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The prevalence of inflammatory diseases is increasing in modern
urban societies. Inflammation increases risk of stress-related pathology;
consequently, immunoregulatory or antiinflammatory approaches may
protect against negative stress-related outcomes. We show that stress
disrupts the homeostatic relationship between the microbiota and the
host, resulting in exaggerated inflammation. Repeated immunization
with a heat-killed preparation of Mycobacterium vaccae, an immu-
noregulatory environmental microorganism, reduced subordinate,
flight, and avoiding behavioral responses to a dominant aggressor
in a murine model of chronic psychosocial stress when tested 1–2 wk
following the final immunization. Furthermore, immunization with
M. vaccae prevented stress-induced spontaneous colitis and, in
stressed mice, induced anxiolytic or fear-reducing effects as mea-
sured on the elevated plus-maze, despite stress-induced gut micro-
biota changes characteristic of gut infection and colitis. Immunization
with M. vaccae also prevented stress-induced aggravation of colitis
in a model of inflammatory bowel disease. Depletion of regulatory T
cells negated protective effects of immunization withM. vaccae on
stress-induced colitis and anxiety-like or fear behaviors. These data
provide a framework for developing microbiome- and immunoregu-
lation-based strategies for prevention of stress-related pathologies.

anxiety | chronic psychosocial stress | fear | microbiota | posttraumatic
stress disorder

Immunoregulation, indicated by a balanced expansion of effector
T-cell populations and regulatory T cells (Treg), is known to be

driven by microbial signals, mainly by organisms with which mammals
coevolved, including: (i) the commensal microbiota, which have been
altered by theWestern lifestyle, including a diet that is commonly low
in microbiota-accessible carbohydrates (1, 2); (ii), pathogens associ-
ated with the “old infections” that were present throughout life in
evolving human hunter-gatherer populations (3); and (iii) organisms
from the natural environment with which humans were inevitably in
daily contact (and so had to be tolerated by the immune system)
(4). Immunoregulation is thought to be compromised in modern
high-income settings due to reduced contact with these three cat-
egories of organisms (4–6). A failure of immunoregulation, at-
tributable to reduced exposure to the microbial environment within
which the mammalian immune system evolved, is thought to be
one factor contributing to recent increases in stress-related and
chronic inflammatory disorders in high-income countries (1, 3, 4).

Results from both preclinical and clinical studies are consistent
with the idea that inadequate immunoregulation also increases risk
for development of stress-related psychiatric disorders (4, 7, 8).
Consistent with the hypothesis that subjects with stress-related

psychiatric disorders, such as posttraumatic stress disorder (PTSD),
suffer from a failure of immunoregulation, PTSD is associated with
decreases in Treg (9), an increased proinflammatory milieu (10),
autoimmunity (11), and exaggerated symptoms of inflammatory
bowel disease (IBD) (11, 12). Prospective studies have demonstrated
that elevated plasma concentrations of C-reactive protein predict
subsequent PTSD symptoms (7). Furthermore, prospective studies
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of gene networks identify enrichment of innate immune responses
and IFN signaling (types I and II) as putative causal signatures for
PTSD development (13).

Trauma and stressor exposure can alter the composition of the
gut microbiome (14) and, consequently, the homeostatic balance
between the gut microbiota and mucosal immune system, with im-
portant consequences for enteric infections, mucosal inflammation,
bacterial translocation (15), as well as emotional behavior, including
anxiety-like behavior (16). Glucocorticoid hormones, important me-
diators of physiologic responses to stress, increase the abundance of
pathobionts, decrease IgA (which normally inhibits bacterial adher-
ence to intestinal epithelial cells), increase bacterial adherence over
twofold, and increase bacterial translocation to mesenteric lymph
nodes (17, 18). Furthermore, stress-induced decreases in an individ-
ual’s microbial diversity are thought to increase vulnerability to in-
fectious pathology (15). Meanwhile, orally administered probiotics
with immunoregulatory and antiinflammatory properties have been
shown to induce anxiolytic and antidepressant-like effects in animal
models (6, 16). It remains unclear whether these beneficial effects of
probiotics are due to their ability to prevent stress-induced decreases
in microbial diversity, their immunoregulatory effects, or both.
Previous studies have demonstrated that probiotics can have

antiinflammatory effects in rodent models of chronic inflammation,
including colitis, following either mucosal or subcutaneous admin-
istration (19, 20), and in some cases these effects are observed using
heat-killed preparations (20). Subcutaneous injections of heat-killed
preparations of immunoregulatory bacteria may have some advan-
tages, including long-term duration of antiinflammatory and immu-
noregulatory effects, lasting up to 12 wk following administration (21).
If inadequate immunoregulation and subsequent chronic low-

grade inflammation are risk factors for development of stress-related
psychiatric disorders, pretreatment with an immunoregulatory agent
would be expected to be protective. However, the potential for im-
munoregulatory approaches to prevent stress-related psychiatric
disorders has not been tested. Therefore, in the current study, we
evaluated the potential for immunization with a heat-killed prepa-
ration of Mycobacterium vaccae to prevent chronic psychosocial
stress-induced pathophysiology, including spontaneous colitis, exag-
geration of chemically induced colitis, and exaggerated anxiety- and
fear-like behaviors. M. vaccae is an abundant soil saprophyte, a mi-
croorganism that lives on dead or decaying organic matter, with
immunoregulatory properties (22). A heat-killed preparation of the
organism modulates dendritic cell function (23) and induces Treg
and secretion of antiinflammatory cytokines, including IL-10 and
transforming growth factor β (22).

Results
M. vaccae Increases Proactive Coping. Reactive, as opposed to pro-
active, coping behavior may increase the risk of developing stress-
related disorders in humans (24) and anxiety- and depressive-like

responses in rodents (25). Here we quantified reactive versus pro-
active coping responses during exposure to the chronic subordinate
colony housing (CSC) procedure (26) (Exp. 1) (for details, see SI
Materials and Methods; Fig. S1 A and B). Briefly, we immunized
male C57BL/6NCrl mice with either vehicle or a heat-killed prepa-
ration of M. vaccae [National Collection of Type Cultures (NCTC)
11659; 0.1 mg, subcutaneously] (Fig. S2A) on days ‒21, ‒14, and ‒7.
On day 1, mice were assigned to the single-housed control (SHC)
group or CSC group, with four CSC mice being housed together
with a dominant male for 19 consecutive days. We assessed stress
coping behaviors of M. vaccae- or vehicle-immunized mice during
2 h of CSC exposure on days 1, 8, and 15, effects of preimmunization
with M. vaccae on CSC-induced changes in the gut microbiome on
days –21, –14, –7, 1, 8, and 15, anxiety-like behavior on the elevated
plus-maze (EPM) on day 19, and pathophysiology on day 20.
M. vaccae immunization did not affect body weight gain before

CSC exposure (vehicle, 6.4 ± 0.3 g; M. vaccae, 6.9 ± 0.3 g; Stu-
dent’s t test, P > 0.05) and did not affect CSC-induced reduction
in body weight gain (Fig. S2B). However, immunization with
M. vaccae decreased the number of submissive upright posture
displays (Fig. 1A) [linear mixed model (LMM) for AM behavior,
M. vaccae × time, F(2, 93.0) = 9.6, P < 0.001]. These effects were
particularly evident during the first hour of CSC exposure on day
1, when M. vaccae-immunized mice showed a 63% reduction in
the amount of submissive upright posture relative to vehicle-
injected mice (Fig. 1A). Whereas 95.7% of vehicle-injected mice
were defeated, as measured by displaying at least one submissive
upright posture, only 65.2% of M. vaccae-immunized mice
were defeated during the first hour on day 1 (Fisher’s exact test,
P < 0.05). M. vaccae-immunized mice also showed reduced
numbers of flight and avoiding behaviors (Fig. S2C) [LMM
for AM behavior, M. vaccae, F(1, 131.5) = 10.8, P < 0.01]. There
were no differences in the number of times experimental CSC
mice attacked or chased the resident male (Fig. S2 D and E).
M. vaccae-treated mice had a higher dominance index [the sum
of proactive behaviors (attacks, chasing) minus the sum of re-
active behaviors (submissive upright postures, flight, avoiding)]
(Fig. 1B) [LMM for AM behavior, M. vaccae × time, F(2, 90.2) =
4.5, P < 0.05]. Overall, during the 19-d CSC procedure, 69.6% of
M. vaccae-immunized mice displayed at least one proactive be-
havior, whereas only 21.7% of vehicle-treated mice did so (Fig.
1C) (Fisher’s exact test, P < 0.01).
A nearly identical pattern of behavior was observed during CSC

exposure when the interval between the final immunization and
CSC exposure was extended to 2 wk (Figs. S1C and S2 F–K).
Immunization with M. vaccae decreased the number of submissive
upright posture displays (Fig. S2F) [LMM, M. vaccae, F(1, 37.6) =
14.9, P < 0.001]. M. vaccae-immunized mice also showed reduced
numbers of flight and avoiding behaviors (Fig. S2G) [LMM for
AM behavior, M. vaccae × time, F(2, 28.8) = 10.5, P < 0.001]. There
were no differences in the number of times experimental CSC mice
attacked or chased the resident male (Fig. S2 H and I). M. vaccae-
treated mice had a higher dominance index (Fig. S2J) [LMM for
AM behavior, M. vaccae × time, F(2, 30.2) = 14.8, P < 0.0001].
Overall, during the 19-d CSC procedure, 62.5% of M. vaccae-
immunized mice displayed at least one proactive behavior, whereas
only 25.0% of vehicle-treated mice did so (Fig. S2K) (Fisher’s exact
test, P = 0.14).
Together, these data demonstrate that immunization with

M. vaccae induced a long-lasting shift toward a more proactive
coping response (27), characterized by decreased submissive,
flight, and avoiding behaviors, during chronic psychosocial stress
that, based on previous studies in rodents and humans, may
decrease vulnerability to the development of more persistent
anxiety- and depressive-like symptoms (24, 25).
When tested on day 19, following the 19-d CSC procedure,

CSC exposure had anxiolytic or fear-reducing effects in M. vaccae-
immunized mice but not vehicle-immunized mice, as measured by

Significance

The hygiene, or “old friends,” hypothesis proposes that lack of
exposure to immunoregulatory microorganisms in modern ur-
ban societies is resulting in an epidemic of inflammatory dis-
ease, as well as psychiatric disorders in which chronic, low-level
inflammation is a risk factor. An important determinant of
immunoregulation is the microbial community occupying the
host organism, collectively referred to as the microbiota. Here
we show that stress disrupts the homeostatic relationship be-
tween the microbiota and the host, resulting in exaggerated
inflammation. Treatment of mice with a heat-killed prepara-
tion of an immunoregulatory environmental microorganism,
Mycobacterium vaccae, prevents stress-induced pathology.
These data support a strategy of “reintroducing” humans to
their old friends to promote optimal health and wellness.
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time spent on the open arms of the EPM (Fig. 1D and Table S1)
[two-factor ANOVA, M. vaccae × CSC, F(1, 43) = 2.3, P = 0.13;
CSC, F(1, 43) = 10.1, P < 0.01].M. vaccae-immunized, CSC-exposed
mice spent more time exploring the aversive open arms of the
EPM relative to M. vaccae-immunized, SHC mice. In Exp. 2, when
a 2-wk interval was used between the final immunization with
M. vaccae and the onset of the CSC procedure, M. vaccae immu-
nization induced a strong anxiolytic response when CSC-exposed
mice were tested on the EPM on day 20 (Fig. 1E, Fig. S1C, and
Table S1) [Student’s t test, t(1, 14) = 3.9, P < 0.01]. In contrast to
our previous data (28), CSC exposure did not increase anxiety-
like behavior in vehicle-treated mice (Fig. 1D), probably repre-
senting a floor effect (vehicle-treated mice spent very little time

exploring the open arms); vehicle-treated mice in the current study
received multiple subcutaneous injections and were older at the time
of testing, relative to previous studies. These differences may explain
the high baseline anxiety in vehicle-immunized mice.
In Exp. 3, CSC exposure had an anxiogenic effect in the social

preference/avoidance test, decreasing time spent in the contact
zones of the novel object and novel conspecific (Figs. S1D and
S2L) [LMM, CSC, F(1, 43.3) = 7.3, P < 0.05]. There was an overall
preference for social contact, relative to the novel object (Fig.
S2L) [LMM, social, F(1, 45.8) = 11.1, P < 0.01]. There were no
effects of M. vaccae, or M. vaccae × CSC interactions, on conflict
anxiety in the social preference/avoidance test, and there were
no effects of either M. vaccae immunization or CSC exposure on
locomotor activity (Fig. S2M). There were no effects of either
M. vaccae immunization or CSC exposure on conflict anxiety
or locomotor activity in the light/dark box test (Figs. S1D and S2
N and O).
Consistent with previous studies, CSC exposure increased

adrenal weight (Figs. S1B and S2P) and in vitro adrenal in-
sensitivity to adrenocorticotropic hormone (ACTH) (Figs. S1B and
S2Q).M. vaccae immunization did not prevent these effects. These
data suggest that CSC exposure was physically and/or psychologi-
cally stressful for both vehicle- and M. vaccae-immunized groups.

Persistent Effects of M. vaccae Immunization on Brain Serotonergic
Systems. Because chronic exercise alters brain serotonergic gene
expression (29–31) and because this may be relevant to the stress
resistance effects of chronic exercise, we examined the effects
of CSC exposure and M. vaccae immunization on serotonergic
gene expression in the brainstem raphe nuclei. Specifically,
we analyzed expression of tph2, encoding tryptophan hydroxylase
2, the rate-limiting enzyme in the biosynthesis of serotonin, and
slc6a4, encoding solute carrier family 6 (neurotransmitter trans-
porter), member 4, the high-affinity, low-capacity, sodium-dependent
serotonin transporter. Immunization with M. vaccae increased tph2
mRNA expression selectively in the rostral region of the dorsal
raphe nucleus, dorsal part (rDRD) (Fig. S3 A–D and Table S1)
[LMM, M. vaccae × region, F(8, 715.6) = 7.4, P < 0.001].
Immunization with M. vaccae also prevented a stress-induced

decrease in slc6a4 mRNA expression, also in the rDRD (Fig. S3E)
[two-factor ANOVA, CSC, F(1, 27) = 6.5, P < 0.05], further sup-
porting long-term effects of M. vaccae immunization on this subset
of serotonergic neurons. Broader implications of these findings
include the capacity for bioimmunomodulatory approaches to alter
gene expression patterns in highly specific neural systems in the
brain across a long timescale, at least 4 wk, effects that may in-
fluence stress coping strategies and stress resilience.

Influence of M. vaccae Immunization on Microglia. Given the po-
tential role of inflammatory mediators in determining behavioral
coping responses to psychosocial stressors (32) and recent findings
that the gut microbiota and peripheral immune activity continu-
ously control maturation and function of microglia in the central
nervous system (CNS) (33, 34), we investigated the effects of
M. vaccae immunization on microglial density. To determine
whether M. vaccae immunization altered the number or morpho-
logical properties of microglia within the brain, we performed im-
munohistochemical staining of ionized calcium-binding adapter
molecule 1 (Iba1), a 17-kDa actin-binding protein specifically and
constitutively expressed in microglia (35, 36) that is an immuno-
histochemical marker for both ramified and activated microglia
(35, 37). Iba1 immunostaining was evaluated in brain regions im-
plicated in control of anxiety and fear states (Fig. S3F). Because we
were interested in effects of M. vaccae on activated microglia, we
conducted analyses using CSC-exposed mice only. The density and
morphology of microglia were analyzed using image analysis.
We found that, among CSC-exposed mice, immunization with
M. vaccae selectively increased microglial density in the prelimbic

Fig. 1. Immunization with heat-killedM. vaccae induces proactive stress coping
during chronic subordinate colony housing exposure and anxiolytic or fear-
reducing behavioral responses on day 19. (A) Number of submissive upright
posture displays (10–11:00 AM, white background; 5–6:00 PM, gray back-
ground) on days 1, 8, and 15 of CSC. (B) Dominance index. (C) Percent of
vehicle- and M. vaccae-immunized mice displaying proactive behaviors
during the 19-d CSC procedure. (D and E) Anxiety-like or fear-reducing be-
havior as measured on the elevated plus-maze on day 19 in (D) Exp. 1 or (E)
Exp. 2. Bars represent means; error bars represent +SEM (A and C–E) or −SEM (B).
Significance was assessed by linear mixed model analysis, conducted separately for
AM and PM time points (A and B), Fisher’s exact test (C), two-factor ANOVA (D),
and Student’s t test (E). *P < 0.05, **P < 0.01, ***P < 0.001, (A and B) between-
subjects effects ofM. vaccae versus vehicle, Fisher’s least significant difference (LSD)
tests; (C) Fisher’s exact test; (E) Student’s t test. +++P < 0.01, (D) between-subjects
effects of SHC versus CSC, Fisher’s LSD test; #P < 0.05, ##P < 0.01, ###P < 0.001,
(A and B) within-subjects effects of time, paired t tests using Bonferroni correction.
The number of independent data points (N) in each of the graphs and sample size
(n) for each group are as follows: (A and B)N= 46; vehicle, 22–23;M. vaccae, 22–23.
(C) N = 46; vehicle, 23; M. vaccae, 23. (D) N = 47; vehicle/SHC, 7; vehicle/CSC, 15;
M. vaccae/SHC, 9; M. vaccae/CSC, 16. (E) N = 16; vehicle/CSC, 8; M. vaccae/CSC, 8.
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part of the medial prefrontal cortex (PrL) (Fig. S3 G and I)
[Student’s t test, t(1, 24) = 2.4, P < 0.05], which plays an important
role in fear expression (38) and provides the main cortical input to
the dorsal raphe nucleus controlling stress-induced anxiety states
(39). There were no effects in the infralimbic part (IL) of the
medial prefrontal cortex or other regions studied. Detailed cu-
mulative densitometric threshold analysis revealed that there was
8% more Iba1 immunostaining in the PrL inM. vaccae-immunized
CSC-exposed mice compared with vehicle-immunized CSC-exposed
mice (Fig. S3 H and I) [Student’s t test, 56.1 ± 2.3 versus 48.1 ± 2.4,
respectively, t(1, 24) = 3.1, P < 0.01]. These data confirm the long-
term effects ofM. vaccae immunization on the microglial phenotype
in the PrL, a forebrain structure critical for control of fear expres-
sion, in CSC-exposed mice.

Stress Promotes Colitogenic Dysbiosis. Given that stress alters the
composition of the gut microbiome (14) and, consequently, the
homeostatic balance between the gut microbiota and mucosal
immune system, with important consequences for mucosal in-
flammation (15) as well as emotional behavior, including anxiety-
like behavior (16), we conducted next-generation sequencing to
characterize the effects of stress on the composition of the gut
microbiome. Furthermore, we investigated whether or not prior
immunization with M. vaccae had any impact on stress-induced
changes in the gut microbiota. In microbial ecology, there are
two principal measures of species diversity, with α-diversity
assessing diversity within a sample and β-diversity assessing di-
versity between samples. There were strong overall declines in
α-diversity over time, particularly evident at the onset of the
CSC procedure (Fig. S4 A–C) [LMM, day, phylogenetic di-
versity, F(5, 28.1) = 11.0, P < 0.0001; observed species, F(5, 28.5) =
10.9, P < 0.0001; Shannon index, F(5, 35.9) = 13.9, P < 0.0001],
suggesting that the CSC procedure was stressful for all mice,
which were housed in the same room. As observed with other
stressors (15), CSC exposure increased β-diversity, relative to
SHC conditions (Fig. S4 D and E). Based on analysis of all
samples across all time points, α-diversity was higher and
β-diversity was lower in M. vaccae-immunized mice compared
with vehicle-immunized mice (Fig. S4 A–E) [LMM, α-diversity,
M. vaccae, phylogenetic diversity, F(1, 26.9) = 5.9, P < 0.05; ob-
served species, F(1, 31.1) = 5.4, P < 0.05; Shannon index, F(1, 37.0) =
11.8, P < 0.01; M. vaccae × CSC × day, phylogenetic diversity,
F(16, 36.1) = 2.1, P < 0.05; observed species, F(16, 36.1) = 2.1, P < 0.05;
Shannon index, F(16, 47.5) = 1.3, P = 0.27], indicating thatM. vaccae
immunization had a stabilizing effect on the gut microbiota through-
out the study, consistent with recent studies demonstrating that host
adaptive immunity modulates the gut microbiota (40). In line
with these findings, multiple linear regression showed that 11%
of the variation in the gut microbiota was explained by the histological
damage score in the colon, reflecting intestinal immune activation.
Detailed analysis of the microbial composition, conducted using

analysis of composition of microbiomes (ANCOM) (41), revealed
main effects of CSC to increase the abundance of Proteobacteria
(percent relative abundances are plotted in Fig. S4F), including
Helicobacter, and an unidentified genus of Helicobacteraceae, as
well as Paraprevotella (Bacteroidetes) on day 8 or 15 [ANCOM,
false discovery rate (FDR)-adjusted P < 0.05] (Figs. S4 G–J and
S5 A–C and Table S2). Changes in microbial community struc-
ture over time were evaluated using ANCOM over all six time
points, followed, when appropriate, by Wilcoxon signed-rank
tests comparing days 1 versus 8 and days 1 versus 15, using
Bonferroni correction (Fig. S4K). Consistent with the analysis
of the main effects of CSC exposure above, time-dependent
increases in Helicobacter, two unidentified genera of Heli-
cobacteraceae, and Paraprevotella were seen on days 8 and 15 in
both vehicle-immunized andM. vaccae-immunized CSC mice but
not SHC mice (Fig. S5 M–O and S and Table S3). In addition,
decreases in Mucispirillum were observed on days 8 and 15 in

both vehicle-immunized andM. vaccae-immunized CSC mice but
not SHC mice (Fig. S5Q and Table S3). Furthermore, we ob-
served a main effect of M. vaccae to stabilize the abundance of
several genera on day 8 or 15, including an unidentified genus of
Desulfovibrionaceae (Proteobacteria) (Fig. S5X). Our data are
consistent with a CSC-induced gut dysbiosis and a shift toward a
gut microbiota with increased potential for inflammation (Fig.
S4H). Psychological stress increases Helicobacter abundance
through glucocorticoid actions on glucocorticoid receptors (18),
and previous studies have found that Helicobacter abundance
predicts intestinal inflammation scores specifically in mice with
impaired immunoregulation (IL-10−/− mice; r = 0.58) (42). Con-
sistent with these previous findings, relative abundances of both
Proteobacteria and Helicobacter predicted histological damage to
the colon in our study (Fig. S4 L andM). Meanwhile, expansion of
Paraprevotella, as observed in our study (Figs. S4 H and I and S5S),
has been associated with multiple murine models of experimental
autoimmunity (43), consistent with a stress-induced autoimmune-
like response to dietary, microbiota, or self-antigens in the absence
of adequate immunoregulation. Finally, decreases in the abun-
dance of Mucispirillum over time, as observed in our study in both
vehicle/CSC and M. vaccae/CSC mice (Figs. S4 H and J and S5Q
and Table S3), have been identified as a biological signature of gut
infection (44). A decline of Mucispirillum is associated with early
disruption of the colonic surface mucus layer and a prolonged
delay to recovery after the period of pathogen clearance (44).

M. vaccae Prevents Stress-Induced Colitis. Evidence suggests that
anxiety and depression are more common in IBD patients and
that the symptoms of these conditions are more severe during
periods of active disease (45). Oral or intraperitoneal adminis-
tration of immunomodulatory bacterial products have been
shown to both prevent and treat experimental colitis in animal
models (46, 47), suggesting that these substances can act through
gut-dependent and gut-independent mechanisms to attenuate
chemically induced colitis. Chronic subordinate colony housing
exposure reproducibly induces spontaneous colitis and aggra-
vates chemically induced colitis (26). Importantly, although im-
munization with M. vaccae did not prevent the CSC-induced
increase in colitogenic Helicobacter spp. (Figs. S4H and S5 B and
M–O and Table S3), it did prevent CSC-induced spontaneous
colitis [Fig. 2 A and B; Exp. 1, two-factor ANOVA, M. vaccae ×
CSC, F(1, 29) = 6.7, P < 0.05; Fig. 2B, Exp. 2, Student’s t test,
t(1, 14) = 5.4, P < 0.05], and decreased plasma concentrations of
kynurenine, a biomarker of inflammation (48) (Fig. S2R) [LMM,
M. vaccae, F(1, 24) = 5.6, P < 0.05], suggesting increased immu-
noregulation (49). In contrast, CSC exposure decreased tryp-
tophan concentrations (Fig. S2S) [two-factor ANOVA, CSC,
F(1, 27) = 4.705, P < 0.05], whereasM. vaccae immunization had
no effect.
Similarly, M. vaccae pretreatment prevented the CSC-induced

aggravation of dextran sulfate sodium (DSS; 1% for 7 d)-induced
colitis (Exp. 3) (Fig. 2 C–I and Fig. S1D) [two-factor ANOVA,
CSC, F(1, 26) = 4.6, P < 0.05]. Of note, in the model of DSS-induced
colitis, M. vaccae immunization attenuated the CSC-induced in-
crease in the number of viable mesenteric lymph node cells (Fig.
2E) [two-factor ANOVA, M. vaccae, F(1, 24) = 4.8, P < 0.05; CSC,
F(1, 24) = 76.4, P < 0.0001] and attenuated the CSC-induced IFN-γ
(Fig. 2F) [two-factor ANOVA, CSC, F(1, 24) = 8.5, P < 0.01] and
IL-6 secretion [Fig. 2G; two-factor ANOVA, M. vaccae × CSC,
F(1, 24) = 14.9, P < 0.01]. Chronic subordinate colony housing ex-
posure increased IL-10 secretion from anti-CD3–stimulated mesen-
teric lymph node cells assessed in vitro (Fig. 2 H and I) [two-factor
ANOVA, CSC, F(1, 24) = 12.7, P < 0.01], an effect that was only
evident inM. vaccae-immunized mice, indicating an antiinflammatory
bias inM. vaccae-immunized, CSC-exposed mice. Overall, these data
suggest that, in the absence of adequate immunoregulation, CSC
exposure led to activation of the host immune response toward
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Helicobacter spp., other elements of the CSC-induced colitogenic
microbiota, or dietary or self-antigens, resulting in colitis. Fur-
thermore, these data suggest that immunization with M. vaccae
restored immunoregulation and prevented colitogenic effects of
CSC, despite stress-induced development of a gut microbiota

with colitogenic potential. Based on these findings, immuni-
zation with M. vaccae, or similar bioimmunomodulatory ap-
proaches, may be useful for prevention of chronic stress/
repeated trauma-induced inflammation and subsequent de-
velopment of somatic and mental disorders.

Treg Dependence ofM. vaccae Effects. Psychosocial stress decreases
Treg in mice and humans (50, 51), and Treg depletion increases
anxiety- and depressive-like behaviors in mice (52). Likewise,
PTSD subjects (9) and subjects with major depressive disorder
(53) have reduced Treg, which is reversed 1 y following effective
narrative exposure therapy (54) or treatment with antidepres-
sants, respectively (53). Given these findings and studies showing
that CSC reduces Treg in peripheral lymph nodes (26) and
M. vaccae immunization induces Treg (22), we investigated a
potential role for Treg in the stress-protective effects of M. vaccae
(Exp. 4) (Fig. S1E). Here, we were primarily interested in the ef-
fects of depletion of Treg inM. vaccae-immunized mice. Therefore,
all mice were immunized with M. vaccae and on day –4 treated
intraperitoneally with either anti-CD25 antibody [PC-61.5.3; ad-
ministration of this anti-CD25 antibody is an effective means of
depleting Treg in mice in vivo (55, 56)] or control antibody [rat
IgG1 isotype control; anti-horseradish peroxidase (HRPN)] (Fig.
S1E; for confirmation of the efficacy of Treg depletion, see Fig. S6
A–C). As before, we assessed dominant–subordinate interactions
during CSC exposure. On day 19 of CSC, mice were tested on
the EPM, and then, on day 20, mice were euthanized for col-
lection of adrenals, colon, and mesenteric lymph nodes.
Among M. vaccae-immunized mice, treatment with anti-CD25

antibody had no effect on stress coping behaviors during CSC
(Fig. S6 D–I). Treatment ofM. vaccae-immunized mice with anti-
CD25 antibody had no effect on tph2 or slc6a4 mRNA expression
in the rDRD (Table S1), suggesting that both the effects of
M. vaccae on behavioral coping strategies during CSC exposure
and brain tph2 and slc6a4 mRNA expression are independent of
Treg. Interestingly, treatment with the anti-CD25 antibody, which
would be expected to increase proinflammatory signaling in the
periphery, increased tph2 mRNA expression in the interfascicular
part of the dorsal raphe nucleus (DRI) (Fig. S6L) [two-factor
ANOVA, anti-CD25, F(1, 22) = 4.7, P < 0.05], a subpopulation of
serotonergic neurons that we have shown previously is activated by
acute proinflammatory stimuli (57, 58).
Stress-induced adrenal hypertrophy was evident in M. vaccae-

immunized CSC mice treated with either control or anti-CD25
antibody (Fig. S6J) [two-factor ANOVA, CSC, F(1, 27) = 29.7,
P < 0.0001], as was the stress-induced adrenal ACTH in-
sensitivity (Fig. S6K) [three-factor ANOVA, CSC, F(1, 52) = 33.2,
P < 0.0001], consistent with results from Exp. 1, indicating that
CSC exposure was aversive for all animals and that M. vaccae
does not affect CSC-induced changes in hypothalamic–pituitary–
adrenal (HPA) axis function.
Anti-CD25 antibody treatment of M. vaccae-immunized, CSC-

exposed mice prevented the permissive effect of M. vaccae im-
munization on CSC-induced reductions in anxiety, as assessed by
the percentage of time spent on the open arms of the EPM (Fig.
3A; Table S1) [two-factor ANOVA, anti-CD25 × CSC, F(1, 21) =
7.4, P < 0.05], suggesting that the anxiolytic or fear-reducing
effects of M. vaccae are dependent on Treg. As expected, there
was also no CSC-induced colitis in M. vaccae-immunized mice
pretreated with control antibody, whereas M. vaccae-immunized,
CSC-exposed mice pretreated with anti-CD25 antibody respon-
ded to CSC exposure with development of spontaneous colitis
(Fig. 3 B–G) [based on anti-CD25 × CSC interactions using two-
factor ANOVAs for histological damage score: F(1, 23) = 14.6,
P < 0.01; number of viable mesenteric lymph node cells: F(1, 27) =
6.2, P < 0.05; and anti-CD3–stimulated cytokine secretion
from mesenteric lymph node cells in vitro, IFN-γ: F(1, 28) = 20.8,
P < 0.0001; IL-6: F(1, 27) = 4.9, P < 0.05; and IL-10: F(1, 26) = 8.6,

Fig. 2. M. vaccae prevents chronic CSC-induced spontaneous colitis and
CSC-induced aggravation of chemically induced colitis. (A and B) Colonic
histological damage scores reflecting CSC-induced spontaneous colitis on
day 20 of (A) Exp.1 and (B) Exp. 2. (C–I) CSC-induced aggravation of chemi-
cally induced colitis on day 29 of Exp. 3. (C) Colonic histological damage
scores following SHC or CSC conditions, followed by administration of DSS
(1%; days 22–29) in drinking water. (D) Photomicrographs from hematoxylin
and eosin-stained colon sections. (Scale bar, 200 μm.) a, lamina mucosa; b,
lamina muscularis mucosa; c, lamina submucosa; d, lamina muscularis externa.
(E) Number of viable mesenteric lymph node cells (mesLNCs). (F–H) IFN-γ (F),
IL-6 (G), and IL-10 (H) secretion from mesLNCs stimulated with anti-CD3
antibody in vitro. (I) IL-6/IL-10 ratio. Bars represent means; error bars rep-
resent +SEM. Significance was assessed using (A, C, and E–I) two-factor
ANOVA and (B) Student’s t test. Post hoc comparisons were made using
Fisher’s LSD tests. *P < 0.05, **P < 0.01, ***P < 0.001, between-subjects
effects of vehicle versus M. vaccae, within the same CSC/SHC condition; +P <
0.05, ++P < 0.01, +++P < 0.001, between-subjects effects of SHC versus CSC,
within the same drug condition. The number of independent data points (N)
in each of the graphs (A–C and E–I) and sample size (n) for each group are
as follows: (A) N = 33; vehicle/SHC, 9; vehicle/CSC, 8; M. vaccae/SHC, 9;
M. vaccae/CSC, 7. (B) N = 16; vehicle/CSC, 8; M. vaccae/CSC, 8. (C ) N = 30;
vehicle/SHC, 7; vehicle/CSC, 7; M. vaccae/SHC, 8; M. vaccae/CSC, 8. (E, F, and H)
N = 28; vehicle/SHC, 6; vehicle/CSC, 7;M. vaccae/SHC, 7;M. vaccae/CSC, 8. (G and I)
N = 27; vehicle/SHC, 6; vehicle/CSC, 6; M. vaccae/SHC, 7; M. vaccae/CSC, 8.
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P < 0.01]. In addition, there was a main effect of CSC to reduce the
IL-6/IL-10 ratio, due to the exaggerated release of IL-10 in these
M. vaccae-immunized, CSC-exposed mice (Fig. 3G) [CSC, F(1, 28) =
31.8, P < 0.0001]. Together, these data support the hypothesis
that stress-protective effects of M. vaccae to prevent colitis and
promote anxiolytic/fear-reducing responses are dependent on
activation of Treg and an antiinflammatory bias, whereas the
shift toward a more proactive emotional coping response to
stress is not. Alternatively, brain mechanisms driving proactive
emotional coping responses may already be established by the
time of Treg depletion, and are not reversible or are reversed
over a longer time frame. A diagrammatical illustration of the
overall hypothetical model is presented in Fig. S6M.

Discussion
The results support the conclusion that immunization with a
heat-killed preparation of M. vaccae increases resilience to

stress-related pathologies in part through the induction of Treg
and an antiinflammatory bias. Immunization with M. vaccae
decreased submissive behavioral displays, as well as flight and
avoiding behaviors, during an initial encounter with a dominant
male aggressor. Following exposure to the chronic psychosocial
stressor for 19 d, mice immunized with M. vaccae, but not vehicle-
immunized mice, responded with decreased anxiety- or fear-like
behaviors when tested on the EPM. These behavioral responses
were associated with altered gene expression in serotonergic sys-
tems previously implicated in stress resilience and changes in
microglial density in brain structures implicated in control of fear
expression. Immunization with M. vaccae also prevented stress-
induced spontaneous colitis and stress-induced exaggeration of
chemically induced colitis, a model of IBD. The effects of im-
munization with M. vaccae on anxiety- or fear-like behaviors in
stressed mice, as well as its effects on stress-induced exaggeration
of spontaneous colitis, were prevented by depletion of Treg. In
contrast, there were no effects of Treg depletion on M. vaccae-
induced changes in behavioral responses to a dominant aggressor,
suggesting multiple different mechanisms through which immuni-
zation withM. vaccae alters stress-related behavior. Together, these
data are consistent with the hypothesis that immunization with
M. vaccae can prevent stress-induced exaggeration of colonic in-
flammation and downstream effects on anxiety- and fear-like be-
havior. As such, immunization with heat-killed preparations of
immunoregulatory bacteria may have utility in prevention of
anxiety and affective disorders and their medical comorbidity,
including exaggerated autoimmunity (11, 59) and exaggerated
symptoms of IBD (12, 11, 59).
When challenged with a dominant aggressor 1–2 wk fol-

lowing the final immunization with M. vaccae, mice showed a
robust decrease in submissive upright posture and decreases
in reactive behavioral coping responses, such as flight and
avoiding behaviors, relative to vehicle-immunized controls.
Previous studies have shown that a reactive emotional coping
strategy during social defeat, as measured by a short latency
to display submissive postures, predicts vulnerability to sub-
sequent development of anxiety- and depressive-like behav-
ioral responses (25, 27, 60, 61) and that inflammatory factors
within the CNS drive the vulnerability to depressive-like be-
havioral responses in individuals with reactive coping re-
sponses (32). Thus, the decreased submissive behaviors in
M. vaccae-immunized mice are consistent with a stress-resilient
behavioral phenotype. The mechanisms underlying the shift in
behavioral strategy during psychosocial stress are not clear, but
do not seem to depend on Treg. Of potential importance,
M. vaccae-immunized mice had altered tph2 and slc6a4 mRNA
expression specifically in the dorsal parts of the rostral to
midrostrocaudal dorsal raphe nucleus, a subregion of the
dorsal raphe nucleus that has previously been implicated in
stress resilience (62). The effects of immunization on tph2
mRNA expression were observed in both SHC and CSC mice
and were therefore independent of the stress-induced differ-
ences in peripheral inflammation.
Factors that are known to influence individual variability in

stress coping behaviors during psychosocial stress include en-
docrine factors, such as testosterone, or increased sympathetic
reactivity, which are both associated with a more proactive be-
havioral coping strategy (27). Interestingly, the microbiome
generally (63) and the probiotic Lactobacillus reuteri specifically
have been shown to increase testosterone in mice, effects that
could be mimicked by interfering with IL-17A signaling, a
proinflammatory cytokine (64). Immunoregulatory microbes act
on regulatory dendritic cells, which in turn bias T-cell differen-
tiation toward Treg and away from IL-17–producing T helper 17
(Th17) cells (65, 66). Testosterone in turn increases serotonin
transporter mRNA expression and binding in rats and humans
in brain regions innervated by the rostral dorsal raphe nucleus

Fig. 3. Depletion of regulatory T cells prevents stress-protective effects of
M. vaccae. (A) Anxiety- or fear-like behavior on the elevated plus-maze (day 19;
Exp. 4). (B–G) CSC-induced spontaneous colitis measured on day 20. (B) Colonic
histological damage scores. (C) Number of viable mesLNCs. (D–F) Secretion of
(D) IFN-γ, (E) IL-6, and (F) IL-10 from mesLNCs stimulated with anti-CD3 anti-
body in vitro (control antibody/SHC group: 100%). (G) IL-6/IL-10 ratio. Bars
represent means; error bars represent +SEM. Significance was assessed using
two-factor ANOVA. Post hoc comparisons were made using Fisher’s LSD tests.
**P < 0.01, ***P < 0.001, between-subjects effects of control versus anti-CD25
antibody, within the same CSC condition; ++P < 0.01, +++P < 0.001, between-
subjects effects of SHC versus CSC, within the same antibody condition. The
number of independent data points (N) in each of the graphs and sample size
(n) for each group are as follows: (A) N = 28; M. vaccae/SHC/control Ab, 7;
M. vaccae/CSC/control Ab, 7; M. vaccae/SHC/anti-CD25 Ab, 6; M. vaccae/CSC/
anti-CD25 Ab, 8. (B) N = 23;M. vaccae/SHC/control Ab, 5; M. vaccae/CSC/control
Ab, 6;M. vaccae/SHC/anti-CD25 Ab, 5;M. vaccae/CSC/anti-CD25 Ab, 7. (C–G) N =
29–31;M. vaccae/SHC/control Ab, 8;M. vaccae/CSC/control Ab, 7;M. vaccae/SHC/
anti-CD25 Ab, (C, E, and G) 8, (D) 6, (F) 7; M. vaccae/CSC/anti-CD25 Ab, 8.
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(67, 68), an effect consistent with our finding that immunization
withM. vaccae prevented stress-induced decreases in slc6a4mRNA
expression specifically in the rostral dorsal raphe nucleus. In
addition, testosterone increases the neuronal firing rates of sero-
tonergic neurons in the dorsal raphe nucleus (69). The effects of
testosterone on serotonin transporter mRNA, binding, and sero-
tonergic neuronal firing are thought to be dependent on aromati-
zation of testosterone to 17β-estradiol (68, 69); 17β-estradiol
induces anxiolytic effects on the EPM, in association with increases
in tph2 mRNA expression, specifically in the dorsal part of the
dorsal raphe nucleus (70), as observed in our studies. Thus,
immunoregulatory microbes can increase plasma testosterone
concentrations, and testosterone or its metabolite, 17β-estradiol,
replicates the effects of M. vaccae immunization on behavioral
coping strategies during social defeat, performance on the
EPM, and slc6a4 and tph2 mRNA expression in the dorsal
raphe nucleus. Future studies should explore these potential
endocrine mechanisms, as well as their interactions with the
microbiome–gut–brain and behavior axis.
The effects of M. vaccae immunization to decrease sub-

missive behavioral displays and decrease flight and avoiding
behaviors were long-lasting, evident at least 1–2 wk following
the final immunization. Meanwhile, the effects of M. vaccae
immunization to induce anxiolytic responses (measured on day
19) and prevent CSC-induced exaggeration of colitis (measured
on day 20) were observed 4–5 wk following the final immuni-
zation. As demonstrated using anti-CD25 antibody experi-
ments, the effects of M. vaccae immunization to induce anxiolytic
responses and prevent stress-induced exaggeration of colitis
appear to be dependent on Treg. This timeline is consistent
with previous studies demonstrating a long half-life of Treg
in C57BL/6 mice, estimated to be 27 d (71). Long-lasting pro-
tection following immunization with the same heat-killed
preparation of M. vaccae has been observed in a murine model
of allergic airway inflammation, where protective effects last
up to 12 wk (21). Persistent effects of M. vaccae in this model
may depend in part on Treg derived from memory T cells (72),
as mice are repeatedly exposed to the allergen antigen, oval-
bumin. It is likely, however, that repeated immunization would
be necessary in adults to induce persistent immunoregulatory
effects.
The stress-protective effects of M. vaccae immunization ap-

pear to be independent of the changes in the diversity or com-
munity structure of the gut microbiota. Consistent with previous
studies, exposure of mice to chronic psychosocial stress resulted
in decreased diversity of gut microbial communities, as measured
by α-diversity, and altered gut microbial community structure.
Stress-induced changes in gut microbial communities were driven
by expansion of Helicobacter spp., which have been shown to in-
duce colitis in hosts with impaired immunoregulation, such as
IL-10−/− mice, through induction of IFN-γ and IL-12 (73, 74).
Importantly, preinoculation with immunoregulatory L. reuteri
and Lactobacillus paracasei reduced intestinal inflammation in
Helicobacter hepaticus-challenged mice, despite failing to alter
the quantity of H. hepaticus in cocolonized mice (75). L. reuteri
primes dendritic cells to drive the development of Treg, through
interactions with the C-type lectin DC-specific intercellular ad-
hesion molecule 3-grabbing nonintegrin (DC-SIGN) (65). Our
results parallel these previous studies, in that Helicobacter spp.
relative abundance was correlated with colitis scores in vehicle-
treated mice, whereas M. vaccae-immunized CSC mice, charac-
terized by abrogated release of IFN-γ and IL-6, together with
exaggerated release of IL-10 from freshly isolated mesenteric
lymph node cells stimulated in vitro, were protected against both
development of spontaneous colitis and aggravation of chemi-
cally induced colitis in a murine model of IBD.
The stress-protective effects of M. vaccae immunization also

appear to be independent of the changes in the functionality of

the HPA axis. Glucocorticoid hormones, acting at glucocorticoid
receptors, have been shown to induce expansion of Helicobacter
spp. (18). These findings are consistent with other studies
showing that glucocorticoid hormones decrease IgA (which
normally inhibits bacterial adherence to intestinal epithelial cells),
increase bacterial adherence to the intestinal epithelium over
twofold, and increase bacterial translocation to mesenteric lymph
nodes (17). Mice exposed to the CSC procedure experience a
profound activation of the HPA axis, with persistent adrenal
hypertrophy that is evident within 24 h and persists through
days 2, 7, 14, and 20 of the CSC procedure, exaggerated ACTH
and corticosterone release to novel stressors, and in vitro ad-
renal insufficiency, as measured by decreased sensitivity to
ACTH (26). Glucocorticoid insensitivity of effector immune
cells, as indicated by glucocorticoid insensitivity of lipopoly-
saccharide-stimulated splenocytes and anti-CD3–stimulated T
cells, may contribute to the exaggerated inflammatory re-
sponses in CSC mice (26). Immunization with M. vaccae had
no effect on the CSC-induced adrenal hypertrophy or the in
vitro adrenal insensitivity, suggesting that, although HPA
axis changes may contribute to stress-induced exaggerations
of inflammation, they do not mediate the protective effects
of M. vaccae immunization.
As previously demonstrated for allergic airway inflammation

(22), the beneficial effects of M. vaccae on colitis and measures
of anxiety appear to be dependent on induction of Treg and
enhanced immunoregulation. The effects of CSC exposure on
colitis and anxiety may be linked, as DSS-induced colitis (76–
78), or chronic gastrointestinal inflammation induced by Tri-
churis muris infection, is sufficient to induce anxiety-like be-
havioral responses. This effect may be mediated in part by
afferent signaling of the vagus nerve, as prior vagotomy prevents
the anxiogenic effects of DSS-induced colitis (77), although this
is not the case for T. muris infection (79). Bacteria belonging to
the phylum Actinobacteria, specifically M. vaccae (80), and
probiotics including Bifidobacterium breve 1205 (81), Bifido-
bacterium longum 1714 (81), and B. longum NCC3001, have
been shown to decrease anxiety-like behaviors in mice. A
number of probiotics belonging to the phylum Firmicutes also
have been shown to decrease anxiety-like behaviors in mice,
including Lactobacillus helveticus ROO52 (82) and Lactobacillus
rhamnosus (JB-1) (83). Anxiolytic effects of B. longum 1714 (81)
and L. rhamnosus (JB-1) (83) are prevented by vagotomy, sug-
gesting that signaling via the vagus nerve may be particularly im-
portant in the anxiolytic effects of some probiotics administered
via the mucosal route. In our study, immunization withM. vaccae
reduced spontaneous colitis and stress-induced exaggeration of
chemically induced colitis and, in CSC mice, induced anxiolytic
effects, effects that may involve both vagus-dependent and
vagus-independent mechanisms.
In conclusion, these data suggest that exposure to environmental

microorganisms, administration of probiotics with immunoregula-
tory actions, or immunoregulation-promoting immunizations with
heat-killed preparations of these organisms or antigens derived from
these organisms may confer health benefits, including mental health
benefits in subjects with stress-related psychiatric disorders, such as
PTSD and major depression, at least partly through prevention of
stress-induced intestinal inflammation. From a broader perspective,
immunoregulatory approaches such as that demonstrated here may
prove useful in both prevention and treatment of stress-related
psychiatric disorders, such as anxiety and affective disorders, in
which inadequate immunoregulation, resulting in chronic, low-grade
inflammation, is a risk factor. Although not specifically addressed
here, immunoregulatory approaches may also prove useful in pre-
vention of neurodevelopmental and other somatic and neuropsy-
chiatric disorders in which elevated inflammation contributes to
disease vulnerability (84). Lack of exposure to “old friends” through
reduced contact with healthy soils and healthy animals in modern
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urban settings may partly explain the increased rates of immune-
mediated diseases, including psychiatric disorders, in these settings.
Restoring exposure to these old friends, through immunization or
other routes, may decrease inflammation-associated disease
vulnerability in modern urban societies.

Materials and Methods
For detailed materials and methods, see SI Materials and Methods. All ex-
perimental protocols were approved by the Committee on Animal Health

and Care of the government of Oberpfalz, Germany, and were performed
according to international guidelines on the ethical use of animals.
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