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Abstract: Characterizing the neurovascular coupling between hemodynamic signals and their neural
origins is crucial to functional neuroimaging research, even more so as new methods become available
for integrating results from different functional neuroimaging modalities. We present a novel method
to relate magnetoencephalography (MEG) and BOLD fMRI data from primary somatosensory cortex
within the context of the linear convolution model. This model, which relates neural activity to BOLD
signal change, has been widely used to predict BOLD signals but typically lacks experimentally
derived measurements of neural activity. In this study, an fMRI experiment is performed using vari-
able-duration (�1 s) vibrotactile stimuli applied at 22 Hz, analogous to a previously published MEG
study (Nangini et al., [2006]: Neuroimage 33:252–262), testing whether MEG source waveforms from
the previous study can inform the convolution model and improve BOLD signal estimates across all
stimulus durations. The typical formulation of the convolution model in which the input is given by
the stimulus profile is referred to as Model 1. Model 2 is based on an energy argument relating meta-
bolic demand to the postsynaptic currents largely responsible for the MEG current dipoles, and uses
the energy density of the estimated MEG source waveforms as input to the convolution model. It is
shown that Model 2 improves the BOLD signal estimates compared to Model 1 under the experimental
conditions implemented, suggesting that MEG energy density can be a useful index of hemodynamic
activity. Hum Brain Mapp 29:97–106, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Developing in parallel with the wide variety of fMRI
applications in neuroscience research are the more funda-
mental investigations into the complex neural, metabolic,
and hemodynamic origins of the BOLD fMRI signal.
Ideally, the definitive study would require comprehensive
investigation of a large number of physiological variables
associated with the signaling process by which neural ac-
tivity leads to hyperemic hemodynamic responses. How-
ever, this is impractical and efforts have recently focused
on developing techniques for integrating data from a
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limited number of modalities (e.g., fMRI and microelec-
trode recordings, fMRI and PET, etc).
For human studies, the range of available imaging tech-

niques is further restricted by the requirement of noninva-
siveness. Electrophysiology (EEG) and magnetoencepha-
lography (MEG), which measure electrophysiological
aspects of neural activity, are noninvasive options to study
the effects of neurovascular coupling in humans and are
complementary to BOLD fMRI measurements.
One way to examine the link between EEG/MEG and

BOLD fMRI signals is in terms of the energy associated
with metabolic demand required for the neural and hemo-
dynamic response. For example, Babajani et al. [2005]
developed a set of equations to relate MEG signals to
BOLD fMRI signal changes using the energy consumed by
the postsynaptic potential (PSP). The energy requirement
for PSP production directly or indirectly results in a vascu-
lar response [c.f. Rossi, 2006] which, through the mecha-
nisms of increased cerebral blood flow (CBF), volume
(CBV), and cerebral metabolic rate of oxygen consumption
(CMRO2), give rise to measurable BOLD signal changes
[Ogawa et al., 1990]. The equations of Babajani et al. [2005]
involve many assumptions and have only been validated
using simulations; nevertheless, it is worthwhile investigat-
ing whether the information preserved in MEG signals is
sufficient to characterize and predict fMRI signals.
A simpler approach that has been widely used to pre-

dict hemodynamic signals in primary sensory cortices is
based on the linear convolution model [Bandettini et al.,
1993]. This model uses an empirical hemodynamic re-
sponse function (HRF) to characterize the net effect of all
physiological variables involved in neurovascular cou-
pling. The input to the model approximates the neural ac-
tivity associated with the sensory stimulus. The input, via
mathematical convolution with the HRF, predicts the
BOLD signal time-course, but the accuracy of this predic-
tion depends on how well the input to the model reflects
neural activity. Hence, it is desirable to obtain measure-
ments of neural activity to inform the convolution model
input functions.
Such measurements have been obtained in several ani-

mals studies using, for example, local field potentials
(LFPs) and action potentials [Logothetis et al., 2001, mon-
key visual cortex], and somatosensory-evoked potentials
(SEPs) [Ances et al., 2000, and Martindale et al., 2005, rat
SI]. In humans, auditory evoked potentials [Eichele et al.,
2005], and spontaneous power fluctuations in the EEG a-
rhythm [Goldman et al., 2002; Laufs et al., 2003] have been
integrated into the convolution model.
Many human fMRI studies using the convolution model,

however, have not obtained measurements of neural activ-
ity, such as studies investigating the linearity of the BOLD
signal with respect to stimulus duration. These studies
have found that brief stimuli (<4 s) elicit hemodynamic
signals that cannot be well-characterized using the sim-
plest version of the convolution model based on using the
stimulus envelope as an input waveform [e.g., Boynton

et al., 1996; Pfeuffer et al., 2003; Vazquez and Noll, 1998].
However, animal studies that incorporate electrophysiolog-
ical measurements of neural activity have found that
responses to brief stimuli (<4 s) do not deviate from line-
arity [e.g., Ances et al., 2000; Martindale et al., 2003, 2005].
Several authors have suggested that nonlinearities in the
signaling process between stimulus input to neural
response may account for this discrepancy, such as adapta-
tion of the neural signal [Boynton et al., 1996; Miller et al.,
2001; Nangini et al., 2005; Pfeuffer et al., 2003; Soltysik
et al., 2004]. This is plausible based on independent meas-
urements of several aspects of neural activity (e.g., firing
rates, evoked potentials, LFPs) in many sensory cortices
that show transient signal increase followed by a steady-
state component in response to sensory stimuli [Albrecht
et al., 1984; Ances et al., 2000; Logothetis et al., 2001;
McLaughlin and Kelly, 1993; Nangini et al., 2006; Whitsel
et al., 2003].
Because BOLD fMRI signal linearity studies in humans

have not been conducted with a complementary neural
measurement, it is unknown whether the failure of the
convolution model is based on poor representation of the
neural activity input to the convolution model [Martindale
et al., 2005], or deviation from the convolution model itself.
The natural next step is to investigate whether replacing
the stimulus boxcar waveform with an appropriate wave-
form derived directly from MEG measurements can pro-
vide better characterization of BOLD signal behavior under
the convolution model for different duration stimuli. This
is plausible, given that under appropriate experimental
conditions, the strength of the equivalent current dipole
(ECD) obtained in MEG in response to sensory stimulation
approximates the number of activated neurons and indi-
rectly quantifies the area of cortical activation [Pantev
et al., 1998].
A novel method of integrating MEG and BOLD fMRI

data with the convolution model is presented based on a
metabolic argument underlying neurovascular coupling. It
is hypothesized that the energy density of the MEG wave-
form provides a good representation for the neural input
function. To test this idea, the relationship between MEG
energy density and BOLD signals in SI cortex is examined
using the convolution model, based on MEG results in the
literature obtained using 1 s trains of 22 Hz vibrotactile
stimuli [Nangini et al., 2006]. The model results are com-
pared with the typical formulation of the convolution
model which uses the envelope of the stimulus profile as
input.

MATERIALS AND METHODS

Theory

MEG signals are a consequence of postsynaptic potentials
(PSPs) [e.g. Hamalainen et al., 1993], and PSPs have also
been implicated in the generation of fMRI signals [Hama-
lainen et al., 1993; Lauritzen and Gold, 2003; Logothetis
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et al., 2001]. Thus, the metabolic energy required in PSP gen-
eration is likely to relate to both MEG and fMRI signals. The
associated hemodynamic response is driven by the neural
metabolic demand, although deviations in this relationship
have been reported in patients with neurological abnormal-
ities. For example, neuromagnetically active brain areas in
the vicinity of high-grade gliomas have been associated with
reduced BOLD signal in the same area in some patients
[Grummich et al., 2006]. Under conditions of healthy neuro-
vascular coupling, the metabolic energy driving PSP genera-
tion, and consequently fMRI signals, could serve as an input
to the convolution model. However, when only MEG and
fMRI data are available, this metabolic demand can only be
indirectly inferred.
In the postsynaptic cell, sodium–potassium pumps must

hydrolyze ATP energy molecules in order to maintain
ionic concentration gradients that allow current flow across
the cell membrane [Laughlin et al., 1998]. These pumps
consume ATP at a rate proportional to the current I [Att-
well and Laughlin, 2001]:

ATP consumption rate ¼ I=F; ð1Þ

where F is Faraday’s constant (amount of electric
charge in one mole of electrons). The molecular energy
consumption thus gives rise to an ionic current, which
in turn generates an electric and magnetic field measur-
able with EEG and MEG, respectively.
The energy contained in a magnetic field B is given by

the energy density u (J/m3).

u ¼ B2=2m0; ð2Þ

where m0 is the permeability of free space. This expres-
sion is valid for any volume of space in which a mag-
netic field exists. In the case of MEG, B is linearly
related to the equivalent current dipole (ECD) source
[Hamalainen et al., 1993], and the energy density can
easily be obtained by squaring the ECD waveform.
Thus, ECD2 is proportional to u and proportional to
metabolic energy demand.
The notion that the MEG energy density input to the

convolution model can accurately predict SI BOLD signal
data forms the basis of our hypothesis. The modeling and
experimental details are given below.

Mathematical Modeling

An fMRI experiment was designed to assess the ability
of MEG density waveforms, in comparison with stimulus-
derived waveforms, to characterize the fMRI signals from
SI using the linear convolution model:

rðtÞ ¼ c � HRFðtÞ � nðtÞ ð3Þ

where r(t) is the predicted BOLD signal in units of per-
cent (%), c is an amplitude scaling factor, HRF(t) is the

hemodynamic response function, � denotes the convo-
lution operator, and n(t) refers to the neural input func-
tion. The HRF represents the hemodynamic response to
a brief stimulus; it has been measured across various
primary sensory cortices and has been found to have a
characteristic shape like the one shown in Figure 1. For
the modeling, the HRF was assigned fixed parameter
values (delay ¼ 2 s, peak ¼ 4 s, full-width at half-maxi-
mum &4 s, return to baseline &11 s) consistent with
the literature [Friston et al., 1998; Kwong et al., 1992],
and was normalized to 1.
Model 1 represented the ‘‘simple’’ formulation, in which

n was proportional to the envelope of the stimulus wave-
form. In Model 2, n was proportional to the energy density
of the MEG source waveforms. The neural input function
for each model was normalized to 1. Dimensional analysis
of Eq. (3) shows that the scaling factor c must be in (%)
units, identical to those of r(t).

Experimental Overview

Results from a previous MEG study were used to pro-
vide applicable ECD waveforms for predicting BOLD sig-
nals according to Eq. (3) using Model 2. The MEG study
utilized 1 s trains of vibrotactile stimulation provided by a
pneumatically controlled stimulus device configured to
produce trains of 22 Hz oscillations in a circular mem-
brane applied to the right index finger [Nangini et al.,
2006]. The stimulus delivery is shown in Figure 2A, illus-
trating the stimulus profile waveform used as the input for
Model 1.

Figure 1.

The HRF used in least-squares fitting. The parameters of the

HRF were obtained from the scientific literature (see text for

details).
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MEG Study

As described in detail [Nangini et al., 2006], ECD source
waveforms were fit to low (<20 Hz) and bandpass (18–
30 Hz) filtered MEG data to isolate the transient responses
and steady-state responses (SSRs), respectively, to the
vibrotactile stimulus train. These responses, averaged over
a group of eleven healthy young adult participants, are
shown in Figure 2B for an interstimulus interval (ISI) of
7,000 ms.
The MEG study showed that the SSR amplitude remained

constant as a function of ISI, while the transient amplitude
increased asymptotically to a maximum value by ISI ¼ 7,000
ms. Consequently, a ‘‘composite’’ waveform consisting of
the lowpass-filtered transient response added to the enve-
lope of the bandpass-filtered SSR was created to represent
the total MEG source waveform for a 1,000 ms stimulus du-
ration. Because the transient response peaked near 50 ms
and returned to baseline well before 200 ms, the shortest
stimulus duration in the fMRI experiment, the MEG
response waveforms for the subsecond stimulus durations
were constructed by simply truncating the SSR envelope to
terminate �100 ms after stimulus offset, as seen in the origi-
nal 1,000 ms SSR waveform. The energy density, defined as

the square of the ECD waveform (see above), was then com-
puted for all three stimulus durations.

fMRI

Eleven healthy right-handed young adults (7 males, 4
females, aged 23–36 years) participated in the fMRI experi-
ment, performed at Sunnybrook Health Sciences Centre.
Five had participated in the previous MEG study. FMRI
was performed using a 3.0 T MRI system (Signa EXCITE
3.0T, release 11.0; GE Healthcare, Waukesha, WI) with spi-
ral-in/out k-space acquisitions [Glover and Law, 2001]
(FOV ¼ 19 cm, matrix ¼ 64 � 64, 4-mm slice thickness,
TE/TR/u ¼ 30/1,000/50). Voxel size was 3 � 3 � 4 mm3.
Anatomical axial MRI with high spatial resolution was
performed using conventional spoiled-gradient (SPGR)
imaging (24 cm FOV, 1.4 mm thickness, matrix ¼ 256 �
128, TE/TR/u ¼ 6/35/35).
In the fMRI experiment, the stimulus apparatus and

delivery were very similar to that reported in the MEG
study described above, given that the pneumatic system
was intrinsically fMRI-compatible. The sole difference was
that to test the ability to model BOLD responses, stimulus

Figure 2.

(A) The stimulus train used in MEG and fMRI experiments con-

sisted of 22 Hz oscillations as recorded by force-sensitive resis-

tor (FSR) voltage, shown here for a 1,000 ms stimulus. The time

axis has been adjusted so that zero coincides with the time at

which the membrane first contacts the finger. Membrane con-

tact with the finger is shown by a light gray line; the stimulus

envelope is marked by a dotted line. (B) Group average tran-

sient response (left) and SSR (right) obtained from previous MEG

experiments for ISI ¼ 7,000 ms. (Adapted from Nangini et al.,

[2006]: Neuroimage 33:252–262, 'Academic Publishers).

r Nangini et al. r

r 100 r



train duration was varied (200, 500, and 1,000 ms) and ISI
was large (60 s for 4 participants, 50 s for 2, and 25 s for
the other 5) to enable BOLD signals to return to baseline
between stimulus trains. The fMRI stimulus paradigm con-
sisted of three runs, one for each stimulus duration. In
each run, four durations of 22 Hz vibrotactile stimulation
were presented. There were at least 25 imaging measure-
ments per stimulus duration to follow the time-course of
the resulting BOLD response. Each run was presented in
random order with respect to stimulus duration. Based on
previous experience in our lab, two inflatable membranes
were placed on the palmar surface of the distal phalanges
of the right index finger to increase signal-to-noise ratio of
the fMRI responses. Cardiac and respiratory data were col-
lected for each run using a photoplethysmograph and bel-
lows, respectively.

fMRI Data Analysis

fMRI data were processed for each stimulus duration to
obtain the BOLD signals from a region of interest (ROI)
located in SI, and subsequently used as input data for both
mathematical models. Using analysis of functional neuroi-
mages (AFNI) software [Cox, 1996], the fMRI time series
data were motion-corrected, spatially smoothed with a
Gaussian filter (FWHM ¼ 6 mm), and corrected for cardiac
and respiratory motion [Glover et al., 2000]. Each time point
was normalized by the voxel-wise time series mean to con-
vert BOLD signals into units of percent signal change. Indi-
vidual activation maps were created for each stimulus dura-
tion by linear regression using the AFNI program 3dDecon-
volve. The regression model included a baseline second-
order polynomial and a reference waveform generated by
convolving the envelope of the stimulus waveform with an
hemodynamic response function (HRF) obtained using the
AFNI waver program, with parameter values consistent with
those reported in the literature (peak ¼ 4–5 s, fall ¼ 4–5 s)
[Friston et al., 1998; Kwong et al., 1992]. The resulting activa-
tion maps were restricted to the SI hand region in the post-
central gyrus and corrected for multiple comparisons using
the false-discovery rate algorithm in AFNI (3dFDR) with q ¼
0.05 [Genovese et al., 2002].
The threshold activation maps for each stimulus dura-

tion were then used to localize SI functionally for inclusion
in the mathematical modeling. The slice containing the SI
hand region was identified for each participant based on
the high-resolution anatomical images, and only voxels
activated in this slice were extracted. The ‘‘single trial aver-
age’’ was then calculated for each voxel time series, con-
sisting of the average stimulus-locked BOLD response for
the four repetitions of each stimulus duration. These time-
averaged responses were then spatially averaged over all
voxels in the ROI, producing a single time series represent-
ing the SI response. For each stimulus duration, individual
ROI-averaged time series were averaged across the group,
and the mean and variance at each time point were used
in the mathematical modeling.

All time series data for individuals were observed to lie
within 62.0 standard deviations from the mean at each time
point. The notable exception was the data for the 500 ms
stimulus duration for one participant, which fell substan-
tially outside these boundaries. There are multiple sources of
spurious signals that potentially could confound the BOLD
responses of interest, such as cardiac or respiratory fluctua-
tions, or a perturbation in the attention level of the partici-
pant. Consequently, these data were characterized as outliers
and were excluded from subsequent reporting of the results.
Including or excluding these data did not affect the main out-
come of comparing Model 1 and Model 2, although model
estimates were slightly affected (and parameter uncertainties
increased) when the data were included.

Least-Squares Fitting

The parameter value c [Eq. (3)] was obtained by calculat-
ing a least-squares fit to minimize x2 (Matlab function
‘‘constr’’; The Mathworks, Natick, MA) using the sum of the
square of the residuals between each linear convolution
model and the group average BOLD data, taking account of
the variance calculated at each datum (see above). Data for
all three stimulus durations were considered simultane-
ously. Uncertainty in the parameter estimate was deter-
mined from the Hessian matrix [Press et al., 1987]. Reduced
x2 values, defined as xr

2 ¼ x2/(DOF � 1), were computed to
evaluate goodness-of-fit, where DOF was the number of
degrees of freedom. For a good fit, the square of the resid-
uals at each time point approaches the variance, such that xr

2

&1 [McClave and Dietrich, 1982]. To determine whether
using Model 2 versus Model 1 significantly improved model
fits to the group data, an F-test was conducted on the ratio
s2Model1/s

2
Model2, where s2 was defined as the sum of the

square of the residuals divided by N � 1, where N is the
number of time points in the dataset.

RESULTS

Table I shows the number of participants who activated
under each condition and the number of significantly acti-
vated voxels, broken down by stimulus duration and ISI.
Three participants activated for the 200 ms stimulus, fol-
lowed by six for the 500 ms stimulus, and four for the
1,000 ms stimulus. Among the participants who activated,
the number of significantly activated voxels ranged from 9
to 287 (median ¼ 98).

TABLE I. Results of fMRI processing

200 ms 500 ms 1000 ms

ISI (s) Np N Np N Np N

25 s 0 – 3 39, 48, 144 3 179, 94, 101
60 s 3 117, 13, 98 3 43, 106, 9 1 287

Np ¼ number of participants who activated; N ¼ number of sig-
nificantly active voxels.
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Composite waveforms consisting of the lowpass-filtered
transient response added to the envelope of the bandpass-
filtered SSR are shown in Figure 3A for all stimulus dura-
tions. The shortest stimulus duration (200 ms) is too brief
for the SSR to initiate; hence, this waveform consists of the
transient response only. The corresponding energy density
waveforms, given by the square of amplitude, are shown
in Figure 3B. The energy density is clearly dominated by
the transient response, which is much larger than that
associated with the SSR for the 500 ms and 1,000 ms stim-
ulus durations. These energy density waveforms were
used in Model 2 for the neural input function n in Eq. (3).
Note that the negative amplitudes in the transient wave-
forms of Figure 3A are now a positive contribution to the
convolution integral in Model 2.
Figure 4 shows the BOLD fMRI experimental data and

the two least-squares model fits for the group average, for
all stimulus durations. Qualitatively, both models fit the
BOLD response at 500 ms stimulus duration. However,
Model 1 predictions clearly underestimate and overesti-
mate the peak BOLD signal amplitude at stimulus dura-
tions of 200 ms and 1,000 ms, respectively. In contrast,
Model 2 predictions fit the peak amplitudes substantially
better in both the short and long stimulus regime. Both
model fits were similar in terms of their estimates of the
BOLD signal before the peak response, i.e. in the rise time;
however, because of the amplitude misfit of Model 1, the
full-width-at-half-maximum (FWHM) for the 1,000 ms
stimulus was overestimated compared to Model 2. Fit pa-
rameters (c, x2, reduced x2, s2) are given in Table II for

both models. The reduced x2 was improved by a factor of
�20% in Model 2. F-test results comparing Model 1 to
Model 2 (F(74,74) ¼ 1.37, P < 0.05) indicate that the
improved fit to the data was statistically significant.

DISCUSSION

The present study provides a simple, theoretical argu-
ment for using MEG-derived energy density waveforms to
improve prediction of the BOLD signal in the convolution
model for short duration vibrotactile stimuli. The observed
data experimentally support the theory: least-squares fit-
ting of the convolution models [Eq. (3)] to the BOLD data
showed that Model 2 adequately represented the data
within error (Fig. 4) substantially better than Model 1. The
reduced x2 value for Model 2 improved by �20%, but was
still higher than the expected value of 1.0 due to the vari-
ability of the BOLD data itself-for example, in the initial
amplitude (at time ¼ 0) and the rise time at the 1,000 ms
stimulus. These variations, however, are only minor con-
siderations in the overall goodness-of-fit evaluation.

Physiological Neural Input Functions

As outlined in the introduction, numerous studies moti-
vated the use of experimentally-derived neural input func-
tions in the convolution model. For example, Ances et al.
[2000] and Eichele et al. [2005] used the amplitude change
of the early latency evoked potential, as a function of time,
in response to successive brief stimulus events in rat soma-

Figure 3.

Left column: composite waveforms

consisting of the transient re-

sponse added to the envelope of

the SSR for all three stimulus

durations. The MEG response

waveforms for the subsecond

stimulus durations were con-

structed by simply truncating

the SSR envelope. Edges in

waveforms were not smoothed

since this is intrinsically done by

the low-pass filter nature of the

HRF. Right column: correspond-

ing energy density functions for

each composite waveform.
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tosensory and human auditory cortex, respectively. Such
changes in neural activity were not observable in the pres-
ent work due to differences in stimulus conditions; there-
fore, an alternative measure was required.
The present work derived a neural activity waveform

based on the biophysics and neurophysiology of the MEG
response. Magnetic fields due to neurons with elongated
dendrites, such as the pyramidal cells, which constitute
the majority of the neural population in the cerebral cortex
[Creutzfeldt, 1995], sum to produce measurable magnetic
fields outside the head. Owing to the cortical folding in SI,
the magnetic fields generated by pyramidal cells in Area
3b will have a substantial tangential component, to which
MEG is sensitive (see Hamalainen et al., 1993]. The MEG
signal in SI is a consequence of the intracellular currents
triggered by thalamic inputs from the periphery, and rep-
resents, at least in part, the time course of synchronously
active neural populations.
It is thought that the main contribution to extracellular

current comes from excitatory postsynaptic potentials
(EPSPs) [Attwell and Iadecola, 2002; Mitzdorf, 1985],
which likely reflect hemodynamic activity. The intracellu-
lar current (equal to the extracellular current due to cur-
rent continuity) is the basis of the MEG signal. The energy
contained in the MEG signal (proportional to the square of
the current) can be thought of as the physical energy corre-
late of metabolic energy-demanding processes. It is this
energy function that, when input into the convolution
model, ties the physics of MEG to the neurobiology of the

BOLD signal. Although recent work has suggested that he-
modynamic responses are triggered by neurotransmitter-
related signaling rather than direct local energy needs of
the brain [Attwell and Iadecola, 2002], these signaling
events themselves are correlated to energy demand. The
present work does not need to consider whether the mech-
anisms underlying vasodilation to increase CBF are driven
by neurotransmitters or by oxygen depletion in order for
the energy argument to be valid, because either way neu-
ral activity is colocalized with oxygen usage [Attwell and
Iadecola, 2002], in the absence of disease.
The amplitudes of evoked MEG or EEG signal compo-

nents are not plausible candidates for the neural input
function in the present formulation of the convolution
model. The negative amplitude in these waveforms do not
have a physical meaning when considering that it is the
energy demand associated with neural activity that leads
to BOLD signals. This is in contrast to a recent theoretical
study [Robinson et al., 2006] in which simulated ERP
waveforms were input into the hemodynamic state equa-
tions of Friston et al. [2003]. As a result, the signed area

Figure 4.

Least-squares fitting results for

Model 1 based on the Boxcar

stimulus input waveform (left

column) and for Model 2 based

on the MEG energy density

(right column). Solid line: BOLD

data; Dash-dot line: Model re-

sults. Model 2 provides a better

fit to the experimental data.

TABLE II. Least-squares model fit parameters

Model c (% DS) x2 (102) Reduced x2 s2 (10�1)

1 (4.0 6 0.2) � 10�3 1.6 2.1 4.8
2 (2.3 6 0.1) � 10�4 1.2 1.6 3.2
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under the ERP waveform influenced the amplitude of the
estimated BOLD signal. This alternate approach requires
confirmation with experimental data, and it will be inter-
esting to compare both these models in future.

Power Measures as Neural Correlates

to BOLD Signal

The concept of an amplitude-squared measure (i.e.
energy density or power) has been used in several studies
investigating the neural correlates of fMRI signals. For
example, spectral power changes of microelectrode record-
ings as a function of time have been correlated with BOLD
signals in monkey visual cortex [Logothetis et al., 2001].
An EEG-fMRI study in human visual cortex found a linear
relationship between mean powers of EEG current sources
and neuronal efficacies derived from BOLD signals for a
range of stimulus frequencies, and considered neurovascu-
lar coupling as a power transducer that transfers the
power of neural activity across all frequencies into the vas-
cular input [Wan et al., 2006]. Others have used power
changes of ongoing EEG rhythms in the convolution
model to predict BOLD signal changes [e.g. Goldman
et al., 2002; Laufs et al., 2006; Moosmann et al., 2003,
Parkes et al., 2006]. The current study is novel in that it
uses the power of the stimulus-locked evoked MEG activ-
ity to account for BOLD signal changes.

Critique of Convolution Model

The convolution model approach has been critiqued by
some authors because it is unable to predict both neural
and BOLD signals [Kilner et al., 2005]. They proposed a
heuristic model that generates EEG spectral changes and
resulting BOLD signal changes, showing that the rate of
energy dissipation induced by transmembrane currents
shifts the EEG spectral profile to higher frequencies, pro-
ducing a-band desynchronization that correlates with the
BOLD signal [c.f. Goldman et al., 2002; Laufs et al., 2006;
Moosmann et al., 2003]. The present study is similar in
that, although it does not predict MEG signals, it attempts
to unify MEG and fMRI signals based on a common
energy argument. Theoretical studies have calculated the
correlation between MEG signal amplitude and energy
used by active neurons in units of [Na+] concentration
[Aubert et al., 2001; Babajani et al., 2005]. Many assump-
tions are involved in these calculations, and the data in the
current study are insufficient to model the numerous
mathematical variables involved. Nevertheless, the argu-
ment for MEG energy density is simple and compelling.

Additional Limitations

The theoretical basis of the present study is a simplifica-
tion of the processes underlying the generation of the
BOLD signal. MEG signals are only surrogate measures of
the neural activity and do not encompass other energy-

demanding processes that also contribute. For example, in-
hibition has been implicated at different stages of sensory
processing [e.g. McLaughlin and Kelly, 1993] and is known
to increase synaptic glucose uptake [Jueptner and Weiller,
1995]. However, the role of inhibition in BOLD signal gen-
eration is unclear. Waldvogel et al. [2000] did not see
BOLD changes during an inhibition task and argued that
inhibitory processes are more energy-efficient on account
of the low ratio of inhibitory to excitatory synapses (1:6)
[see Salek-Haddadi et al., 2003, for a review]. The relative
contribution of power changes in stimulus-locked brain ac-
tivity versus ongoing brain rhythms is also unknown,
since a study comparing them is currently lacking. In addi-
tion, although many studies suggest that a measure of syn-
aptic input (such as the LFP) is a better correlate to hemo-
dynamic activity than spiking output [e.g. Logothetis et al.,
2001; Thomsen et al., 2004], action potentials have been
found to demand the largest fraction of total energy (47%)
in the rodent brain [Attwell and Laughlin, 2001]. However,
in primates, action potentials were predicted to consume
only 10% of the signaling energy [Attwell and Iadecola,
2002], consistent with the high density of mitochondria in
dendrites [Wong-Riley, 1989]. The postsynaptic/action
potential origins of the BOLD signal remain intensely
debated; nevertheless, the results reported here suggest
that the EPSP current/MEG energy density provide a
major contribution to BOLD fMRI signals.
An additional potential criticism involves the decision to

use a standardized HRF based on published values. The
effect of varying the HRF parameters on the fit results of
Models 1 and 2 was investigated to determine if Model 2
improvements could be attributed to different HRF specifi-
cations. It was found that the goodness-of-fit for each model
was influenced by different parameter combinations; how-
ever, Model 2 always accounted for more of the variance
than Model 1. It is likely that refining the exact parameters
of the HRF by, for example, using nonparametric equations,
would not change the overall conclusion. This is plausible
given that, for short stimulus durations (e.g. �4 s), it can be
shown that the convolution of HRFs, having parameter val-
ues specified within a plausible range, with boxcar func-
tions of increasing duration will always result in output
amplitudes that scale with boxcar duration [c.f. Glover,
1999]. However, the peak amplitudes of the measured
BOLD data did not increase proportionally to the stimulus
duration; in fact, the amplitudes were very similar, within
error. This is consistent with the information provided by
MEG, which showed that the transient response was the
dominant influence on the MEG waveform, so that small
increases duration of the SSR, as in the current work,
should not significantly alter the BOLD signal.
fMRI signals in SI cortex, however, were difficult to

observe, as indicated by Table I. Others have also reported
low success rates in response to vibrotactile stimuli [e.g.
Tuunanen et al., 2003], but no systematic study has been
conducted to determine the underlying cause. Passive
vibrotactile stimulation requiring no attention and no
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response produces smaller fMRI signals in SI compared to
vibrotactile stimulation requiring selected attention, such
as discrimination of small frequency changes in the sti-
mulus, consistent with electrophysiological observations
[Staines et al., 2002]. In addition, it is possible that ‘‘resting
state’’ fMRI signals could lead to substantial noise contam-
ination [Kiviniemi et al., 2003]. Encouragingly, it was still
possible to obtain statistically significant results across a
small group of individuals in the present work.
To conclude, this study presents a novel way of integrat-

ing MEG and fMRI data within the context of the convolu-
tion model. Incorporating the energy density of neuro-
magnetic source waveforms was found to be an effective
approach to modeling BOLD signals generated by con-
stant-amplitude vibrotactile stimulus trains in the subsec-
ond stimulus regime. The modeling results provide insight
into previous human studies which have not taken the
temporal characteristics of the neural activity into account.
Future work to evaluate the applicability of this approach
across a wide range of stimulus delivery parameters will
be very informative.
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