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Introduction

Mucous membranes comprise an extensive surface area that 
lines cavities and internal organs directly facing the external 
environment. Such high exposure makes the mucosa the port of 
entry of a large number of infectious agents, requiring prompt 
and effective defense mechanisms. However, mucosal tissues also 
need to acquire tolerance against non-dangerous inhaled or orally 
absorbed antigens and maintain a dynamic equilibrium with the 
microbiota.1 Indeed, the mucosal immune system has evolved 
tightly controlled surveillance and immunity induction mecha-
nisms. The large number of deaths attributed to mucosal infec-
tions in children, approximately 10 million annually,2 reinforces 
the challenge for the induction of an efficient immune response 
at mucosal sites. Although several mucosal infections have great 

epidemiological impact, only few mucosal vaccines against 
mucosal pathogens (poliovirus, Vibrio cholerae, Salmonella typhi, 
rotavirus, and influenza) have been commercially approved 
(Table 1).3 This situation may change as some clinical trials are 
ongoing for mucosally administered vaccines to prevent infec-
tions against influenza virus, Bordetella pertussis, Enterotoxigenic 
Escherichia coli (ETEC), Vibrio cholerae, Shigella sonnei, and 
norovirus4,5. In addition, cancer vaccines against tumors located 
at mucosal sites (colon, head and neck, lung, genital tract) have 
failed to provide clinical benefits when administered by systemic 
routes.6,7 The increasing understanding of the mucosal immune 
system and the current mucosal vaccine strategies should lead to 
the development of innovative and potent vaccines against muco-
sal pathogens and tumors located at mucosal sites.8,9

The Mucosa-Associated Lymphoid Tissue

The mucosal immunological components can be divided into 
two main parts: organized mucosa-associated lymphoid tissues 
(MALTs), where antigen-specific immune responses are initi-
ated, and diffuse lamina propria regions, which are the effec-
tor sites for antibody production (IgA) and T cell responses.10 
MALTs represent a complex immunological network structure, 
situated along the surfaces of various kinds of mucosal tissues, 
including the gut-associated lymphoid tissues (GALT) called the 
Peyer’s Patches (PPs), the nasopharynx- associated lymphoid tis-
sue (NALT), the bronchus associated lymphoid tissue (BALT), 
the conjunctiva-associated lymphoid tissue (CALT), and the 
vaginal-associated lymphoid tissue (VALT). The organization of 
each MALT is similar to that of a lymph node (LN) with B-cell-
rich follicles and T-cell-rich interfollicular areas in close contact 
with dendritic cells (Fig. 1). Some interspecies differences exist in 
the nature and the regulation of MALT. For example, as opposed 
to rodents, humans generally do not have NALT anatomically, 
but they possess oropharyngeal lymphoid tissues, which seem 
to correspond functionally to NALT.8 In addition, BALT is not 
constitutively present in all mammalian species, but is induced 
in response to microbial exposure or other types of pulmonary 
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The mucosal immune system displays several adapta-
tions reflecting the exposure to the external environment. 
The efficient induction of mucosal immune responses also 
requires specific approaches, such as the use of appropriate 
administration routes and specific adjuvants and/or deliv-
ery systems. In contrast to vaccines delivered via parenteral 
routes, experimental, and clinical evidences demonstrated 
that mucosal vaccines can efficiently induce local immune 
responses to pathogens or tumors located at mucosal sites as 
well as systemic response. At least in part, such features can 
be explained by the compartmentalization of mucosal B and 
T cell populations that play important roles in the modulation 
of local immune responses. In the present review, we discuss 
molecular and cellular features of the mucosal immune system 
as well as novel immunization approaches that may lead to the 
development of innovative and efficient vaccines targeting 
pathogens and tumors at different mucosal sites.
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inflammation.11 These inducible tissues may be more properly 
referred to as a tertiary or ectopic lymphoid tissue and are com-
posed by organized structures with T- and B-cell areas, high 
content of endothelial venules (HEVs) in the T-cell zone and an 
overlying lymphoepithelium.12

Antigen Sampling and Presentation at Mucosal 
Surfaces

The epithelial cell layers associated with mucous membranes 
form physical and immunological barriers that are not impen-
etrable, but control the cross-talk between the lumen and the 
lamina propria using multiple antigen sampling strategies.13 The 
epithelial cells lining the mucous membranes express pattern rec-
ognition receptors and antimicrobial effector molecules, which 
enables them to respond to microorganisms. These mucosal epi-
thelial cells initiate the first steps in the host-pathogen interaction 
and largely influence the type of immune response elicited by 
the host.14,15 In intestinal and airway epithelia, whose intercel-
lular spaces are sealed by tight junctions, specialized epithelial 
microfold cells (M cells) deliver samples of foreign material by 
transepithelial transport from the lumen to the MALT.16 M cells 
have reduced microvilli, a thin mucus layer and a pocket-like cell 
structure that holds dendritic cells (DCs) and/or lymphocytes, 
allowing an easier contact with pathogens and enhancing the 
contact with antigens.17

DCs work as the MALT sentinels, moving into the epithe-
lium in close contact with M cells, sampling luminal antigens, 
and, then, migrating back to local (MALTs) or distant organized 
lymphoid tissues of draining lymph nodes (DLN). DCs are 
involved in the induction of immune responses against patho-
gens, as well as tolerance to commensal microbiota and food.18,19 
The tolerogenic functions of intestinal DCs are associated with 
higher IL-10 secretion, compared with splenic DCs20 and induc-
tion of increased IL-4 and IL-10 production by naïve CD4 T 
cells,21 properties likely associated with their tolerogenic func-
tions. In mice PPs tolerogenic DCs are mainly represented by 

CD11b+CD8- cells, whereas CD11b-CD8- and CD11b-CD8+ 
DCs produce IL-12 and prime T cells for IFNγ production.22 
Another DC subpopulation described to play a specialized role in 
mucosal tissues, is represented by CD11b+CD103+ cells, which 
are highly capable of migrating from the lamina propria to DLN 
in a CCR7-dependent manner.23 Through this process, CD103+ 
DCs transport antigens from mucosal sites and present them to 
CD8+ and CD4+T cells in DLNs, resulting also in the expres-
sion of homing molecules on these cells (imprinting).21 Mucosal 
DCs also express FcRn, a receptor which binds the Fc portion of 
IgG at acidic pH, and play a major role in antigen cross-presenta-
tion leading of potent mucosal CD8+T cell responses.24

Effector immune responses at mucosal tissues
Mucosal antibody response
IgA is found in the serum and in secretions (sIgA). In human 

serum, the predominant form of IgA is IgA1 of which around 
90% is monomeric and 10% is dimeric or polymeric. The IgA2 
subclass predominates over the IgA1 subclass in the mucosae. 
IgA monomer requires the joining chain (J-chain produced by 
IgA-plasma cells) to form a dimer or a polymer. A particular 
hallmark of mucosal immunity is the local induction and pro-
duction of secretory IgA (S-IgA) by activated B cells in MALT 
germinal centers or lymph nodes. B cell isotype switching for 
IgA production is mainly stimulated by TGF-β, while retinoic 
acid, IL-4, IL-10, and IL-6 are important co-factors for differ-
entiation into plasma cells and the enhancement of IgA secre-
tion.25,26 These mediators are abundantly present at most mucosal 
surfaces, and are produced by DCs, epithelial cells, stromal cells, 
and mucosal lymphocytes.27-29 MALT post-switched IgA+ B cells 
disseminate in the blood via the efferent lymphatic vessel and 
some reach the mucosal effector tissues,30,31 where they differen-
tiate into IgA-producing plasma cells. In mucosal tissue dimeric 
or polymeric IgA, but not monomeric IgA show a high affinity 
for the polymeric Ig receptor (pIgR) localized at the basolateral 
surface of epithelial cells, which actively transport IgA across the 
mucosal epithelium to the lumen. In the mucosae and not in the 
blood, dimeric or polymeric IgA also include a secretory com-
ponent (SC) corresponding to a part of the pIgR.32 The final 

Table 1. List of commercially available vaccines administered by the mucosal routes*,**

Name of the Vaccine 
(Company)

Composition
Pathogens 

targeted
Route of vaccination

Dukoral
(SBL Vaccin AB)

Recombinant B subunit of cholera toxin and inactivated 
vibrio cholerae O1(Inaba and Ogawa serotype)

Vibrio Cholerae Oral

Shanchol
(Shantha Biotechnics)

bivalent inactivated vaccine containing killed whole cells 
of V. cholerae O1 and V. cholerae O139

Vibrio Cholerae Oral

Rotateq 
(Sanofi-Pasteur-MSD)

Live attenuated rotavirus type p1a (8), g1-g4 Rotavirus Oral

Rotarix (GSK) Live attenuated rotavirus type rix 4414 Rotavirus Oral

Vivotif
(Crucell)

Attenuated live strain of Salmonella typhi Ty21a Salmonella thyphi Oral

Flumist
(Medimmune)

Live attenuated influenza virus Influenza Nasal

*The oral Polio Vaccine Sabin is not commercially available except in epidemic context; ** Other mucosal vaccine candidates for pathogens (Bordetella 
pertussis, Enterotoxigenic Escherichia coli (ETEC), Vibrio cholerae, Shigella sonnei, Helicobacter pylori, campylobacter, Salmonella Typhi and Paratyphi, 
hemophilus influenzae type B, and norovirus) have been recently tested in human trials.
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S-IgA has unique properties, including acid and 
protease resistance and interactions with mucus 
and effector leukocytes.26,33 Interestingly, IgA anti-
bodies are unable to fix complement, functioning 
mainly as a neutralizing antibody, which results in a 
non-inflammatory immune response that limits the 
damage at mucosal tissues. IgA antibodies secreted 
onto the mucosal surfaces are particularly important 
in preventing infection by inhibiting the adhesion 
of bacteria, viruses, or other pathogens to epithelial 
cells.34,35 The IgA complex, including the SC, bind 
to M cells and may have a role of ‘selection’, exclud-
ing pathogenic bacteria or fungi from the epithelial 
surface through its anchoring within the mucus 
and favoring biofilm formation of non-pathogenic 
bacteria in the space in close contact with epithelial 
cells.36 Other immunoglobulin isotypes may also 
play a role in mucosal tissues and MALT B cells 
may switch to different immunoglobulin isotypes 
according to the anatomical site and the specific 
inducing conditions. For example in some species, 
IgG-secreting cells predominate over IgA-secreting 
cells in BALT.37

Cellular immune responses at mucosal sites
T cells receive antigenic activation and co-

stimulation by antigen-presenting cells (APCs) 
that support their clonal expansion, as well as the cytokine cues 
that dictate their differentiation and homing to peripheral tis-
sues.38,39,38,40 Activated and memory T cells downregulate mol-
ecules used for LN entry and upregulate molecules involved in 
migration to non-lymphoid tissues, such as the skin and the 
intestinal mucosa.40 This memory T cell population, called 
tissue resident memory cells (T

RM
), has been shown to stably 

reside in the peripheral tissues and not to enter the circulation 
for a prolonged period of time.40 The presence of T

RM
 cells 

has been described in many mucosal tissues including skin,41-

43 lungs,44,45 salivary glands,46 and intestinal epithelium.47 T
RM

 
rapidly acquire effector functions upon secondary antigenic 
stimulation and are highly protective against subsequent local 
infection.48,49 The presence of T

RM
 in the mouse lungs has been 

described as a better surrogate marker, than memory specific 
T cells in the blood, for reinfection protection in different pre-
clinical studies in mice.50 In non-human primates, the presence 
of T

RM
 against SIV was essential to control the viral load.51 The 

DC-mediated imprinting of specific homing molecules on T 
cell surface is influenced by the LN microenvironment and, 
particularly, by the local production of TGF-β (Table 2).38 Gut 
and skin tissue-specific homing molecules expression on T cells 
also requires vitamin A/Retinoic Acid and vitamin D-derived 
metabolites, respectively.52,53 Homing markers expression and 
their regulation is still not well defined for all mucosal tissues, 
but it is well established that T cell expression of α4β7, which 
binds to intestinal MADCAM-1 on endothelial cells, and 
CCR9, attracted by intestinally produced CCL25, enable T 
cells entry into the small intestine.54,55 Furthermore, expression 

of CCR10 and P- and E-selectin ligands, induces T-cell skin 
homing mediated by cutaneous CCL27 and P- and E-selectins 
(Table 2).56-58

Compartmentalization and immunity at distant mucosal 
sites

Mucosal invasion by pathogens prime immune responses at 
both mucosal and systemic compartments. Similarly, several 
vaccine studies showed that mucosal immunization has also 
been efficient in generating immune responses detectable at dis-
tant mucosal tissues and in the blood.58 In contrast, immuniza-
tion via parenteral administration routes usually fails to induce 
mucosal immunity or induce weaker responses than those 
detected after mucosal immunization.58-60 Mucosal immune 
stimulation after pathogen invasion or vaccination, besides 
being capable of inducing systemic immunity, activates B and 
T cells that may migrate to peripheral environments different 
from the one where stimulation was initiated. The possible inter-
connection between immunity at different mucosal surfaces, 
raised the concept of a “common mucosal immune system.” In 
fact, mucosally primed T and B cells display preferential migra-
tion patterns to specific mucosal surfaces or tissues, that are 
shared among mucosal sites.35,61 For example, IgA+B cells in the 
MALT usually express CCR10 on their surfaces, which favors 
migration to CCL28 expressed by epithelial cells in the gut, 
lung, breast, vaginal, and salivary glands.62,63 Interestingly, the 
female sex hormone estradiol regulates the CCL28 expression.64 
Intranasal (i.n) or sublingual immunization induced specific 
IgA secretion and activation of CD8+T cells in the genital tract 
and in some cases in the intestine.65,66 Indeed, DCs activated 

Figure  1. Mucosal associated lymphoid tissue (MALT) are organized lymphoid struc-
tures present in surface area in contact with environment such as the lung (bronchus-
associated lymphoid tissue (BALT), the nose (Nasal-associated lymphoid tissue (NALT) 
and the gut (Gut-associated lymphoid tissue (GALT). Peyer’s patch present in the GALT 
are often presented as a model of the MALT organization. It is located in the lamina 
propria layer of the small intestine and in the ileum in humans. This lymphoid structure 
between the lumen of the intestine and the mesenteric lymph node is the place of the 
priming of a mucosal immune response.
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at a particular immunization site, recirculate to distant lym-
phoid organs and induce distant T cell priming, explaining the 
genital immune response observed after i.n immunization with 
the B subunit of cholera toxin (CTB) coupled to OVA.67 In 
clinical settings, however, an intravaginal boost was required to 
attract T cells to the genital tract after i.n immunization with 
the cholera toxin coupled to OVA.68 Additionally, oral, nasal 
or intravaginal immunization with CTB were able to induce 
comparable secreted IgA levels in the vaginal tract but no cellu-
lar immune responses.69 In fact, inducing mucosal immunity at 
different anatomical sites after local priming may vary accord-
ing to the specific mucosal tissue, type of immune response or 
vaccination approach.

Potential Role of Microbiota in the Activity of 
Mucosal Vaccines

Mucosal tissues are colonized by a vast number of non-patho-
genic microbes that exert a significant influence on mucosal 
immune regulation and, therefore, can be a factor in determining 
the effectiveness of mucosal vaccines. For example, the manipu-
lation of the intestinal flora was shown to play a large role in 
T cell regulation.70,71 Oral vaccines against rotavirus, V. cholerae 
and Escherichia coli (ETEC) have been shown to be less effective 
in developing countries. Difference in the nutritional status, but 
also in gut microflora, as well as ongoing persistent infections 
with helminths and parasites have been raised as determinant 
hypothesis to explain this differential efficiency.72 For the future, 
we could expect the development of programs to deeply analyze 
and correlate the individual and geographical characteristics 

of the microbiota and the efficacy of mucosal 
vaccines.27

Strategies to Induce Mucosal Immune 
Responses

Immunization routes
DC priming at one specific mucosal site deter-

mines the subsequent homing of T cell to specific 
mucosal sites.73 Subsequent studies confirmed 
that this phenomenon applies to different muco-
sal administration routes such as the intranasal, 
intratracheal, oral, intrarectal, sublingual, intra-
vaginal, and intraocular routes. Various groups 
showed that the mucosal delivery, especially by 
the oral route, of mucosal non-pathogenic live 
recombinant bacteria (Listeria monocytogenes, 
Salmonella typhimurium, Bacillus subtilis, lactic 
acid bacteria…) expressing antigen is efficient to 
protect against mucosal pathogens.74-78 The intra-
nasal immunization route has been intensively 
studied and shown to induce robust humoral and 

cellular immune responses at the lung mucosa against virus and 
bacterial infection.79-82 In addition, the i.n. immunization route 
favors Th17 polarization,83 known to be involved in the genera-
tion of protective immunity against funghi and bacteria located 
at mucosal sites.84 A comparative clinical trial performed with 
children immunized with a live attenuated influenza vaccine 
(Flumist) showed that administration by the i.n route was more 
efficient, than the same formulation delivered intramuscularly 
in the mounting of protective immunity.85 These results led to 
the approval of the vaccine administered by the i.n. route by the 
US Food and Drug Administration (FDA), a breakthrough for 
mucosal vaccines in which the oral administration route had long 
been the only alternative for vaccination in humans.

Other mucosal immunization routes have also raised interest 
and generated encouraging results. In mice, the sublingual vac-
cination proved to induce strong mucosal pulmonary and genital 
immune responses associated with protection against influenza, 
RSV or SARS lethal virus challenges and genital infections.86-88 
However, in preclinical models, the sublingual route of immuni-
zation appeared to be less powerful than the i.n route in eliciting 
protective mucosal immune responses.89 In humans, however, an 
HPV vaccine administered by the sublingual route induced less 
anti-HPV antibodies in the cervix, than the i.m. route.90,91

The intravaginal route may be less effective in the induction of 
mucosal immune response. Intravaginal immunization with sub-
unit vaccines elicit weak or no mucosal immune response both in 
rodents and in humans.92,93 In most cases, only live vectors have 
been shown to elicit mucosal immune response by this immu-
nization route.88,94 Intravaginal immunization with live HPV 
pseudovirions particles or systemic immunization combined 
with intravaginal administration of TLR agonist are promising 

Table 2. Tissue-resident CD8+ T cells key homing markers involved in migration 
 to different sites

Homing receptor Tissue ligand

Gut α4β7 MADCAM-1

(ref. 47, 46, 55) CCR9 CCL25

CD103 E-cadherin

Skin CCR10 CCL27

(refs. 41–43, 56, 57) P- and E- selectin ligands P- and E- selectin

CD103 E-cadherin

Lungs CD103 E-cadherin

(refs. 45, 178, 141) CD49a Collagen IV

α4β1 VLA4

CXCR6 CXCL16

LFA-1 ICAM-1

Salivary glands CD103 E-cadherin

(ref. 46) E-cadherin

Genital tract CD103 E-cadherin

(refs. 179, 180) CD49a Collagen IV

E selectin ligand E Selectin
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approaches against sexually transmitted pathogens, because of its 
ability to induce local CD8+ T88,95 and CD4+T cell responses, 
as well as antibody responses. However, the efficacy of this route 
may depend on the hormonal cycle of the women, as it has been 
shown that the estradiol inhibits CD8+T cell priming.96 Proteins 
or subunit vaccines could be administered by the intrarectal 
route but it would require the association of an adjuvant to elicit 
mucosal immune response and protection against infectious 
challenge.97,98 Nevertheless, intrarectal immunization with sub-
unit vaccines also seem to be less efficient than those comprising 
recombinant virus-based vaccines.99,100 Intrarectal immunization 
with a peptide prime and recombinant vaccinia boost regimen 
activated high avidity CD8+ CTLs in the gut mucosa, that cor-
related with lower SIV virus dissemination in macaques.51,101 The 
administration of an anti-HSV vaccine at the ocular mucosa 
induced both antibody (systemic and mucosal) and cellular 
immune responses leading to protective immunity to ocular virus 
challenge in mice.101 In general, mucosal routes of immunizations 
are capable to induce mucosal and systemic immune responses, 
while systemic immunization induce systemic and, in a clearly 
lesser extent, mucosal immune responses.

Mucosal adjuvants
As with vaccines administered via parenteral routes, immune 

responses induced by vaccines delivered via mucosal routes 
can be drastically enhanced with the use of adjuvants. In pre-
clinical models, the most largely employed adjuvants to induce 
mucosal immune responses have been non-toxic derivatives of 
cholera toxin (CT) and Escherichia coli heat labile enterotoxin 
(LT).102,103 Although devoid of their enterotoxicity and capa-
ble to efficiently increase both antibody and cellular immune 
responses, LT-derivatives proved to be toxic to humans after i.n. 
delivery due to the nerve tissue tropism leading to accumulation 
in the olfactory nerve and the bulb and inducing transient facial 
paralysis.104 Some groups attempt to preserve the adjuvant activ-
ity of LT while decreasing its toxicity.105,106 Toll-like receptor 
(TLR) ligands have been described to enhance mucosal immu-
nity when co-administered with antigens by mucosal routes. 
Recently, US FDA has approved the use of a TLR4 agonist, the 
Monophosphoryl lipid A (MPL), combined with alum (AS04) 
for intramuscular immunization of the Cervarix prophylactic 
vaccine against HPV infections, which promotes Th1-biased 
response.107,108 AS01, an adjuvant system containing liposomes, 
MPL and saponin, increased mucosal immunity in non-human 
primates.109 Accordingly, i.n. vaccination with TLR4 agonists 
resulted in robust immune responses to both the carrier protein 
and bacterial polysaccharide components of the Hemophilus 
influenza type B virus in murine models.110 Micellar and emul-
sion formulations of a synthetic TLR4 agonist, Glucopyranosyl 
Lipid Adjuvant (GLA) administered by the i.n route induced 
Th17-biased systemic and mucosal antibody responses.111 The 
TLR9 ligand CpG, induce Th1-biased immune responses after 
sublingual or i.n administration.112,113 In a preclinical model, 
CpG administration was possibly linked to enhanced hepatitis 
pathogenesis induced by concanavalin-A production, but the 
CpG was not administered by a mucosal route in this case.114

Another TLR ligand, the TLR3-specific double-stranded 
RNA oligonucleotide has been shown to modulate local immune 
responses after i.n administration.115 In addition, poly(I:C) 
proved to be an effective adjuvant for an i.n. delivered influenza 
vaccine.116 The TLR5 ligand, flagellin, combined with vari-
ous antigens has been shown to enhance IgA response after i.n 
administration and protect against various toxins and pathogens 
challenge in preclinical models.117-119 Indeed, Salmonella flagel-
lins has been shown to be flexible adjuvants leading to activation 
of antibody and T cell responses based on the administration 
via mucosal and parenteral routes either as recombinant protein 
genetically fused with the target antigen or admixed with the 
soluble or particulate antigens.120 Recently, it has been shown that 
the i.n delivery of virus like particles (VLPs) in combination with 
TLR7 or TLR9 agonists led to a significantly better dose-sparing 
effects than TLR3, TLR5 or TLR8 agonists for the induction 
of specific and functional antibody responses in the respiratory, 
gastrointestinal, and reproductive tracts.121

Chitosan microparticles and cationic chitosan derivatives are 
obtained from natural crab shells, composed of chitin derivatives, 
and are potent activators of macrophages and NK cells. Their 
administration by the i.n route combined with antigen induced 
high levels of IgA in the serum of mice and non-human pri-
mates.122 Chitosan seems to favor a Th2 biased immune response 
and its safety has already been validated in mice and humans.122,123 
Recent findings have evidenced α-Galactosylceramid (α-GalCer) 
as a promising mucosal adjuvant. This CD1d ligand activates 
natural killer T (NKT) invariant cells, promoting DC matu-
ration and cross-presentation.124,125 When administered via 
the i.n route in combination with various antigens, α-GalCer 
induced mucosal antibody responses, as well as CD8+T cells 
responses,126,127 devoid of measurable toxicity and without redi-
recting antigen to the nervous system, as shown for cholera 
toxin.128 Administration of α-GalCer by the i.n route, but not by 
the systemic route, allowed repeated stimulation of NKT in the 
lung.129 This adjuvant has also been used to sensitize DC to acti-
vates NKT cells in patients presenting recurrent head and neck 
carcinoma, without described associated toxicity.130 Another class 
of promising mucosal adjuvants is represented by some already 
clinically used antibiotics such as polymyxin B (PMB) and colis-
tin (CL). Intranasal immunization with PMB or CL with oval-
bumin (OVA), increased OVA-specific antibody responses in a 
dose-dependent manner both at mucosal and the systemic com-
partments without detectable inflammatory damages.131 Overall, 
novel mucosal adjuvants are particularly promising in preclinical 
models and, at least some of them (such as TLR3, TLR4, TLR5, 
TLR9 agonists and αGalCer) are also strong inducers of mucosal 
cellular immune responses.

Mucosal Homing Signals Delivered by Adjuvants or 
Immunomodulators

Several studies suggest that the local delivery of a mucosal 
stimulus or a peripheral mucosal imprinting of T cells favor their 
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homing to mucosal sites. Shin and colleagues were the first to 
show that parenteral vaccination, which elicited systemic T-cell 
responses (prime), followed by recruitment of activated T cells 
through topical chemokine application in the genital tract (pull), 
reduced the spread of HSV-2 infection to the sensory neurons 
and prevented the development of clinical disease.132 Mucosal 
signaling also appear necessary to recruit anti-tumor T cells after 
systemic vaccination for the generation of anti-tumor protective 
immunity at mucosal sites. Indeed, subcutaneous (s.c) immuni-
zation against HPV-associated tumors had no significant effect 
in the regression of genital tumors expressing the E6 and E7 
proteins, while the same vaccination associated with intravagi-
nal administration of CpG led to the regression of more than 
75% of the genital tumors in mice.95 Other studies showed that 
s.c immunization with protein-based vaccine combined with all-
trans retinoic acid, induced robust upregulation of gut homing 
receptors, resulting in T and B cells migration to the gut and 
protecting mice from cholera toxin–induced diarrhea.133

Targeting Mucosal M Cells and Dendritic Cells

To improve the efficacy of mucosal vaccines, other strategies 
aim to deliver antigens to M cells or mucosal DCs. M cells are 
one of the intestinal barriers for the efficient delivery of vac-
cines to mucosal tissues, thus, targeting M cells improves the 
transcytosis of antigen to the MALT, such as intestinal PPs. A 
peptide sequence, identified as having M cells directing prop-
erties, when coupled to various vaccine compounds, increased 
humoral immune response.134,135 Some bacterium species, such 
as Lactobacillus acidophilus, have been engineered to express 
antigen fused to a DC targeting peptide.136 After oral delivery, 
this vaccine strategy improves mucosal immunity and protects 
against a lethal anthrax challenge.136 Similar genetically modified 
spores of Bacillus subtilis engineered to express adhesins capable 
to recognize receptors expressed on gut epithelial cells and M 
cells enhance the induction of mucosal and systemic immune 
responses to an encoded antigen target.137 Our group has devel-
oped a vector, composed of the non-toxic B subunit of Shiga toxin 
which target DCs and favor antigen cross-presentation.138-140 We 
showed that i.n delivery of antigen coupled to STxB target medi-
astinal LNs DC cells and induced potent mucosal CD8+T cells 
responses and antigen specific IgA at mucosal sites.141 In contrast 
to other toxin-derived delivery vehicules, we did not observe tox-
icity after StxB-based vaccines intranasal administration in mice 
during a 6 mo follow up (unpublished results). This extends the 
good safety profile reported by our group and others when STxB-
based vaccine were administered by systemic routes.142-145

Particulate Delivery Systems

Vaccines administered by mucosal routes face physical, 
chemical, and microbiota-imposed constraints, augmenting the 
risk of antigen degradation. Therefore, vaccine entrapment in 
non-viral particules can protect the antigens from degradation 

or denaturation, enhance their sustained release and allow the 
co-delivery of antigens and adjuvants. In addition, non-pathogen 
based vehicules elicit a less pronounced anti-vector immunity 
which allows repetitive immunization. PLA (poly(lactic acid) or 
PLGA (poly(lactic-co-glycolic acid) nanoparticles are interesting 
protein carriers that offer antigen protection, increased penetra-
tion across mucosal surfaces and controlled release of encapsulated 
antigen.13,146 In humans, the oral delivery of PLG-encapsulated 
CS6 antigen from E. coli induced mucosal IgA responses, but 
complementary studies are required to assess its potency com-
pared with free.147 In preclinical models, other modified lipid-
based delivery systems such as liposomes, ISCOMS, virosomes, 
proteosomes have shown encouraging results in mucosal vacci-
nation settings.13,148 In healthy volunteers, the intranasal admin-
istration of a proteosome-based influenza vaccine seemed to be 
efficacious and well tolerated.149

Lastly, β-glucans composed of carbohydrate polymers found 
in the cell walls of fungi, yeast, plants, and bacteria, which bind 
to dectin-1 and CR2, have demonstrated intrinsic adjuvant activ-
ity for the enhancement of humoral and cellular.150 β-glucan par-
ticles also act as a delivery platform for mucosal antigens. Oral 
administration of ovalbumin-loaded glucan microparticulates 
increased the levels of OVA-specific IgA, and secretory IgA in 
the intestinal fluids.151

Relevance of Inducing Mucosal Immunity against 
Pathogens

The mucosal immunity acquired by natural influenza infec-
tion, primarily due to the production of S-IgA in the respiratory 
tract, is more effective and cross-protective against subsequent 
viral infection than the systemic immunity induced by parenteral 
vaccines in humans and mice.152 In agreement with this obser-
vation, many comparative studies of mucosal (i.n, rectal, oral) 
and parenteral (i.m. or s.c) administration routes with differ-
ent vaccines have demonstrated the superior efficacy of mucosal 
routes in obtaining mucosal immune responses at local or even 
remote sites.153 In these studies, the mucosal route of immuniza-
tion led to higher protection levels against mucosal pathogens, 
such as herpes virus, influenza virus, and Mycobacterium tuber-
culosis.154-156 In humans, the oral vaccine against poliomyelitis, 
based in attenuated virus strains, induces the production of 
secretory IgA in intestinal mucosa, preventing the infection of 
enterocytes and virus spreading. Instead, the inactivated version 
of the vaccine administered via a parenteral route protects against 
neurological forms of the disease, but does not affect intestinal 
virus replication.30 Nevertheless, other studies have shown that 
parenteral vaccination may induce mucosal immunity, being 
effective against some mucosal infections.157 In most cases, these 
studies have been performed with live viral vectors, which when 
administered by the systemic routes, can diffuse to mucosal sites. 
Nonetheless, a direct comparison of the relative effectiveness of 
mucosal and parenteral administration routes has not been con-
ducted. Moreover, it is necessary to differentiate vaccines designed 
to induce the production of antibodies from those developed for 
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higher activation of CD8+T-cell immunity.158 Indeed, antibodies 
induced by parenteral vaccines may be found at mucosal sites by 
passive transudation of circulating antibodies. This observation 
explains the effectiveness of certain anti-influenza or anti-HPV 
vaccines that are administered by parenteral routes and protect 
against respiratory and genital infections. Moreover, it suggests a 
possible greater constraint in the phenomena of recirculation of 
T cells than of antibodies.

Mucosal Cancer Vaccines

Various cancer vaccines have been developed against muco-
sal tumors, including lung cancer.159 The vaccines Mage-A3 and 
Stimuvax have recently been tested in phase II and III clinical 
trials, respectively, but failed to demonstrate a clinical benefit 
in the treatment of non-small cell lung cancer.160,161 Our group 
has monitored the effects of a lung cancer vaccine based on the 
use of a recombinant vaccinia virus encoding the Muc 1 anti-
gen expressed by adenocarcinomas of the lung. Although acti-
vation of anti-Muc-1 CD8+ T cells were detected in the blood 
after vaccination, the clinical response was not significant.159,162 
One hypothesis relies on the necessity to elicit anti-tumor T cells 
at the tumor mucosal sites, rather than only in the peripheral 
blood. Since all these lung cancer vaccines were administered by 
the i.m. route, we tested in murine models if mucosal immuniza-
tion would impact the efficacy of cancer vaccines against tumors 
located in the lung or in the tongue. In the first experiments, 
using an STxB-based vaccine, we demonstrated that the i.n route 
of vaccination was more efficient to induce mucosal immune 
responses in the mediastinal and cervical lymph node, as well as 
in the broncho-alveolar lavage, than i.m. immunization.141 In line 
with these results, we observed that the i.n route of immunization 
was more efficient to inhibit the growth of head and neck or lung 
cancer, than the i.m. or s.c route. The i.n (mucosal) immuniza-
tion also led to a more robust tumor infiltration by anti-tumor 
CD8+ T, cells than the i.m. route. Finally, the i.n administration 
of the cancer vaccine specifically stimulated the expression of the 
mucosal integrins CD49a and CD103 on CD8+ T cells, which 
was not observed following systemic immunization. Blockade of 
CD49a decreased both CD8+ T-cell tumor infiltration and the 
therapeutic efficacy of the vaccine. A link was thus established 
between the route of vaccination and the imprinting of a mucosal 
homing program on vaccine induced CD8+ T cells. Interestingly, 
we showed that lung DCs, but not the spleen DCs were able to 
induce the CD49a expression on the surface of CD8+ T cells.141 
A similar pattern of T cells homing molecules was also reported 
after intrapulmonary vaccination.163 This imprinting ability of 
lung DCs was confirmed in humans, as it was shown that CD1c 
lung DCs co-cultured with CD8+T cells promote upregulation of 
CD103 and CD49a on these cells.164

Other studies support the role of mucosal immunity in pro-
tecting against mucosal tumors. The oral administration of 
antigen combined with cholera toxin generated CD8+ T cell 
responses capable of controlling the growth of gastric tumors 

expressing ovalbumin, whereas the same vaccine formulation did 
not reproduce the anti-tumor effect when administered subcu-
taneously.165 The adoptive transfer of anti-tumor CD8+ T cells 
induced by s.c. immunization could protect against the develop-
ment of subcutaneous tumors but not gastric tumors.166 Similarly, 
the immunization of mice with DCs by the s.c. route allowed 
the control of subcutaneous tumors, but not lung metastases.167 
Also, intrarectal vaccination with the CEA antigen vectorized in 
a recombinant vaccinia virus enhanced mucosal CEA-specific 
IgA antibody titers and cytotoxic CD8+T cells activation, and 
more importantly, the prevention of the progression of spontane-
ous colorectal cancer.168 Other studies showed that the immuni-
zation route should be tailored to each mucosal tumor site. As 
an example, both s.c. and intravaginal, but not i.n vaccination, 
induced high numbers of anti-tumor CD8+T-cells in the bladder, 
as well as bladder tumor regression.169 In contrast, studies con-
ducted by the Nardelli-Haefliger’s group showed that parenteral 
immunization was more effective than mucosal immunization to 
control the growth of intrauterine tumor.170 In this model, it is 
possible that other effectors, such as antibodies, play a role in the 
tumor rejection, as the phenomenon of compartmentalization is 
less evident in humoral responses. Furthermore, the intravaginal 
immunization route is generally less effective in inducing effec-
tor T cell responses, which can be related to the low presence of 
lymphoid structures in the vagina, since the majority of struc-
tures are diffuse clusters of immune cells, and also to the hor-
monal dependence of this route. Nevertheless, the induction of 
mucosal CD8+T cell response after intravaginal vaccination has 
been previously reported.92 In humans, the i.m. administration 
of long peptides derived from the E6 and E7 HPV proteins led 
to the regression of high grade vulvar dysplasia. However, as no 
control groups were included, it is difficult to conclude the real 
efficacy of this vaccine.171 Except for this last study, no cancer 
vaccine administered by the systemic route showed any clinical 
benefit in controlling genital tumors. In general, these examples 
show that immunizations via mucosal routes are usually more 
effective than immunizations performed by parenteral routes in 
the development of protective immunity to mucosal tumors. In 
humans, some positive correlations have been reported between 
the CD8+T cell infiltration and the prognosis of some mucosal 
tumors (colorectal cancer, lung tumors),159,172 supporting the role 
of CD8+T cells in tumor growth control. However, human can-
cer vaccines targeting tumors at mucosal sites have not sought to 
evaluate the usefulness of the mucosal immunization routes up 
to now. Of course other parameters, such as the difference in the 
microenvironment of mucosal and non-mucosal tumors and the 
possibility of tolerance against self-mucosal tumor antigens, have 
also to be considered for the success of cancer vaccines.144,171,173,174

Conclusion

Prophylactic vaccines against mucosal pathogens (influenza, 
rotavirus, HPV..) require the presence of antibodies at the muco-
sal pathogen entry site, either directly induced by the mucosal 
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route of immunization, or after transudation of serum antibodies 
elicited by the conventional routes of immunization.175 In most 
prophylactic vaccines, the induction of antibody leads to a good 
and durable protection against pathogens. Of note, in rare dis-
ease models, the induction of humoral immunity or a Th2 polar-
ization may not be beneficial.176,177 For chronic mucosal infection 
and cancer, cell mediated immunity, especially based in CD8+T 
cell activation, seems to be mandatory for the success of a vaccine. 
In contrast to the antibody induction, the level of T cell responses 
compartmentalization may explain the importance to elicit them 
directly at the tumor or chronic infection mucosal site. Mucosal 
vaccine strategies aiming to direct the immune response to the 
site of pathogen invasion or to the anatomic site of tumor location 
should thus maximize the efficiency of the immune responses 
against pathogens and tumors. Various approaches and tools, 
such as immunization routes and incorporation of adjuvant and/
or delivery systems, are already available for the design of optimal 
mucosal anti-infectious or anti-cancer vaccines. Considering the 

infectious diseases, these systems have been broadly exploited, 
but will be extended in the future. Since all therapeutic cancer 
vaccine trials failed to provide clinical benefit, the development 
of mucosal cancer vaccine has to be evaluated to strengthen their 
efficacy.
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