (they can remain resting memory CD8+ T cells or 
re-differentiate into effector CD8+ T cells at any time), can self-
renew, have a high proliferative potential and increased longev-
ity.71,95,131-135 Recent genomic and proteomic studies revealed many 
differences between gene expression profiles of memory and 
effector CD8+ T cell.136,137 During early infection, virus-specific 
effector cells that are generated from SLECs, (KLRG1highIL7Rlow) 
rarely persist into “memory” time points as they often die from 
apoptosis once the acute infection is cleared. In contrast, memory 
CD8+ T cells generated from MPECs (KLRG1lowIL7Rhigh) often 
develop into a mixture of T

EM
, T

RM
, and T

CM
 cells.71,138-140 We 

hypothesize that the delicate balance of MPEC vs. SLEC and the 
T

CM
 vs. T

RM
/T

EM
 cell lineages decisions is strongly influenced by 

the repertoire of TCR signals that are generated by symptom-
atic and asymptomatic epitopes displayed by a viral pathogen. 
Specifically, TCR recognition of asymptomatic epitopes will 
drive development of CD8+ T cells with preferentially SLEC 
phenotype, while recognition of symptomatic epitopes will drive 
preferentially MPEC phenotype. The challenge we now face is 
to determine the molecular mechanisms that lead symptomatic 
and asymptomatic epitopes-specific effector CD8+ T cell devel-
opment to ultimately choose the MPEC vs. SLEC fate following 
an infection.141 A better knowledge of MPECs and SLECs regu-
lation and its association with symptomatic and asymptomatic 
T cells responses should help develop a safe and effective herpes 
vaccine.126-129

Following CD8+ T cell responses to a primary viral infection, 
the majority of SLECs undergo apoptosis, while the MPECs 
differentiate into memory cells.126-129 The equilibrium between 
MPEC vs. SLEC and the T

CM
 vs. T

EM
 cell lineage are inte-

grated by multiple external and internal signals associated with 
an exponential increase in the number of cells and a dynamic 
CD8+ T cell differentiation process.130 This review highlights 
how symptomatic and asymptomatic immune responses contrib-
ute in shaping the MPEC vs. SLEC and the T

CM
 vs. T

EM
 cell 

fate. The symptomatic and asymptomatic mechanisms that lead 
to terminally differentiated CD8+ T cells and how this process 
influences memory CD8+ T cell developments in the ocular and 
genital mucosal tissues are important questions that remain to 
be answered. We hypothesize that the delicate balance of MPEC 
vs. SLEC and the T

CM
 vs. T

EM
 cell lineages decisions is likely 

influenced by the repertoire of TCR signals that are generated 
by “symptomatic” and “asymptomatic” epitopes displayed by a 
viral pathogen.
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Anatomic-Distribution, Phenotypic, and Functional 
Characteristics of Various Subsets of Symptomatic 

and Asymptomatic Memory CD8+ T Cells

Although memory CD8+ T cell sub-populations are widely 
heterogeneous in terms of their phenotype, function, and ana-
tomic distribution, they can be divided into 3 major subtypes: (1) 
the effector memory CD8+ T cells (T

EM
); (2) the central memory 

CD8+ T cells (T
CM

); and (3) the tissue-resident memory CD8+ T 
cells (T

RM
).142 These 3 major populations of memory T cells play 

cooperative and complementary roles in protecting the host from 
re-infection.143,144 As illustrated in Figure 1, these 3 populations 
differ in their anatomic-distribution, phenotype, and function.

Anatomic distribution
T

CM
 cells circulate in blood and reside mainly in lymphoid tis-

sues. T
EM

 and T
RM

 cells are retained in tissues within the portal 
entry sites of potential invading pathogens, such as the ocular, 
oral and vaginal muco-cutaneous tissues. They are rapidly mobi-
lized (within hours of re-infections). While CD8+ T

EM
 cells are 

also present in blood and splenic red pulp, they are the domi-
nant T cell sub-population in extra-lymphoid tissues.88,145 T

EM
 

are sequestered in epithelia and underlying stroma,88 and protect 
these tissues.144,146 CD8+ T

EM
 cells have altered T cell trafficking 

patterns due to: (1) downregulation of T cell homing molecules 
(CD62L, CCR7)147,148; and (2) constitutive upregulation of non-
lymphoid homing lectins, integrins, and chemokine receptors. 
Unique skin-resident HSV-specific CD8+ T

EM
/T

RM
 cell subset 

have recently been reported to persist up to 8 mo after clear-
ance of skin infection.17,86 They express high level of αE integ-
rin (CD103). CD103 binds to epithelial cadherin (E-Cadherin) 
in epithelial cells. CD103-E-Cadherin binding is critical for the 
retention of CD8+ T

EM
/T

RM
 cells within the epithelium. The role 

of T
EM

/T
RM

 cells in protection against ocular, oral, and genital 
herpes, as often seen in asymptomatic individuals, remains to be 
determined.

Phenotype
CD8+ T

CM
 cells are CD8+CD103lowCD62LhighCCR7high. 

CD8+ T
EM

 cells are CD8+CD103lowCD62LlowCCR7low. CD8+ 
T

RM
 cells are CD8+CD103highCD62LlowCCR7low. Markers other 

than CD103, CD62L, and CCR7 that are used to identify the 
CD8+ T

RM
 cell sub-population include a high expression of 

CD11a, CD49a, and CD69.142,149-151

Function
CD8+ T

CM
 cells have high proliferation potential and high 

capacity to secrete IL-2 upon re-stimulation.88,108,152 CD8+ T
CM

 
cells must undergo differentiation for effector functions (e.g., 
cytotoxic and cytokine production).88,153,154 In contrast, CD8+ 
T

EM
/T

RM
 cells that reside in extra-lymphoid tissues are already 

differentiated and poised for immediate effector function.143 
Tissue resident CD8+ T

RM
 cells are potent effectors that provide 

rapid long-term protection against tissue re-infection, express 
constitutively high levels of granzyme B, and eliminate infected 
target cells with secreted perforin.82,155-158 After clearance of epi-
thelial HSV-1 and HSV-2 infections, CD8+ T

RM
 cells resident 

in the skin contain lower perforin and granzyme transcripts as 
compared with the effector phase.159-161 However, HSV-specific 

CD8+ T cells in the sensory ganglia express high level of gran-
zymes and perforin due to TCR engagement by latently infected 
neurons, which are critical for suppressing reactivation of HSV-1 
and HSV-2.82,158-160 Tissue resident CD8+ T

RM
 cells produce high 

levels of effector IFN-γ, TNF-α, IL-22, and IL-17 cytokines and 
chemokines such as MIP-1, upon viral antigen re-encounter.162 
Tissue resident CD8+ T

RM
 cells efficiently and immediately inter-

fere with virus replication in peripheral non-lymphoid tissues, 
such as the skin. Tissue resident CD8+ T

RM
 cells express cytotoxic 

granules to provide rapid cytotoxic response against viral infec-
tions.88,163 We have recently showed that vaginal mucosa-resident 
HSV-specific memory CD8+ T cells induced by our intravagi-
nal Lipo/rAdv prime-boost vaccine is correlated with protection 
against genital herpes infection and disease (R2 = 0.7836; P < 
0.0001).17 However, the relative contribution of T

EM
/T

RM
 vs. T

CM
 

in long-term protective memory against genital herpes remains 
to be elucidated.

Development of Central Memory (TCM), Effector 
Memory (TEM), and Tissue-Resident Memory (TRM) 

CD8+ T Cells in Symptomatic vs. Asymptomatic 
Settings

Understanding the molecular mechanisms by which memory 
CD8+ T cells are established and maintained within the tissues 
will allow us to develop new vaccine and immunotherapeutic 
approaches to induce antigen-specific activation vs. tolerance 
depending on patient’s clinical needs. Memory CD8+ T cells can 
survive long-term in the absence of antigens (over 2 y in mice 
and over 50 y in humans).68,71,95,120,121 As mentionned above, there 
are several subsets of memory T cells, including central memory 
(T

CM
), effector memory (T

EM
), and tissue-resident memory (T

RM
) 

cells (based on CD62L, IL7R, CCR7, CD11a, and CD103 expres-
sion).95 T

CM
 cells are mainly CD8+CD103lowCD62LhighCCR7high. 

T
EM

 cells are mainly CD8+CD103lowCD62LlowCCR7low. Another 
sub-population, has been recently described as permanently resid-
ing in peripheral tissues, is called tissue-resident memory CD8+ T 
cells (T

RM
 cells)142,149-151 and is CD8+CD103highCD62LlowCCR7low. 

T
RM

 cells are also CD11ahigh, CD49ahigh, and CD69high. Although 
central memory CD8+ T cells (T

CM
) appear to provide some 

protection against systemic infection, T
EM

 and T
RM

 cells have 
special features that make them well suited to respond quickly 
and effectively when infection is localized to peripheral com-
partments, such as the vaginal, the oral, and the ocular muco-
sal surfaces. As mentioned above, CD8+ T

CM
 vs. CD8+ T

EM
/T

RM
 

cell lineage decision is influenced by the nature and strength of 
TCR signaling and IL-2 in addition to IL-15 and other exog-
enous and endogenous factors.164,165 HSV-specifc T

RM
 cells are 

preferentially retained in close proximity to the epidermis and 
peripheral nerves in vaginal muco-cutaneous tissues, following 
HSV-1 and HSV-2 infections, whereas clusters of neuronal T

RM
 

cells are retained in areas of previous infections for at least several 
weeks.82,151,155-159,161,166 Our lab is actively engaged in determining 
the relative contribution of HSV symptomatic vs. asymptom-
atic epitopes in the induction of CD8+ T

CM
, T

EM
, and T

RM
 cell 
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sub-populations  and their homing in lymphoid vs. the muco-
cutaneous tissues. Additionally, our lab is investigating the role of 
symptomatic vs. asymptomatic CD8+ T cell sub-populations in 
the protection against herpes at the ocular (HSV-1), oral (HSV-1) 
vaginal (HSV-1/HSV-2) muco-cutaneous sites of infection. The 
project involves in vitro studies in symptomatic vs. asymptom-
atic humans as well as in vivo studies using our novel susceptible 
“humanized” HLA transgenic mouse, guinea pig, and rabbit 
models of ocular, oral, and genital herpes. Determining how 
CD8+ T

CM
, T

EM
 and T

RM
 cell sub-populations develop and pro-

tect against infections and diseases might tightly depend on the 
models by which symptomatic vs. asymptomatic epitope-specific 
memory CD8+ T cells develop.

Models for Memory CD8+ T Cells Development 
Within Symptomatic and Asymptomatic Memory 

CD8+ T Cells Concept

After an acute infection, the memory CD8+ T cell popula-
tion evolves progressively over time into sub-populations that 
are enriched with cells with higher proliferative capacity, greater 
longevity, and with slight alterations during latent, chronic, and 
persistent phases of infections.149,167-169 How effector CD8+ T cell 
differentiation is balanced to permit the formation of effector cell 
properties in the MPECs and yet still prevents the MPECs from 
acquiring a terminal SLECs state is still controversial. More so, 
it is also unclear whether naïve (N) and effector (E) CD8+ T 
cells specific to symptomatic vs. asymptomatic epitopes follow a 
different path of development into memory (M) cells (i.e., desig-
nated in this review as symptomatic vs. asymptomatic N >  >  > 
E >  >  > M transitions). Nevertheless, based on the studies from 
many murine models of persistent infections, 3 major models 
have been proposed to explain naïve to effector to memory CD8+ 
T cell transitions:

Model 1: De-differentiation model
De-differentiation model implies that after antigenic activa-

tion most naïve CD8+ T cells reach a terminally differentiated 
effector stage, where the cells become fully functional effector 
CD8+ T cells that have cytotoxic activity and produce cytokines. 
However, some effector CD8+ T cells are capable of de-differen-
tiating into memory CD8+ T cells that gain longevity and a high 
proliferative potential (Fig. 3A). During an effector to memory 
transition, MPECs gradually acquire proliferative and survival 
capacity and produce IL-2, Bcl-2, and CD62L.170-176 The under-
lying mechanisms behind this functional maturation remain to 
be fully elucidated. However, the exposure to IL-2 during infec-
tion, the presence of CD4+ T helper cells, and the maintenance of 
lower level of expression of T-bet appear to be important factors 
for establishing a memory CD8+ T cell population with a higher 
proliferative capacity.95,105,137,165,177-180 The de-differentiation 
model would elegantly fit into the ocular, oral, and genital her-
pes asymptomatic infections. In theory, after activation by both 
symptomatic and asymptomatic epitopes, most CD8+ T cells 
would reach a terminally differentiated effector stage but only 
asymptomatic epitopes-specific CD8+ T cells would be able to 

de-differentiate into memory CD8+ T
EM

/T
RM

 cells, as illustrated 
in Figure  3A. We are currently trying to test the de-differen-
tiation model in ocular, oral, and genital herpes asymptomatic 
infections and to understand the contribution of symptomatic 
and asymptomatic stimulations in the phenotypic and functional 
maturation of CD8+ T cells during the naïve to effector to mem-
ory transitions.

Model 2: Decreasing potential or linear model
Decreasing potential or linear model implies that after anti-

genic stimulation, naïve CD8+ T cells differentiate into a step-
wise manner and, in doing so, progressively acquire a more 
terminally differentiated phenotype. Thus, CD8+ T cells that 
become MPECs do not progress as far as the SLECs (Fig. 3B). In 
this model, the progression of differentiation may be controlled 
by successive antigenic stimulations of CD8+ T cells.95,181,182 This 
model would also fit ocular, oral, and genital herpes symptomatic 
and asymptomatic concept. In theory, during the latency/reacti-
vation cycles, spontaneous intermittent reactivation of the virus 
from latency leads to successive antigenic stimulation of CD8+ T 
cells with symptomatic and asymptomatic epitopes expressed by 
the virus proteins. Thus, the differentiation state of an effector 
CD8+ T cell would reflect the number of times in which CD8+ T 
cells encountered either symptomatic or asymptomatic epitopes 
during infection/reactivation. This linear model would provide 
a likely mechanism for generating a spectrum of symptomatic or 
asymptomatic effector and memory CD8+ T cells.95,108,181,183,184 In 
the case of HSV latent infection, the successive reactivation of the 
virus and re-stimulation of CD8+ T cells with symptomatic vs. 
asymptomatic epitopes will contribute to dictating phenotypical 
and functional maturation of CD8+ T cells throughout the naïve 
to effector to memory transition, as illustrated in Figure 3B. The 
successive stimulation of CD8+ T cells with asymptomatic epi-
topes would lead to the formation of more T

EM
/T

RM
 cells and 

more CD8+ T cell memory to effector transitions. In contrast, 
a successive stimulation of CD8+ T cells with symptomatic epi-
topes will lead to T

CM
 and less memory to effector transitions.

Model 3: Divergent model
Divergent model for generating CD8+ T cell diversity pro-

poses that soon after antigenic activation, daughter CD8+ T cells 
are instructed to generate either SLECs or MPECs subsets, as 
illustrated in Figure 3C. Although the divergent model is asym-
metric and produces only 2 cell types, it also incorporates a range 
of “in-between” differentiated states that depend on the overall 
nature and strength of symptomatic vs. asymptomatic epitopes 
stimulation encountered by a T cell at or near the time of prim-
ing.95,185-188 Following a first encounter with an antigen, dividing 
CD8+ T cells exhibit unequal partitioning of symptomatic and 
asymptomatic epitopes that mediate signaling, cell fate specifica-
tion, and an asymetric cell division and lead to the differentiation 
toward either an effector or memory T cell lineage.189 This model 
would also suit the scenario where a primary ocular, oral, or geni-
tal herpes infection would lead to various strengths of CD8+ T cell 
stimulations depending on whether HSV symptomatic or asymp-
tomatic epitopes were encountered. The differentiation state of 
an effector CD8+ T cell would then denote the strength of symp-
tomatic or asymptomatic T cell epitope signal during the priming 
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of naïve CD8+ T cells, as illustrated in Figure 3C. Specifically, 
a strong stimulation of naïve CD8+ T cells with asymptomatic 
epitopes would lead to the formation of more T

EM
/T

RM
 and more 

CD8+ T cell memory to effector transitions. In contrast, a robust 
stimulation of CD8+ T cells with symptomatic epitopes would 
lead to T

CM
 and less memory to effector transitions.

The Role Of Cytokines In Symptomatic Vs. 
Asymptomatic Memory CD8+ T Cell Development

As mentioned above, a handful of inflammatory cytokines 
influence CD8+ T cell transition from effector to memory state.190 
IL-12, IFN-α/β, and IFN-γ inflammatory cytokines strongly 
enhance the expansion of effector CD8+ T cells, their cytotoxic 
activity, and the production of antiviral cytokines.95-98,103,131,191-194 
Optimal effect of IL-12, IFN-α/β, and IFN-γ inflammatory 
cytokines appear to occur particularly when effector CD8+ T cells 
are activated by weak stimuli or following a cross-presentation of 
antigens. However, these inflammatory cytokines may also act as 
a double-edged sword: (1) on one hand, they stimulate effector 
CD8+ T cell expansion and function; (2) on the other hand, they 
drive the terminal maturation of effector CD8+ T cells, hence, 
limiting the potential transition of effector to memory state. 
Among the IL-12, IFN-α/β, and IFN-γ inflammatory cyto-
kines, the role of IFN-γ in the transition of effector to memory 
still remains controversial. A recent work has shown that IFN-γ 
promotes effector CD8+ T cell contraction and downregulation 
of IL7R.95,193 Yet, another recent report showed that IFN-γ recep-
tor (IFN-γR) is needed for normal memory CD8+ T cell forma-
tion.95 In IL12−/− mice, a higher frequency of IL7Rhigh MPECs 
and memory CD8+ T cells form following infection,95,97,103,194 
suggesting that IL-12 plays a critical role in the effector CD8+ T 
cell fate decisions. Our recent findings showed that stimulation 
of CD8+ T cells with HSV-1 asymptomatic epitopes preferen-
tially induced poly-functional T cells that produce IL-12, TNF-
α, and IFN-γ inflammatory cytokines.6 In contrast, stimulation 
of CD8+ T cells with HSV-1 symptomatic epitopes preferentially 
induced mono-functional T cells.6 Moreover, we found that 
HSV-1 asymptomatic epitopes preferentially induced CD8+ T

EM
 

cells (Khan et al., unpublished data). In contrast, HSV-1 symp-
tomatic epitopes favor induction of CD8+ T

CM
 cells (Khan et al., 

unpublished data). We, therefore, hypothesize that the delicate 
balance of T

CM
 vs. T

EM
 cell lineages decision is strongly influ-

enced by the profile of cytokines generated following stimula-
tion with symptomatic vs. asymptomatic epitopes. Specifically, 
the recognition of asymptomatic epitopes will drive the develop-
ment of tissue-resident memory CD8+ T cells with preferentially 
a T

EM
/T

RM
 phenotype, while the recognition of symptomatic epi-

topes will drive preferentially a T
CM

 phenotype.
Homeostatic cytokines IL-7 and IL-15 are also critical for the 

long-term survival and turnover of memory CD8+ T cells.85,95,195 
Prolonged deprivation of IL-7 and IL-15 homeostatic cytokines 
has considerable consequences on the formation and maintenance 
of memory CD8+ T cells.95,121,177,196-199 Formation of KLRG1highIL-
7Rlow SLECs depends on production of IL-15, but this alone is 

not sufficient to maintain these cells for a long-term period.69,71,95 
Once T cells enter peripheral tissues, various molecules from 
tissue microenvironment may further influence their effector 
heterogeneity. For example, TGF-β have various tissue-specific 
effects on the differentiation of T cells in the intestinal mucosa,100 
but its effect on ocular, oral, and vaginal mucosa-resident CD8+ 
T cells remains to be determined. In general, a rapid upregulation 
of CD103, an integrin that is expressed by T cells and required 
for tissue retention, is mediated by TGF-β1.87

Given the importance of tissue-resident memory CD8+ T
EM

/
T

RM
 cells in providing local protection against subsequent HSV 

re-infection and reactivation, the factors that regulate memory 
CD8+ T cell retention within the ocular, oral, and vaginal mucosa 
where protection is required is not yet known. To date, virtually 
no results are available on the mechanisms involved in the reten-
tion of memory CD8+ T cells within the ocular, oral, and vaginal 
mucosa. We have recently demonstrated17,18 that: (1) targeting 
the vaginal mucosa (VM) with a lipopeptide/recombinant ade-
novirus (Lipo/rAdv) heterologous prime/boost vaccine, contain-
ing a mouse CD8+ T cell epitope, induced a robust and durable 
VM-resident CD8+ T cells that protects against genital herpes 
infections and disease; and (2) VM-resident IFN-γ-producing 
CD8+ T cell responses correlated positively with protection (R2 = 
0.7836; P < 0.0001). Moreover, we found a higher expression of 
CD103 on asymptomatic CD8+ T cells vs. symptomatic CD8+ T 
cells, responding to HSV-2 infection (unpublished data). These 
results suggest that priming conditions dominated by asymptom-
atic viral epitopes stimulation may increase CD103 expression on 
memory CD8+ T cells and, thus, might promote long-lasting 
retention of memory CD8+ T cells within the VM (Figs. 1 and 
2). Even so, the mechanisms that regulate the retention of HSV-
specific memory CD8+ T cells in the ocular and mucosal tis-
sues; and particularly (1) the role of CD103 in the retention of 
ocular and vaginal mucosa-resident HSV-specific CD8+ T cells; 
(2) whether the expression of CD103 on ocular, oral, and vaginal 
mucosa-resident HSV-specific memory CD8+ T cells are affected 
with TGF-β; and (3) whether stimulation with symptomatic vs. 
asymptomatic epitopes would affect the expression of CD103, 
and the production of inflammatory and homeostatic cytokines 
by memory CD8+ T cells and hence affect memory CD8+ T cells 
development and retention within the peripheral tissues, such 
as the ocular, oral, and vaginal mucosal tissues remain largely 
unexplored.

The Role of Cell Intrinsic (Transcription)  
and Epigenetic Factors in the Development  
of Symptomatic Vs. Asymptomatic Memory  

CD8+ T Cells

As mentioned above, modulation of many cell-intrinsic fac-
tors, in part achieved through epigenetic modifications of DNA 
and histones, are involved in the regulation of effector to memory 
transition. Transcription factors that regulate effector T cell dif-
ferentiation, such as T-bet, controls SLEC vs. MPEC fate decisions 
through its level of expression.69,71,103,194 Higher expression of T-bet 
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favors the formation of KLRG1highIL7Rlow SLECs while lower 
expression of T-bet promotes KLRG1lowIL7Rhigh MPECs.69,71,95 
Similar to T-bet, the transcriptional regulator ID2 (inhibitor of 
differentiation 2) plays a critical role in effector to memory CD8+ 
T cell transition.95,200 ID2-deficient CD8+ T cells have a more 
IL7RhighCD27high “MPEC-like” phenotype.95,200 Another tran-
scription factor, Blimp-1 (prdm1) is expressed at high levels by 
KLRG1highIL7Rlow SLECs.180 CD8+ T cells in Blimp1-deficient 
mice have an activated and highly proliferative phenotype, suggest-
ing that Blimp1 expression is anti-proliferative.95,201,202 Moreover, 
the potential antagonists to Blimp-1, Bcl-6, and its homolog, 
Bcl-6b appear to promote the development of memory CD8+ T 
cells and thus, increasing their proliferation.95,203-205 Furthermore, 
recent evidence indicates that the apparent reduction in the pro-
liferative potential of KLRG1high CD8+ T cells is also regulated 
by an increase in the expression of p27kip, a cell cycle inhibi-
tor95 and a decrease in the expression of Bmi-1, a transcriptional 
repressor, both promoting T cell proliferation.95,206 Undoubtedly, 
as more genes are discovered and examined in epigenitic studies, 
the list of intrinsic factors involved in this process will continue 
to grow in the next few years. Increasing the expression of Bcl-2 
and Bcl-XL or blocking their actions in effector CD8+ T cells 
does not greatly affect the normal rate of effector cell death fol-
lowing infection.72,85,95,195,196,199 Among the molecules that have 
been found to promote and prevent effector CD8+ T cell contrac-
tion are the pro-apoptotic Bim and the serine protease inhibitor 
2A (Spi2A), respectively.95,207-211 Inflammatory cytokines can also 
modulate the expression of key transcription factors that regulate 
effector T cell differentiation, such as T-bet and eomesodermin 
(eomes).95,212 IL-12 augments T-bet expression and diminishes 
eomes expression in activated CD8+ T cells.69,71,103,194 Our current 
understanding of epigenetic mechanisms that regulate the off-
on-off expression of CD8+ T cell effector molecules at the naïve-
effector-memory stages of differentiation, and how modifications 
to the genome/epigenitic factors in coming years, will likely serve 
as novel targets to regulate naïve-effector-memory CD8+ T cell 
transistions.213-216

The Novel “Symptomatic/Asymptomatic” 
Concept: Considerations for Herpes Vaccines and 

Immunotherapeutics

The memory CD8+ T cells, designated as protective or asymp-
tomatic memory CD8+ T cells, can induce lifelong protection 
from re-infections with a wide variety of viral, bacterial, and 
parasitic pathogens. Conversely, the memory CD8+ T cells, des-
ignated as pathogenic or symptomatic CD8+ T cells, can cause 
immunopathology when not properly regulated.15,217-221 The in 
vivo immunogenicity and protective efficacy of human CD8+ 
T cell epitopes found to be antigenic in vitro is crucial in vac-
cines design.222-225 Up to 50% of HSV-1 and HSV-2 CD8+ epit-
opes recently reported as recognized by human CD8+ T cells in 
vitro, may not be protective as expected.118,226-232 Moreover, some 
of the HSV-1/HSV-2 human T cell epitopes may actually be 
pathogenic and contribute to exacerbation of disease.218 A human 

CD8+ T cell epitope derived from HSV-1 gK caused a significant 
increase in virus replication in the eyes of HLA-A*0201 trans-
genic mice associated with increased acute corneal scarring.217-221 
The gK CD8+ T cell epitope also exacerbated ocular disease in 
HLA-A*0201 transgenic rabbits (BenMohamed, unpublished 
data). This suggests that gK CD8+ T cell epitope might be clini-
cally harmful and as such is considered as a symptomatic epitope 
and thus must be excluded from future asymptomatic vaccine. 
The mechanisms by which symptomatic CD8+ T cell epitopes 
exacerbate ocular, oro-facial, and genital herpetic diseases remain 
to be fully elucidated (see our recent review233). Regardless of the 
nature of that mechanism, for symptomatic epitopes are associ-
ated with recurrent herpetic disease, it is logical to exclude them 
from future herpes vaccines and immunotherapeutics, since they 
may actually exacerbate, rather than protect from, recurrent her-
petic disease.218,234-238 Thus following a primary mucosal infec-
tion with a pathogen, such as HSV-1 or HSV-2, virus-specific 
asymptomatic epitopes presented by infected antigen presenting 
cells (APCs) would induce activation, clonal expansion, and dif-
ferentiation of naive asymptomatic epitope-specific CD8+ T

EM
/

T
RM

 cells into a pool of “protective” effector cytotoxic T lym-
phocytes. This is necessary for the clearance of the virus. In con-
trast, virus specific symptomatic epitopes presented by infected 
APCs to naive symptomatic epitope-specific CD8+ T

CM
 cells 

would instead induce a “pathogenic” T cell population and may 
exacerbate the viral disease.9,38,122,123,239-242 Therefore, the central 
hypothesis of our novel “symptomatic vs. asymptomatic T cells” 
concept is that, following intravaginal infection by a pathogen, 
symptomatic and asymptomatic activation phenotype would 
recall memory CD8+ T cells, with either a central or effector 
memory phenotype.

In the most recent clinical herpes vaccine trials, therapeutic 
vaccination with recombinant herpes proteins that presumably 
contained both asymptomatic and symptomatic T cell epitopes, 
only led to moderate and transient protection.6,122,239 Based on 
our “symptomatic vs. asymptomatic T cells” concept, a human 
vaccine containing asymptomatic (protective) CD8+ T cell epi-
topes, but not symptomatic (pathogenic) CD8+ T cell epitopes, 
would foster better protective and long-lasting CD8+ T

EM
/T

RM
 

cells against HSV re-infections and reactivations. The immune 
mechanisms by which HSV-specific asymptomatic CD8+ T cells 
control herpes infection and disease, and by which HSV-specific 
symptomatic CD8+ T cells may exacerbate herpes infection and 
disease, remain to be fully elucidated. Following an asymptom-
atic vaccination, protective asymptomatic HSV-specific CD8+ 
T

EM
/T

RM
 cells would be profoundly localized to sites of primary 

and recurrent infections such as, the ocular, oral, and vaginal 
muco-cutaneous surfaces, the skin, the cervix, and the eye, along 
with sites of latent infection, in the sensory ganglia, such as the 
trigeminal ganglia and the dorsal sacral ganglia. Although HSV-
1/2 infections co-exist with brisk T-cell responses, pathogenic 
symptomatic HSV-specific CD8+ T

CM
 cells would be associated 

with worsened recurrent infection.6,122,239 Hence, induction of 
protective asymptomatic T cells, and suppression of pathogenic 
symptomatic T cells, are essential futures for a safe and efficient 
herpes vaccinations. Therefore, identifying HSV-1 and HSV-2 
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asymptomatic and symptomatic T cell epitopes from all the 84+ 
herpes proteins is critical for a rational design of asymtomatic and 
effective ocular, oral, and genital herpes vaccines.

Evidence from B6 mice suggests that CD8+ T cells, specific 
to the immunodominant HSV-1 and HSV-2 glycoprotein B (gB) 
H2b-restricted epitope (gB

498–505
), protect against ocular and gen-

ital herpes infection and diseases. However, the possible role of 
human CD8+ T cells, specific to HLA-restricted gB epitopes, in 
protective immunity seen in HSV-1 and/or HSV-2 seropositive 
asymptomatic healthy individuals (who have never had clinical 
herpes) remains to be determined. In our recent study,6 6 out 
of 10 potential HLA-A*02:01-restricted CD8+ T cell epitopes 
from the HSV-1 gB amino acid sequence exhibited high binding 
affinity to HLA-A*02:01 molecules. In 10 sequentially studied 
HLA-A*02:01 positive and HSV-1 seropositive asymptomatic 
individuals, the most frequent, robust, and polyfunctional CD8+ 
T-cell responses, as assessed by a combination of tetramer, IFN-
γ-ELISpot, CFSE proliferation, CD107

a/b
 cytotoxic degranula-

tion and multiplex cytokine assays, were directed mainly against 
epitopes gB

342–350
 and gB

561–569
. In contrast, in 10 HLA-A*02:01 

positive, HSV-1 seropositive symptomatic individuals (with a 
history of numerous episodes of recurrent clinical herpes dis-
ease) resulted in frequent, but less robust, CD8+ T-cell responses 
directed mainly against non-overlapping epitopes (gB

183–191
 and 

gB
441–449

). Asymptomatic individuals had a significantly higher 
proportion of HSV-gB-specific CD8+ T cells expressing CD107

a/b
 

degranulation marker and produced more effector cytokines 
IL-2, IFN-γ, and TNF-α compared with symptomatic indi-
viduals. Furthermore, immunization of a novel herpes suscep-
tible HLA-A*02:01 transgenic mouse model with asymptomatic 
epitopes, but not with symptomatic epitopes, promoted strong 
CD8+ T cell-dependent protective immunity against ocular her-
pes infection and disease. This study is first to directly confirm 
the new “symptomatic/asymptomatic CD8+ T cell development” 
concept. As per our new “symptomatic/asymptomatic” concept, 
inflammatory corneal lesions are not a direct consequence of the 
damage caused by the virus or by auto-reactive or bystander T 
cells, but rather a result of an immunopathological T cell reac-
tion caused by symptomatic HSV-1 epitopes. In contrast, T cell 
responses specific to asymptomatic HSV-1 epitopes would result 
in immuno-protection. Regardless of the mechanisms involved, 
if symptomatic individuals tend to generate CD8+ T cells that 
recognize symptomatic epitopes, it would therefore be rational to 
exclude such symptomatic epitopes from future herpes vaccines, 
based on the grounds that they may exacerbate rather than cure 
recurrent herpetic disease.

Concluding Remarks

Tracking the developmental lineage of CD8+ T cells between 
effector and memory stages is complicated by the continuously 
evolving memory CD8+ T cell sub-populations that develop 
long after infections are cleared. With respect to symptomatic 
and asymptomatic memory CD8+ T cell sub-populations, most 
asymptomatic CD8+ T cells appeared to be of the CD8+ T

EM
/

T
RM

 cell phenotype, reside in non-lymphoid mucosal tissues, 
have a reduced ability to traffic to lymphoid tissues and appear 
more terminally differentiated due to a lower proliferation capac-
ity in response to antigen or homeostatic IL-15 and IL-7 cyto-
kines.95,105-107 In contrast, symptomatic epitope stimulations likely 
induce memory CD8+ T

CM
 cells.

During early infection, virus-specific effector cells that are 
generated from SLECs, (KLRG1highIL7Rlow) rarely persist into 
“memory” time points and often die from apoptosis once the 
acute infection is cleared. In contrast, memory CD8+ T cells 
generated from MPECs (KLRG1lowIL7Rhigh) often develop into 
a mixture of T

EM
/T

RM
 and T

CM
 cells.71,137,139,140 It is likely that 

the delicate balance of MPEC vs. SLEC and the T
EM

/T
RM

 vs. 
T

CM
 cell lineages decision is strongly influenced by the repertoire 

of TCR signaling that is generated following symptomatic vs. 
asymptomatic epitopes stimulation. Specifically, recognition of 
asymptomatic epitopes will mainly drive the development of tis-
sue-resident memory CD8+ T cells with preferentially an SLEC 
and T

EM
/T

RM
 cell phenotype, while recognition of symptomatic 

epitopes will mainly drive preferentially a MPEC and T
CM

 cell 
phenotype.

The above remark is supported by our recent findings show-
ing that stimulation of CD8+ T cells with asymptomatic epitopes 
preferentially induce polyfunctional T cells that produce IL-12, 
TNF-α, and IFN-γ inflammatory cytokines. In contrast, stimu-
lation of CD8+ T cells with symptomatic epitopes preferentially 
induce monofunctional T cells. Moreover, we found that asymp-
tomatic epitopes favorably induce T

EM
 cells. In contrast, symp-

tomatic epitopes favorably induce T
CM

 cells. It is likely that the 
delicate balance of T

CM
 vs. T

EM
 cell lineages decision is strongly 

influenced by the profile of cytokines generated following stimu-
lation with symptomatic and asymptomatic epitopes. Specifically, 
recognition of asymptomatic epitopes will mainly drive develop-
ment of tissue-resident memory CD8+ T cells with preferentially 
a T

EM
/T

RM
 phenotype, while recognition of symptomatic epit-

opes will mainly drive preferentially a T
CM

 phenotype.
While developing an effective herpes vaccine is scientifically 

feasible, virologists, and immunologists still remain puzzled by 
the relationship between the effector/memory T cell sub-popu-
lations and the infection/disease process.6 The key for an ulti-
mate development of an effective herpes vaccine can be drawn 
from studies of T cells from HSV-seropositive asymptomatic 
individuals who manage to “naturally” and continuously con-
trol recurrent herpetic disease to clinically undetectable levels.6 
One ongoing research goal in our laboratory is to explore the 
underlying mechanisms of “symptomatic vs. asymptomatic T 
cells” concept with respect to (1) CD103 expression promoting 
the long-term persistence of memory CD8+ T

EM
/T

RM
 cells at 

the ocular, oral, and genital muco-cutaneous site of HSV-1 and 
HSV-2 infections118,119; (2) CD103 regulation of the retention of 
a mucosal tissues-resident asymptomatic CD8+ T cells; and (3) 
TGF-β regulation of CD103 expression on mucosal tissues-res-
ident memory CD8+ T cells that promote their adhesion to the 
extracellular matrix.243

The immune mechanism(s) by which HSV-specific asymp-
tomatic CD8+ T cells control herpes disease and HSV-specific 
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symptomatic CD8+ T cells remain to be fully elucidated in 
humans. Following an asymptomatic vaccination, protective 
asymptomatic HSV-specific CD8+ T

EM
/T

RM
 cells would localize 

to sites of primary and recurrent infections, such as the ocular, 
oral, and vaginal mucosal surfaces, the skin, the cervix, and the 
eye, as well as to sites of latent infection in the sensory ganglia. 
Although HSV-1/2 infections co-exist with brisk T-cell responses, 
pathogenic symptomatic HSV-specific CD8+ T

CM
 cells would be 

associated with worsened recurrent infection.6,122,239 Hence, posi-
tive selection of protective asymptomatic T cells and negative 
selection of pathogenic symptomatic T cells through a molecular-
based approach is essential for future herpes vaccines. Identifying 
viral asymptomatic and symptomatic T cell epitopes from all the 
84+ herpes proteins is a good starting point and critical for a 
rational design of an effective ocular and genital herpes vaccine.

We recently reported, for the first time, that a Lipo/rAdv5 
prime/boost mucosal vaccine delivered intravaginally, induced a 
robust and long-lasting HSV-specific asymptomatic CD8+ T cells 
that protect against genital herpes infection and disease.17,18 The 
induced long-lasting memory CD8+ T cell responses persisted in 
both the VM and GT-DLN for up to 8 mo post immunization. 
To avoid exacerbation of vaginal mucosal disease, it is imperative 
to avoid inducing symptomatic CD8+ T cells. We also found that 
immunization of a novel herpes susceptible HLA-A*02:01 trans-
genic mouse model with asymptomatic epitopes, but not with 
symptomatic epitopes, induced strong CD8+ T cell-dependent 
protective immunity against ocular herpes infection and disease. 

This study is first to directly confirm our new “symptomatic/
asymptomatic CD8+ T cell development” concept. As per this 
concept, inflammatory corneal lesions are not a direct conse-
quence of the damage caused by the virus or by auto-reactive 
or bystander T cells, but rather a result of the balance between 
immunopathological T cell responses specific to symptomatic 
HSV-1 epitopes and immuno-protective T cell responses specific 
to asymptomatic HSV-1 epitopes.

The new “symptomatic/asymptomatic CD8+ T cell” concept 
provides new immunological insights and a new direction for the 
design of an efficient and safe T cell-based human vaccines and 
immunotherapeutics, not only for herpes but for other infectious 
diseases. Regardless of the mechanisms involved, if symptomatic 
individuals tend to generate CD8+ T cells that recognize symp-
tomatic epitopes, it would be rational to exclude such symptom-
atic epitopes from any future vaccines on the grounds that they 
may exacerbate, rather than cure, recurrent infectious disease.
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