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Abstract

Genome-wide strategies have driven the discovery of more than 300 susceptibility loci for 

autoimmune diseases. However, for almost all loci, understanding of the mechanisms leading to 

autoimmunity remains limited, and most variants that are likely to be causal are in non-coding 

regions of the genome. A critical next step will be to identify the in vivo and ex vivo 
immunophenotypes that are affected by risk variants. To do this, key cell types and cell states that 

are implicated in autoimmune diseases will need to be defined. Functional genomic annotations 

from these cell types and states can then be used to resolve candidate genes and causal variants. 

Together with longitudinal studies, this approach may yield pivotal insights into how 

autoimmunity is triggered.

Critical to the success of the adaptive immune system is the ability to distinguish pathogens 

from self-antigens (BOX 1). Autoimmunity occurs when a failure in this recognition process 

leads to erroneous immune responses that damage healthy tissues. The first case of 

autoimmunity was recognized in 1904, through the observation of autoreactive antibodies in 

patients, which reacted to self-blood cells
1
. To date, more than 80 diseases have been found 

to have an autoimmune pathogenesis, with half of these considered to be rare
2
. Worldwide, 

autoimmune diseases, such as type 1 diabetes mellitus (T1DM), inflammatory bowel disease 

(IBD) or rheumatoid arthritis (RA), are now estimated to affect 7.6–9.4% of the population
3
. 

The prevalence of autoimmune diseases is typically higher in women than in men; systemic 

Correspondence to S.R. ; Email: soumya@broadinstitute.org 

Competing interests statement The authors declare no competing interests.

HHS Public Access
Author manuscript
Nat Rev Genet. Author manuscript; available in PMC 2016 June 07.

Published in final edited form as:
Nat Rev Genet. 2016 March ; 17(3): 160–174. doi:10.1038/nrg.2015.33.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



lupus erythematosus (SLE) is an extreme example, with a 10:1 female to male ratio. In the 

USA and the UK, auto immune diseases are within the top 10 leading causes of death for 

women aged up to 65 years and up to 75 years, respectively
4,5. Moreover, autoimmune 

disease prevalence can vary by ethnicity (TABLE 1). For example, multiple sclerosis (MS) is 

ten times more common in North American cohorts than in those from South American 

countries
3
, and SLE is more frequent in individuals of African ancestry than in those of 

European ancestry
6
.

Despite knowledge of the epidemiology of autoimmune diseases, much remains to be 

understood in how self-tolerance is broken down and how autoimmunity is triggered. 

Although experiments in mouse models have established the foundation for our 

understanding of basic immunology, findings have overall not been translated successfully to 

human disease
7
. Currently, only a handful of alleles exist for which the mechanisms 

triggering autoimmune disease are defined to some extent.

With the development of high-throughput sequencing technologies, genome-wide 

association studies (GWAS) have uncovered hundreds of risk loci for autoimmune diseases 

(see Immunobase), many of which overlap across different disorders
8
. However, the 

genomic regions implicated by these risk loci are large, with up to a dozen or more potential 

candidate genes within each locus, and many contain polymorphisms that often have small 

effect sizes. Furthermore, most putative causative variants fall in non-coding regions of the 

genome and are enriched in distant regulatory elements. Therefore, besides continuing 

efforts to fine-map the causative variants and defining the genes involved, new approaches 

are needed to understand how risk variants affect gene regulation and immune function.

A key next step will be to define in vivo and ex vivo cellular and molecular immune traits 

that are influenced by genetic susceptibility factors and that are implicated in the 

development of autoimmunity. Elucidating how genetic risk variants alter immune traits 

within the human immune system will help us understand the impact they have on 

autoimmune disease risk (FIG. 1). This line of research will include the longitudinal 

measurement of a wide range of immunophenotypes, such as signalling responses, immune 

cell abundances and serum cytokine levels, in thousands of individuals, and in the context of 

the individuals' local environmental conditions.

Here, we review recent advances in gene mapping and fine-mapping of autoimmune disease-

causing variants. We illustrate the genetic basis behind autoimmune disease by focusing on 

12 common autoimmune diseases for which GWAS have been reported (FIG. 1). We then 

discuss recent functional genomics approaches that have the potential to help define key 

immune molecular traits, cell types and cell states. Finally, we highlight the necessity of 

quantifying immune traits to better understand the mechanisms of autoimmunity.

Familial clustering of autoimmune diseases

Autoimmune diseases cluster in families, indicating a substantial genetic component 

(TABLE 1) as well as a shared (and often unique) environmental component. Many studies 

suggest that disease concordance in monozygotic twins (that is, genetically identical 
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individuals, who share the same alleles) is significantly higher than that observed for 

dizygotic twins (who share one-half of their alleles)
9
. For example, monozygotic twins 

exhibit 25% concordance for MS, whereas dizygotic twins have 5.4% concordance
10,11. 

Additionally, the risk of autoimmune disease in siblings of an affected individual is 

significantly higher than that of the general population, as measured by the sibling 

recurrence risk (λs; with a high λs value (for example, greater than ~5) indicating a high rate 

of recurrence). For example, psoriasis has a λs of ~6 (REF. 12), and the λs value for Crohn's 

disease is ~20 (REFS 13,14). However, λs and estimates of disease concordance can be 

unreliable, given their dependence on disease prevalence, shared environment among 

siblings, sample size, and the sex and age of ascertained patients
15

.

Interestingly, autoimmune diseases co-occur in families more often than expected by their 

individual population prevalence
16

. For instance, Crohn's disease and ulcerative colitis have 

very high co-occurrence (pairwise odds ratio, estimated from logistic regression predicting 

one disease from another, ~67.4)
17

 and a significantly high genetic correlation based on 

findings from GWAS
18

. Even diseases affecting different organ systems can have high co-

occurrence. For example, coeliac disease, which affects the small intestine, and T1DM, 

which affects the pancreas, have high co-occurrence (pairwise odds ratio ~4.2)
17

. These 

findings suggest that there are common genetic factors across multiple autoimmune diseases.

Genetic factors associated with autoimmunity

Several approaches have been used to map the genetic variants contributing to autoimmune 

diseases. The first approaches, before the genomics era, were mainly based on families and 

captured a few of the loci with larger effect sizes. Later, high-throughput genome-wide 

technologies led to the identification of hundreds of common variants with small to 

moderate effect sizes. Larger cohorts and standardized technologies targeted for 

autoimmunity, such as the ImmunoChip, have further advanced the discovery and fine-

mapping of disease loci. Finally, studying rare variants has yielded mechanistic insights into 

autoimmunity.

Discovery of susceptibility loci with large effect sizes

Early linkage analysis in pedigrees with patients enabled the identification of susceptibility 

loci with large effect size for autoimmune diseases, such as the major histocompatibility 

complex (MHC) locus for T1DM
19

 and SLE
20

, nucleotide-binding oligomerization domain-

containing 2 (NOD2) for Crohn's disease
21

 and IBD5 for IBD
22

. The MHC locus contributes 

to autoimmune disease risk more significantly than do any other known loci. In T1DM, 30% 

of disease liability is attributed to the MHC locus, compared with 9% for other loci 

discovered across the rest of the genome with GWAS
23

. Although the MHC locus is a 3.6-

Mb region comprising >250 genes
24

, most associations are mediated by a handful of human 

leukocyte antigen (HLA) genes (FIG. 2a), which encode the receptors that are expressed by 

antigen-presenting cells to trigger the immune response.

In psoriasis, a series of linkage studies over the course of 9 years led to the identification of 

CARD14 as a susceptibility gene, starting with mapping to the long arm of chromosome 17 

using polymorphic microsatellite markers in 8 families with multiple affected members
25

, 
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and ending with the identification of CARD14 mutations that altered splicing in 2 families 

through targeted genomic capture and sequencing
26

. CARD14 encodes a caspase 

recruitment domain-containing protein, and the risk alleles for psoriasis yield an increased 

activation of nuclear factor-κB (NF-κB) in keratinocytes, which could initiate the 

recruitment of inflammatory cells
26

.

Subsequent candidate gene studies in autoimmune diseases — although generally 

unsuccessful at identifying reproducible results
27

 — yielded several key discoveries. Most 

notably, a non-synonymous variant in PTPN22 was shown to be associated with many 

autoimmune diseases, including T1DM, RA, SLE and Graves disease
28–31

. This gene 

encodes the tyrosine phosphatase lymphoid phosphatase (LYP), which is involved in 

signalling pathways during T cell and B cell receptor response. The risk variant affects the 

binding of LYP to the signalling suppressor SRC kinase
31

. However, the actual functional 

mechanisms leading to auto immunity are still an active area of investigation, more than 10 

years after this discovery. The variant has been shown to both increase and decrease T cell 

receptor (TCR) activation in T cells, to disrupt B cell tolerance checkpoints and to alter Toll-

like receptor (TLR) signalling and the production of type 1 interferon (IFN) in myeloid 

cells
32

.

Another autoimmune disease-relevant gene, linked initially to T1DM through candidate 

gene studies, is CTLA4
33

. This gene encodes an immunoglobulin-like protein expressed on 

the surface of T helper (TH) cells that functions as an inhibitor of activation. CTLA4 is also 

associated with patients with autoantibody-positive RA
27

. Association of CTLA4 with other 

autoimmune diseases, including alopecia areata (a condition in which the body attacks hair 

follicles, resulting in hair loss)
34

, were subsequently established by GWAS
35

, which have 

been successful for the identification of numerous common variants across multiple 

autoimmune diseases.

Detection of common risk variants through GWAS

Over 100 GWAS have been conducted to identify common variants associated with 

autoimmune diseases. For most diseases, dozens of susceptibility loci have been discovered, 

with more than 100 loci identified for RA
36

 and IBD
37

 (TABLE 1). Similarly to other 

complex diseases, most single-nucleotide polymorphisms (SNPs) associated with 

autoimmune disease have small to moderate effect sizes. For example, odd ratios of loci 

outside the MHC associated with psoriasis range from ~1.1 to 1.6, and those of loci 

associated with autoimmune thyroid disease range from 1.2 to 1.6 (as listed on 

Immunobase).

Multiple risk loci are shared between autoimmune diseases, which is consistent with them 

having common genetic aetiology
8,38. For example, nine diseases show an association with 

the STAT4 locus; notably, however, different SNPs in this locus may drive susceptibility for 

different diseases. The STAT4 protein plays a major part in cytokine signalling pathways in 

specific TH cell populations. In addition, the same allele can increase risk for one disease but 

be protective for another, as has been shown for eight loci in a study analysing ten 

autoimmune diseases with paediatric age of onset
39

. Other susceptibility loci are specific for 

each disease and reflect their uniqueness in their pathology. For example, the insulin gene 
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(INS; whose variable number of tandem repeats, tagged by SNP rs689, is associated with 

risk) is associated with T1DM but no other autoimmune disease, consistent with an 

aetiology defined by the destruction of insulin-secreting β-cells
40,41.

Overall, GWAS have widely expanded the number of loci associated with autoimmune 

diseases, which has enabled researchers to jointly analyse loci and look for common 

pathways. This approach has led to the observation that autoimmune disease risk genes often 

cluster in key immunological pathways
42

. Intriguingly, in some of these pathways there is 

evidence of natural selection. An examination of 40 autoimmune disease risk loci suggested 

selective pressure driven by pathogens (such as Plasmodium falciparum, which causes 

malaria)
43

. Thus, some risk alleles for autoimmune diseases may have increased in 

frequency in the population because they have been favourable for fighting infectious 

disease
44

. For example, IL23R, which is associated with six autoimmune diseases, and 

TYK2, which is associated with seven autoimmune diseases, are part of the IL-23R response 

pathway and present evidence for selection implicating Protozoan pathogens
42,43,45.

Fine-mapping of disease-causing risk variants

Associations between HLA genes and autoimmune diseases have been described since the 

1970s
46

; however, pinpointing the alleles driving the HLA associations has been challenging 

owing to the highly polymorphic nature of these genes and the long-range linkage 

disequilibrium (LD) across the MHC region. Before 2012, associations of RA with the MHC 

were explained by the `shared epitope hypothesis', which asserted that RA risk is driven by a 

common consensus sequence in the protein encoded by HLA-DRB1, encompassing amino 

acids 70–74 along the rim of the antigen-binding groove
47

. These amino acid residues were 

thought to mediate T cell activation. However, a fine-mapping study in 2012 indicated that 

~90% of the MHC risk in RA is attributable to a specific amino acid residue in position 13 at 

the bottom of the DRβ1 antigen-binding groove, and that amino acids 71 and 74 (whose side 

chains point into the antigen-binding groove) independently modulate RA susceptibility
48 

(FIG. 2b). Independent genetic association effects at HLA-B and HLA-DPB1 are explained 

by a single amino acid site at the bottom of the binding grooves of the protein products. 

Thus, amino acid sites that modulate binding to specific antigens mediate RA risk. Similar 

results have now been confirmed in Asian and African populations that mainly involve the 

same amino acids but sometimes present differences in effect sizes, potentially driven by 

differences in minor allele frequency between populations
49,50. These and other studies 

underscore the utility of trans-ancestral cohorts for fine-mapping genetic associations
51

. 

Similarly, for T1DM, a secondary association to DRβ1 at positions 13 and 71 explains much 

of the class II HLA association with T1DM, in addition to the well-known HLA-DQB1 
position 57 association

23
. Certain regions in HLA proteins seem to recur in the context of 

HLA–disease associations; for example, the DRβ1 pocket 4 includes positions 13, 71 and 

74, and has been implicated in antibody-negative RA and follicular lymphoma
52,53 in 

addition to T1DM and antibody-positive RA
23,48. These recurrent regions may be critical to 

autoimmunity and could also be important to induce self-tolerance.

Notably, these and other studies have been enabled by observations made by multiple 

research groups that intragenic MHC SNPs can be used to infer HLA genotypes
54–57

. 
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Approaches using imputation and large population-specific reference panels have enabled 

the re-investigation of the MHC locus for a wide range of autoimmune and non-autoimmune 

diseases, starting with re-mapping associations to HIV controller status, that is, the ability of 

individuals infected with HIV to exert control over the virus without the need for 

medicine
57

. As with all imputation approaches, the availability of large population-specific 

reference panels can be a limiting factor; HLA imputation requires particularly large panels, 

owing to the need to impute classical alleles, some of which can be rare. As new reference 

panels have emerged, this approach has been applied to European, Asian and African 

populations
36,58.

Next-generation sequencing strategies are enabling the effective interrogation of the HLA 

genes and the MHC region
59–62

, although these protocols have yet to be widely adopted in 

clinical practice or research. Recently, Dilthey et al.
63

 implemented a population reference 

graph to infer MHC sequence, taking into account the extended MHC haplotypes from the 

MHC haplotype project
64

 and the HLA alleles reported in the IMGT/HLA database
65

. As 

sequence reads increase in length, many of the challenges with targeting HLA genes and 

read-mapping assembly are becoming more tractable
66

.

Fine-mapping using the ImmunoChip

In an effort to leverage the common features of autoimmune diseases to discover novel 

associations and fine-map existing ones, a genotyping chip was designed with dense 

common and rare variant coverage in susceptibility loci, and in loci with immune-related 

genes
67,68. The ImmunoChip encompasses ~180,000 SNPs in 186 loci

68
.

One of the first studies using the ImmunoChip was reported for coeliac disease. Thirteen 

new risk loci were discovered to be associated with coeliac disease, and fine-mapping 

enabled the more-accurate delimiting of previously discovered non-HLA susceptibility 

regions
68

. In T1DM, the ImmunoChip enabled replication of known variants, discovery of 

new loci and fine-mapping of previously found loci
41

. For example, for the IL2RA gene, 

which encodes a subunit of the IL-2 cytokine receptor, researchers found a new variant that 

is partially linked to previously reported variants, as well as two additional independently 

associated variants
41

. More recently, researchers fine-mapped 18 IBD risk loci, including 

previously reported coding variants as well as additional protein-coding, intronic and 

intergenic variants, to a single likely causal variant
69

. Specifically, the SNP rs6062496, in 

the intron of the TNFRSF6B gene, overlaps an open chromatin region and is predicted to 

alter a transcription factor binding site for early B-cell factor 1 (EBF1), which is implicated 

in B cell identity
69

. The ImmunoChip has also been useful in the discovery of novel 

associations and fine-mapping in other auto immune diseases, including psoriasis, juvenile 

idiopathic arthritis, RA, ankylosing spondylitis and autoimmune thyroid disease
41,70–74

. 

ImmunoChip genotyping on samples also includes dense coverage of the MHC locus, and 

has thus improved the accuracy of HLA imputation
56

. It has also enabled assessment of 

shared genetic contribution across autoimmune diseases
35

.

The regionally dense variant catalogue of ImmunoChip and its large-scale usage in tens of 

thousands of individuals have significantly improved risk assessment for Crohn's disease and 

ulcerative colitis, reaching areas under the curve (AUCs) of 0.83–0.86 with machine-
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learning algorithms
75

. AUC can be interpreted as the probability that the classifier will 

assign a higher risk score to a randomly chosen individual positive for the disease than to a 

randomly chosen individual that does not have the disease. Another method for estimating 

polygenic risk scores by modelling LD has proven useful for RA, T1DM and coeliac 

disease
76

. Overall, the power and utility of the ImmunoChip will be expanded as more data 

are aggregated.

Rare protein-coding variants and autoimmune disease risk

Despite the success of GWAS in finding common SNPs associated with disease, common 

variants explain only a small percentage of the familial aggregation of common complex 

diseases. For example, in IBD, the 200 currently known common susceptibility loci explain 

<15% of the disease variance
37,51. By contrast, rare protein-coding variants are more likely 

to have loss-of-function effects and thus are, in theory, more likely to have larger effect sizes 

in disease
77

. As healthy individuals can carry dozens of loss-of-function variants
78

, the 

presence of rare variants that alter protein function does not necessarily imply that the gene 

has a role in disease. Statistical reproducibility and functional validation are needed to be 

confident about the role of rare variant associations with autoimmune disease
79

.

Although several groups have ascertained rare variants with the objective of identifying 

missing heritability
80,81, rare variants have proven to be more useful for dissecting candidate 

genes within risk loci and gaining insights into the mechanisms of disease than for the 

discovery of new variants that contribute substantially to disease heritability. Exon 

sequencing of candidate autoimmunity disease genes has yielded interesting findings for 

IBD, even if rare variants added less than 0.5% to the explained variance
82

. Five rare 

variants have been identified in NOD2, independent of known common disease variants in 

the same gene
82

. NOD2 encodes a pattern-recognition receptor that recognizes bacterial 

molecules, including muramyl dipeptide (MDP). Two of the rare NOD2 variants affect the 

translocation of NOD2 to the membrane or impair NF-κB response mediated by MDP 

stimulation
82

.

Screening for rare variants has led to the identification of protective variants against disease, 

as in the case for TYK2 in RA and SLE
83

, and IFIH1 in T1DM
84

. IFIH1 encodes a 

cytoplasmic helicase that, on detection of picornavirus RNA, triggers antiviral IFNβ 

response
85

. The rare protective variants for T1DM cause a loss of function of the protein
84

. 

However, gain-of-function variants in the same gene have been associated with Aicardi–

Gouitères syndrome, an inflammatory disorder with severe neurodevelopmental 

impairment
86

.

In general, it does not seem that rare variants explain common variant associations from 

GWAS in autoimmune disease
87–89

. This could be because only exons from a subset of 

genes, and no regulatory regions, have been interrogated so far. In addition, extremely large 

samples sizes are required to detect rare variant associations
90

. In rare and severe cases of 

autoimmunity, such as very-early age-of-onset IBD, exome sequencing has identified the 

causal gene, leading to successful medical treatments based on the detection of protein-

coding variants
91

. Thus, studying paediatric age-of-onset autoimmune disease at the 

genomic level can uncover novel genes and variants with large effect as well as pathways 
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involved in autoimmunity, some of which may involve already available therapeutic targets 

for other clinical conditions
39

.

Autoimmunity-relevant cell types and cell states

Despite several successes in defining the mechanisms that can lead to autoimmunity 

described above, an understanding of how the small effects in each locus contribute to 

triggering autoreactivity and inflammation is lacking. Although risk alleles seem to 

influence gene regulation, efforts to investigate the function of these alleles are hindered by 

the complexity of the human immune system. The human immune system is composed of 

hundreds of different cell types, cellular subsets and cell states (BOX 1). Differences in cell 

types and cell state can lead to dramatic differences in intracellular gene regulation and 

functional phenotypes. It is thus critical for the functional follow-up of individual disease 

alleles to have an ex vivo cellular system that appropriately reflects a cell type and cell state 

in which genetic mechanisms mediate disease risk. When such a system has been defined, it 

may become possible to define mechanisms of the individual alleles on gene expression and 

other cellular phenotypes.

Given the polygenic nature of autoimmune diseases, investigators have hypothesized that 

many genetic risk factors exert their effect in a small number of cell types. For many 

autoimmune diseases, the specific cell subtypes that mediate disease risk are unclear, that is, 

the literature implicates different cell types and cellular subsets, often on the basis of studies 

in mouse models or human observational studies. For example, for RA, synovial fibroblasts, 

mast cells, B cells and T cells have all been implicated
92–95

. In addition, a cell type can 

comprise different cellular subsets. For instance, T cells can be subdivided into cytotoxic 

and TH cells, and the latter can be further sub divided into various cellular subsets, such as 

TH1, TH2, TH9, TH17, regulatory T (TReg) cells and follicular TH cells
96

. In MS, it was 

originally thought that TH1 cells were involved in disease development, and subsequent 

findings have pointed to TH17 cells having an important role; however, the specific roles of 

TH1 and TH17 cells in MS remain to be elucidated
97

. Furthermore, each cell subset 

population can take on a range of different cellular states in response to external stimuli and 

environment. Thus, overall it is not trivial to pinpoint pathological drivers. Most strategies 

developed to pinpoint relevant cell types for disease seek to identify enrichment of cell-type-

specific cellular phenotypes (such as gene expression or epigenetic marks) among disease 

loci.

Cell-type-specific gene expression

Using gene expression levels of a wide compendium of mouse immune tissues
98

, Hu et al. 
quantified the tissue specificity of gene expression

99
. For each disease, they assessed which 

tissue was most enriched in tissue-specific gene expression of genes within disease-

associated risk loci. This method found significant enrichment for tissue-specific expression 

of splenic transitional B cells for genes in SLE risk loci. Similarly, for RA, CD4+ effector 

memory T cells presented the highest enrichment. For Crohn's disease, epithelial-associated 

stimulated CD103+ dendritic cells were the most-strongly implicated cells
99

. A subsequent 

meta-analysis of ulcerative colitis and Crohn's disease studies confirmed the importance of 
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dendritic cells
37

. In addition, this study found stronger enrichment for activated dendritic 

cells, highlighting the importance of ascertaining different cellular states
37

.

Cell type-specific epigenomic profiles

Researchers have also used histone marks or open chromatin regions as a proxy for active 

regulatory elements (such as enhancers and promoters). Resources of epigenomic profiles in 

dozens of human cell types have now been generated and continue to be expanded
100–102

. 

These resources can be used to identify cell types with enrichment of cell-type-specific 

chromatin marks in disease susceptibility loci. For example, Trynka et al. analysed 

trimethylation on Lys4 of histone H3 (H3K4me3) marks (a histone modification associated 

with promoters) in many cell-types. They discovered that TReg cells have an enrichment of 

TReg cell-specific H3K4me3 peaks within susceptibility loci for RA
103

. Enrichment of 

enhancers and super enhancer marks in disease loci for cell types relevant for auto immune 

diseases have been discovered
38,41,104,105. H3K4me1 (a histone mark associated with 

enhancers) profiles demonstrated that the most enriched cell type for RA, Crohn's disease 

and ulcerative colitis is stimulated TH17 subset
106

. This suggests that many risk variants for 

autoimmune disease may be exerting their effects in the activated state of immune cell types. 

Overall, these studies highlight the utility of using cell-type-specific molecular phenotypes, 

such as gene expression or epigenetic marks, to define relevant cell types and cell states for 

autoimmune disease.

Additionally, knowledge of disease-relevant cell types and cell states combined with cell-

specific regulatory annotations can help prioritize candidate causative variants
38,103. Even in 

fine-mapped loci, it is often the case that several SNPs in very high LD are associated with 

the disease. In this case, having information on the regulatory elements of the locus in the 

cell type relevant for the disease can point to the most pertinent variants to test for functional 

follow-up (FIG. 2c). This approach proved successful for revealing the regulatory role of a 

risk variant for SLE
107

. Methods that leverage epigenomic annotations to prioritize non-

coding variants associated with disease have been developed
108–113

. Although these 

methods are being applied to a broad range of phenotypes, they are limited by the narrow 

compendium of publicly available epigenomic profiles. Hence, as cellular traits are 

measured in more cell types and states, functional consequence prediction of non-coding 

variants will improve.

Quantifying immune-related phenotypes

As discussed above, many autoimmune disease variants probably influence disease through 

alteration of gene regulation in a cell-type-specific manner
103,114 (FIG. 3). Notably, ~90% of 

candidate causative variants for autoimmune diseases are estimated to be non-coding
38

. It is 

estimated that causal variants are abundant in enhancers, which tend to be context-specific in 

their effects. For instance, Farh et al. argued that causal autoimmune disease variants were 

more enriched in T cell enhancers than in T cell promoters
38

. In T1DM, the set of credible 

susceptibility variants is enriched in enhancer marks found in the thymus and other immune 

cell types
41

. In RA, a significant enrichment of risk alleles is found in super enhancer 

regions in CD4+ T cells compared with in typical enhancers
115

. To really define the 
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mechanisms of these non-coding autoimmune disease variants, we need to understand how 

they affect not only gene regulation but also function at the cellular level and at the level of 

the entire immune system, that is, signalling response, cytokine production, cytokine 

response, cell type counts and antigenic response. We collectively refer to these cellular and 

systemic immune traits as immunophenotypes.

Expression quantitative trait loci

Most genes have variants correlated to gene expression (expression quantitative trait loci 

(eQTLs)) in different cell types
116–118

. These variants can be local eQTLs
119,120 (cis; FIG. 

3b); often a gene has multiple cis eQTLs
121

. eQTLs can be cell-type-specific (that is, active 

in one cell type but not in another), and their effect sizes may vary across cell types
122–127

. 

Reports have estimated that 11–30% of autoimmune risk loci involve cis eQTLs in blood-

derived cells or CD4+ T cells
38,51,118,128, and that trait-associated cis eQTLs have a higher 

degree of tissue specificity than expected
118

. In trans eQTLs, which can involve an 

intermediary gene, the variant is distant from the gene (typically >5 Mb away). This type of 

eQTL has proven more difficult to detect, in part due to their smaller effect size compared 

with cis eQTLs
129

. A proportion of trans eQTLs have been shown to be associated with 

complex traits
130

, including a SNP associated with SLE that affects the expression of 

multiple IFNγ response genes
130

.

Early studies investigating the effects of variants on gene expression examined (B cell-

derived) lymphoblastoid cell lines
131,132, but recent studies have emphasized primary cells, 

such as monocytes, B cells, T cells, dendritic cells and neutrophils
117,118,122,125,128,133–136 

to capture regulatory variation active in cell types that are highly relevant for autoimmunity. 

A critical issue is that many cell types of interest (for example, T cells) constitute a relatively 

small component of peripheral blood. Hence, further dissection of immune cell types (by 

cell sorting with flow cytometry (BOX 2)), is often limited by the number of cells available.

A compelling example highlighting the utility of eQTL studies for autoimmune disease 

aetiology is the recent investigation of the UBE2L3 gene and its association with 

SLE
137–140

. Using genome-wide eQTL studies, Lewis et al. found that the risk haplotype of 

this locus is associated with increased UBE2L3 expression in B cells and monocytes, 

leading to higher protein levels in B cells
141

. Whereas the eQTL SNP (rs140490) is active in 

B cells and monocytes, it has a negligible effect in CD4+ T cells. UBE2L3 encodes an E2 

ubiquitin-conjugating enzyme, which together with linear ubiquitin chain assembly complex 

(LUBAC) is necessary for degradation of NF-κB inhibitor-α (IκBα). In healthy individuals, 

higher expression of UBE2L3 in B cells and monocytes, driven by the risk haplotype, leads 

consistently to higher activation of the transcription factor NF-κB, a major regulator of B 

cell development and survival
115

. In patients with SLE, the susceptibility risk allele is also 

associated with higher proliferation of peripheral blood plasmablasts, a differentiated form 

of B cells that produces greater amounts of antibodies
115

. Although details of this disease 

association remain to be elucidated, these results suggest UBE2L3 as a potential putative 

drug target for SLE and demonstrate the utility of intermediate immunophenotypes for the 

discovery of disease mechanisms
142

.
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The genetic effects on gene regulation are now being examined in a range of physiological 

states in monocytes, dendritic cells, CD4+ T cells and endothelial cells
128,133,134,143–145

. A 

greater proportion of eQTLs are found in these cell types exclusively in stimulated states, 

often dependent on the stimulus or time after stimulus (FIG. 3a). For example, a cis eQTL 

for IFNB1 (REF. 133), which encodes the cytokine IFNβ, is active after 2 hours of 

lipopolysaccharide (LPS) stimulation in monocytes but not in the naive state nor after 24 

hours of LPS stimulation. The same SNP is associated in trans to 17 genes, all of which are 

part of the IFNβ signalling cascade, after 24 hours of stimulation. This widespread effect 

could be mediated by the transcription factor interferon regulatory factor 7 (IRF7), which 

acts just downstream of IFNB1 and upstream of most of the other genes affected in trans. 

These studies highlight the importance of ascertaining genetic regulatory variation in 

different cellular states, as eQTLs for autoimmunity may be missed if only baseline effects 

are assayed in a single source of cells.

Together with the evidence of variants associated with autoimmune diseases being strongly 

enriched in immune cell type enhancer sequences, the above findings suggest that disease 

variants alter gene regulation in a very cell type- and cell state-dependent manner. 

Furthermore, it is possible that a single variant in a single enhancer has a very small effect 

on transcription, dependent on the target gene and cell type, so that many variants in several 

enhancers may be needed to detect a signal in a low sample size
146

. Alternatively, a SNP 

that affects an enhancer whose target is a transcription factor may alone regulate hundreds of 

genes, should the correct cell type be implicated.

Epigenetic phenotypes

Epigenetic marks, such as DNA methylation, change among cell types and conditions, 

marking active or repressed regions in the genome. DNA methylation might influence 

disease as a mediator of genetic risk or be a signature of environmental exposure that 

triggers disease, or it may be just a consequence of a disease
147

. Initial studies in discordant 

monozygotic twins (that is, where one twin has the disease and the other twin does not) in 

T1DM and in SLE have found differentially methylated regions, often pre-dating the disease 

diagnosis in T1DM
148

 or enriched in immuno logical genes in SLE
149

. Hence, emerging 

questions are how and to what extent genetic variation affects epigenetic traits, and how 

changes in epigenetic marks associate with gene expression.

Groups assessing the effect of genetic variants on DNA methylation and histone 

modifications have found a widespread signal. Their results suggest that one of the major 

mechanisms by which these variants act is by altering the binding of transcription factors, 

which in turn could affect the local epigenetic landscape and the transcriptional output of 

their target genes
150–153

. Another study quantified DNA methylation levels in lymphocytes 

of several hundred individuals with a chip assaying 450,000 CpG sites. This approach 

revealed both local (cis) and distant (trans) methylation QTLs that were in high LD to 

autoimmune disease variants
154

. This colocalization does not necessarily mean that the 

actual disease variant is affecting DNA methylation. As higher-resolution technologies for 

DNA methylation, such as whole-genome bisulphite sequencing, and for ascertaining DNA-

sequence variation, such as genome sequencing, become more economical, applied to larger 
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cohorts and specific cell types, we will be able to dissect the consequences of disease 

variants on molecular immune-related traits. Mendelian randomization methods
155

 have 

been useful for testing causal relationships in this type of functional genomics studies
150

, as 

well as in disease studies, and have led to the identification of candidate methylation sites 

that could be mediators of genetic risk for RA
156

.

Transcriptional regulation also occurs through chroma tin interactions, that is, when 

enhancers and promoters come into close proximity via DNA looping
157

. Thus, assessing 

how genetic variation can affect the three-dimensional structure of the genome will also be 

useful for assessing the regulatory effect of autoimmune disease risk variants.

Immunophenotypes

Many immunophenotypes exist that can be measured efficiently, including cell type counts, 

cell proliferation, serum protein levels, surface protein expression levels, and signalling 

response levels (BOX 2; FIG. 4). Initial studies showed that immunophenotypes such as the 

ratio of different T cell subsets are heritable in mice and humans
158,159. Since then, multiple 

studies have continued to examine the genetic control of lymphocyte abundance in blood, 

typically involving a few measured phenotypes per study
160–165

. More recently, 

improvement in high-throughput cellular phenotyping technologies, such as flow and mass 

cytometry
166,167 (BOX 2), has enabled studies to characterize thousands of 

immunophenotypes in hundreds to thousands of individuals
168–170

, providing a full range of 

genetic contribution to variation depending on the trait and the study. Overall, for the 

majority of the immunophenotypes measured, phenotypic variation can be explained in a 

larger proportion by environment than by genetics
168

, which is consistent with the immune 

system's role in responding to the environment. However, multiple immunophenotypes 

present predominant genetic contributions to variation, including serum cytokine and 

chemokine levels, cell population frequencies and signalling response phenotypes
168

. 

Particularly, serum levels of IL-6 and IL-12p40 are highly heritable
168

, and IL-12p40 has 

been associated with psoriasis and asthma
171,172.

Genetic variants can be associated with variation in immunophenotypes (as quantitative 

traits). A total of 23 variants have been associated with 132 cell frequency traits in a cohort 

of Sardinians
169

. In several cases, the SNP associated with the abundance of a cell type 

mapped to the gene coding for one of the markers defining the cell type. The strongest 

association involved CD39+CD4+ T cells and a SNP in the intron of ENTPD1, the gene that 

encodes CD39. The same SNP was associated with surface protein levels of CD39 (REF. 

170); thus, the cell type counts were influenced by the variation of expression of one of the 

markers. It is critical to consider these possible confounding factors in analyses of cell 

population frequencies. Orrù et al. found a modest overlap of cell abundance associations 

with disease loci, with only 3 out of the 23 variants being in high LD with reported 

autoimmune disease variants
169

. Although larger sample sizes may be needed to find more 

loci with significant associations (and subsequently possibly more overlap with disease loci), 

these results are consistent with the hypothesis that genetic variation influencing immune 

cell frequencies does not confer susceptibility to autoimmune disease
128

.
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Instead, other genetically controlled immunophenotypes might be more enriched in disease 

loci, particularly phenotypes representing functional responses of specific cellular subsets. 

For example, MS risk loci are enriched for binding sites of the transcription factor NF-κB
38

, 

which has an important role in immune response signalling. One MS risk variant in the NF-

κB locus
173

 is associated with higher NF-κB expression and increased signalling response 

after stimulating naive CD4+ T cells with TNF
174

. These results highlight the relevance of 

studying the genetic basis of immunophenotypes to dissect the mechanisms by which 

autoimmune diseases develop. It will be interesting to determine the impact of shared versus 

opposing (or specific) genetic effects between autoimmune diseases on immunophenotypes 

as well as cell-type specificity on molecular traits.

Conclusions and perspectives

Although manipulation of mouse models has been a powerful tool for understanding 

immunology, it is crucial to understand autoimmune disease in the context of human 

immunophenotypes
7
. Recent studies are focusing on understanding the mechanisms by 

which genetic risk variants confer susceptibility to disease. Researchers are achieving this by 

quantifying the natural variation of cellular and molecular phenotypes in cell types and cell 

states relevant for autoimmune diseases, as well as by measuring a wide range of immuno 

pheno types. The modest overlap between susceptibility loci and genetic variation affecting 

immune cell abundances suggests that some immunophenotypes will be more pertinent to 

ascertain for autoimmune disease than others. Future immunoprofiling studies with larger 

sample sizes will probably be able to pinpoint the most important read-outs to measure. 

Within the context of an appropriate ex vivo system, emerging genetic engineering 

approaches, such as CRISPR–Cas9-based genome editing
175–177

, could provide insights on 

altered cellular phenotypes.

Recent genetic studies have demonstrated that many genomic loci of small to moderate 

effect contribute to autoimmune disease risk; of these, most do not lie in protein-coding 

regions but cluster in non-coding regions of the genome. Given the regulatory nature of these 

risk variants, it is essential to identify the causative polymorphisms in enhancers and their 

target genes. Novel technologies applied to DNA–DNA interactions, such as chromatin 

interaction analysis by paired-end tag sequencing (ChIA-PET) and Hi-C
157,178, combined 

with the insights of immunological eQTL studies, will contribute to resolving this issue.

The next wave of eQTL and gene regulation studies will use specific cell types and cell 

states, focusing on the most-relevant ones for each disease. Such studies may enable the 

detection of context-specific effects, which can be crucial to disease. These studies are 

challenging to conduct, as they require an infrastructure to obtain, sort and manipulate cells 

in addition to the requisite sample size. Moreover, although progress has been made in 

developing methods to identify the most relevant cell types and cell states based on 

integration of risk loci and functional genomic annotations, studies are limited by the narrow 

compendium of human immune epigenomic and transcriptomic profiles. Allele-specific 

expression is mainly driven by genetic regulatory effects in cis
119,179. Hence, the allelic 

effects observed in heterozygous sites of a few individuals (FIG. 3c) could yield valuable 

information on the particular cellular subsets and conditions in which most disease genes are 
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genetically deregulated. Another technique that could aid in this objective is single-cell RNA 

sequencing (RNA-seq), as it can reveal undiscovered heterogeneity of cellular populations 

and states
180

. Approaches that exploit the allelic information in RNA-seq data may also 

prove useful to distinguish cell types and states that should be ascertained in a large-scale 

manner.

Technological advancements are enabling the ascertainment of proteomic phenotypes in 

autoimmunity. Genetic variants can affect transcript levels or mRNA stability
181

, which in 

turn could alter protein levels
182–186

. Alternatively, missense variants can change a protein's 

stability and influence protein-binding partners
187

. Susceptibility genes for RA, Crohn's 

disease and MS are enriched for protein–protein interaction networks that are more 

connected than expected by chance, and these genes are expressed in similar disease-

relevant tissues
188,189. Once technological advances facilitate dynamic assessment of these 

protein-interaction pheno types at the level of human common variation, directly in the cell 

types of interest, we will learn a lot more about the functional effect of complex disease 

susceptibility variants (for example, how a variant that influences splicing may alter the 

binding partners of the encoded protein, which may affect downstream biological processes).

As we gain a more comprehensive picture of genetic variants associated with the many 

layers of intermediate phenotypes and disease, it is becoming challenging to disentangle the 

causal relationships among them (FIG. 1). For example, a SNP may be associated with an 

immunophenotype and a disease. This could reflect the more intuitive scenario in which the 

SNP affects the immunophenotype, which in turn influences the disease. However, this 

situation could also be consistent with the SNP increasing susceptibility to the disease and 

the manifestation of disease causing a change in the immunophenotype. Furthermore, the 

SNP may be associated independently with the disease and with the immunophenotype, but 

these two are not cause of, nor consequence from, each other. Computational methods 

relying on Mendelian randomization are being developed to address this problem
155

, 

although these require huge sample sizes. Human studies of autoimmunity are often limited 

by comparison of prevalent cases (versus controls); however, disease-progression studies 

based on longitudinal observation will ultimately reveal the causal relationships of 

intermediate phenotypes and disease. Efforts to enhance personalized medicine
190

 and 

biobanks can be instrumental for this purpose
191,192. For example, blood samples from 

healthy individuals stored in biobanks could be used as reference samples when a subset of 

these individuals becomes ill: both healthy individuals and individuals with a disease could 

be tracked and compared over time to dissect the gradual manifestations pre-disease and 

how genetic variation may have partially triggered them. The information gained from 

studies aiming at finding the relevant immunophenotypes for a particular autoimmune 

disease will aid in making this process more efficient. Overall, the field of autoimmune 

disease genetics faces difficult challenges but, at the same time, exciting and translational 

discoveries are now being delivered.
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Glossary

Adaptive immune system The part of the immune system that can react to specific 

pathogens and remember them to elicit a faster immune 

response if they are re-encountered.

Autoimmunity When the immune system elicits an immune response 

against its own body (or non-pathogenic antigens that 

are commonly found in the body, such as commensal 

bacteria).

Type 1 diabetes mellitus (T1DM)A disease characterized by autoreactivity to insulin-

secreting β-cells found in the pancreas, resulting in high 

glucose levels in blood and urine.

Inflammatory bowel disease (IBD)A term that groups together several conditions, such as 

Crohn's disease and ulcerative colitis, that are 

characterized by inflammation of the small intestine and 

colon. The inflammation is thought to be caused by 

immune reaction to commensal bacteria.

Rheumatoid arthritis (RA) Autoimmune disease causing joint inflammation and 

destruction of cartilage and bone. Patients with RA can 

present autoantibodies (seropositive) or not 

(seronegative).

Systemic lupus erythematosus (SLE)A disease characterized by autoreactivity to ubiquitous 

molecules, such as DNA or chromatin proteins, which 

can cause immune reactions against many parts of the 

body, some of the most common being joints, skin, 

blood vessels, kidneys and nervous system.

Multiple sclerosis (MS) A condition of autoimmunity against the myelin sheath 

that protects the central nervous system.

Self-tolerance The mechanism by which the immune system does not 

attack its own body.

Genome-wide association studies (GWAS)Studies in which genetic variants are ascertained across 

the whole genome in thousands of patients and 

thousands of controls, and statistical genetic associations 

(but not causality) with disease are tested.

Effect sizes Quantitative measures of the strength of events. In 

genetic association studies, the odds ratio is often used 

as an effect size measure, as it reflects how many times 
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more likely it is to find the susceptibility variant in cases 

versus controls.

Immunophenotypes In this article, we define immunophenotypes as 

quantitative traits that reflect immune function. They 

include cell-type abundances, cell proliferation, 

signalling response, and cytokine and chemokine serum 

protein levels.

Cytokine A type of small cell-signalling protein that is secreted by 

some cells and affects the behaviour of others; cytokines 

are crucial participants in the immune response.

Psoriasis An autoimmune disease affecting the skin.

Crohn's disease Inflammatory bowel disease presenting autoreactivity in 

any part of the gastrointestinal tract.

Ulcerative colitis Inflammatory bowel disease mainly affecting the colon.

Coeliac disease An autoimmune disease of the small intestine caused by 

an immune reaction to wheat.

Linkage analysis A genetic association method that uses linkage 

disequilibrium and recombination principles in families 

to find markers linked to a disease locus (markers co-

segregating with the disease phenotype).

Human leukocyte antigen (HLA)A type of surface protein that presents antigens. HLA 

class I proteins present antigens from inside the cell and 

are expressed by most cells, whereas HLA class II 

proteins are expressed only by antigen-presenting cells 

and present extracellular antigens to T cells.

Nuclear factor-κB (NF-κB) An important transcription factor involved in the 

immune response and B cell development.

Candidate gene studies A genetic association method that looks for alleles of a 

candidate gene (for example, based on a priori functional 

knowledge) that are associated with a disease, typically 

using a case-control study design.

Linkage disequilibrium (LD) A phenomenon describing the nonrandom association 

(or co-segregation) between two alleles of different loci.

Trans-ancestral cohorts Groups of individuals pertaining to different ancestry 

populations.

Imputation Inference of alleles of non-genotyped variants based on 

nearby observed genotypes and using a reference panel 
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from which the correlation structure between variants (or 

haplotypes) can be learnt.

Missing heritability A concept referring to the heritability that has not been 

explained by known disease susceptibility loci (despite 

so many having been discovered with genome-wide 

association studies).

Exome sequencing A technique that captures the protein-coding sequences 

of the genome (exons) and sequences them.

Enhancers Distant transcriptional regulatory elements, often 

regulating expression in a cell-type- and cell-state-

specific manner in cis, and often marked by specific 

chromatin modifications.

Super enhancer Several enhancer marks clustered together; super 

enhancers tend to be more cell-type specific than typical 

enhancer marks.

Expression quantitative trait loci (eQTLs)Refers to a variant whose genotypes correlate with gene 

expression levels.

QTLs (Quantitative trait loci) Loci in the genome that are associated with a 

quantitative trait. For example, a single-nucleotide 

polymorphism associated with gene expression levels 

can be called an expression QTL (eQTL).

Mendelian randomization A method for inferring causality of a trait (or modifiable 

exposure) on disease, taking advantage of the 

randomized trial nature of genetic variation (assuming a 

random mating pattern).

Allele-specific expression A phenomenon that occurs when one of the two alleles 

of a gene in an individual is expressed more than the 

other.
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Box 1 | Basic principles of autoimmunity

The two major cellular components of the adaptive immune system are B cells and T 

cells. B cells are antibody-producing cells that mature in the bone marrow. During their 

development, genomic rearrangements occur to produce a wide range of antibodies that 

can recognize a diverse antigen repertoire. T cells develop in the thymus and mediate the 

adaptive immune response by interacting with antigen-presenting cells (such as B cells, 

or innate immune cells, including dendritic cells and macrophages). Most T cells undergo 

genomic rearrangements in their α and β T cell receptor (TCR) chains. The TCR 

recognizes antigens in conjunction with class II major histocompatibility complex 

(MHC) molecules, which are expressed by antigen presenting cells (APCs; see the 

figure).TCR recognition of antigens is assisted by co-receptors, such as CD4 and CD3. 

CD4+ T cell activation also requires additional co-stimulatory molecules, such as T cell 

expression of CD28, which is the receptor for CD80 or CD86 expressed by APCs. 

Cytokines are detected by T cells as additional `danger' signals, triggering signalling 

cascades that regulate immunological response genes and produce more cytokines.

There are several self-tolerance immune mechanisms to protect against B and T cell 

response to self-antigens. Central tolerance occurs during development, when B or T 

cells that react strongly to self-antigens are eliminated. However, the human body 

changes with time, and not all possible self-antigens can be presented in the thymus and 

bone marrow. Additional peripheral self-tolerance processes exist for when B cells and T 

cells migrate from their developing organs. For example, if a T cell reacts to a self-

antigen but there are no additional `danger' signals, such as cytokines produced by the 

innate immune system, the cell will be inactivated. Similarly, strong, constant signals are 

an indication that the antigen presented is a self-antigen (as opposed to a pathogenic 

antigen, which would usually rapidly increase in concentration) and will not produce an 

immune reaction.

When self-tolerance mechanisms fail, autoimmunity can emerge (FIG. 1). For example, 

in type 1 diabetes mellitus (T1DM), the immune system reacts to pancreatic β-cells. In 

systemic lupus erythematosus (SLE), autoreactivity to DNA and chromatin proteins can 

occur in a wide range of tissues, including the skin, heart, lungs and blood vessels. 

Autoimmunity can develop against commensal bacteria in the gut, resulting in 

inflammatory bowel diseases (IBD). Diseases vary in their autoantibodies based on organ 

specificity or aetiological mechanism. For example, patients with rheumatoid arthritis 

(RA) often have anti-citrullinated protein antibodies (ACPAs), which are antibodies 

against proteins with a post-translational modification that often occurs during 
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inflammation
193

. However, multiple pathways can lead to autoimmune disease, as RA 

can develop without the presence of ACPAs.
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Box 2 | Immunophenotyping technologies

Flow cytometry

Flow cytometry is a single-cell technique that is used for a wide range of applications 

owing to its ability to count and sort cells on the basis of a set of markers. Briefly, cells 

are marked with antibodies conjugated to fluorescent dyes that bind to specific cell-

surface or intracellular proteins. The cells are then lined-up in fluid inside a machine, 

where they pass one-by-one through a laser, which excites the dye molecules. The 

emission spectra of the dye molecules are then recorded to identify the markers present in 

each cell. This technique can be used to quantify specific cell-type abundances, to sort 

specific cellular subsets for subsequent experiments or to measure signalling response if 

antibodies against the phosphorylated state of a protein are used (a variation known as 

Phospho-flow). The main limitation of this technique is that even with the most powerful 

flow cytometry machines, which have four lasers, a maximum of ~20 markers can be 

used at one time
194

. An extension of this approach can be used to measure cell 

proliferation; carboxyfluorescein succinimidyl ester (CFSE) is a dye that is easily 

incorporated and retained inside cells, and its quantity is halved for each cell division. 

Flow cytometry is then used to quantify this dye in cells. This technology was originally 

used to detect cell migration in mouse models, but it is now also widely used to measure 

cell proliferation
128

.

Mass cytometry

Mass cytometry also counts cells based on intracellular or cell-surface markers, with the 

advantage that it can detect over >40 markers simultaneously. It relies on antibodies 

conjugated to rare earth metals not present in biological samples, which are then detected 

by a mass spectrometer
195

. Although in this technique the cells die in the process and 

cannot be used for subsequent experiments, it is instrumental in immunology because it 

allows quantification of many cell populations in one run
166

.

Luminex

Luminex technology has many applications, one of which is the quantification of serum 

protein levels, such as cytokines and chemokines
168

, in a bead-based, multiplex manner. 

Each bead has a unique internal dye that can be detected by flow cytometry. Additionally, 

each bead type is coated with an antibody to detect a specific marker (for example, a 

cytokine). When the samples are run through the beads and the markers of interest are 

bound to them, the markers are coated with a general dye. The beads are then analysed in 

a machine that uses lasers to detect the dye of each bead, and the quantity of marker 

bound to each. The advantage of this technique over others used for protein 

quantifications, such as enzyme-linked immunosorbent assay (ELISA), is that it can 

quantify up to 500 markers simultaneously (although it is generally used for about 50) 

and can be done in a large-scale manner
196

.

Mass spectrometry

Mass spectrometry, a technology for peptide detection based on mass-to-charge ratio, has 

been used to quantify protein levels from plasma, detecting 1,904 peptides pertaining to 
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342 unique proteins
185

. Accurate quantification is challenging in mass spectrometry, but 

groups have solved this using relative quantification through labelling peptides with a 

different isotope per sample (the stable isotope labelling with amino acids in cell culture 

(SILAC) technique) and by developing methods for direct quantification that involve 

computational algorithms and machine calibration
197,198.
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Figure 1. Genetic variation, intermediate immunological phenotypes and disease
Genetic variation (top left) may influence molecular phenotypes, including gene 

transcription, DNA–DNA interactions, transcription factor binding, histone modifications, 

DNA methylation, mRNA stability and translation, protein levels, and protein–protein 

interactions (top right). These cellular processes may affect or be affected by 

immunophenotypes, such as signalling response, cell-type abundances and cytokine 

production (bottom right). Immunophenotypes in turn can influence or be influenced by the 

manifestation of autoimmune diseases and affect different parts of the body (bottom left). 

DC, dendritic cell; MHC, major histocompatibility complex; TCR, T cell receptor; TH cell, 

T helper cell; TReg, regulatory T cell.

Gutierrez-Arcelus et al. Page 32

Nat Rev Genet. Author manuscript; available in PMC 2016 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Candidate variant fine-mapping based on functional annotations
Different types of functional annotations, such as missense variants (a,b) or regulatory 

marks (c), can lead to prioritization of candidate risk variants. a | Human leukocyte antigen 

(HLA) locus in chromosome 6, where genes pertaining to major histocompatibility complex 

(MHC) class I, II and III are found. b | By testing for associations between amino acid 

residues and rheumatoid arthritis (RA), investigators were able to fine-map independent risk 

variants that cause changes in amino acids found in the binding pocket of the MHC class II 

molecule DRβ1. Specifically, ~90% of the MHC risk in RA is attributable to a specific 

amino acid residue in position 13 at the bottom of the DRβ1 antigen-binding groove, and 

amino acids 71 and 74 (whose side chains point into the antigen-binding groove) 

independently modulate RA susceptibility c | Other functional annotations, such as histone 

modifications, can be used to prioritize non-coding candidate risk variants
38,103. In the 

hypothetical example shown, four non-coding variants in linkage disequilibrium in a disease 

susceptibility locus have equal posterior probability of being causative for the disease. 

However, if one uses information on cell-type-specific regulatory annotation (in this case 

histone H3 trimethylation on Lys4 (H3K4me3)), and knowledge of the most relevant cell 

type as the genetic mediator of the disease in question (in this case, B cells), one can assign 

a higher posterior probability to a variant overlapping a B cell H3K4me3 peak. Part a 
adapted from REF. 199, Nature Publishing Group. Part b adapted from REF. 48, Nature 

Publishing Group.
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Figure 3. Cell state-dependent eQTLs
a | An immune cell type can be treated with different types of stimuli (such as different 

cytokines, antigens or non-antigen T cell receptor (TCR) stimulation). b | If this is done in 

many genotyped individuals from a certain population, genetic variants influencing gene 

expression levels can be found. In this hypothetical example, a single-nucleotide 

polymorphism (SNP) affects the expression of a gene in the second stimulation condition 

from part a (middle) and not the others (for similar studies, see REFS 117,128,134,143–
145). c | In heterozygous individuals, allele-specific expression for the affected gene can be 

observed (see REFS 119,179). A mechanism by which the state-dependent regulatory effect 

may be acting is by the presence of a transcription factor (red symbol) in the second 

condition whose regulatory element has a variant that prevents its binding. eQTLs, 

expression quantitative trait loci.
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Figure 4. Immunophenotypes
By drawing blood from a single individual, many different immunophenotypes can be 

measured. These can be measured directly from blood plasma or from cells that can be 

cultured and subject to different states: resting or under cytokine, non-antigenic or antigenic 

stimulations (top panel). The petri dish represents stimulation of cells in culture to measure 

additional response phenotypes. Investigators use different techniques depending on the 

phenotypes to be measured (middle panel), including flow cytometry, carboxyfluorescein 

succinimidyl ester (CFSE), mass cytometry, Luminex or mass spectrometry (not shown) 

(BOX 2). Measurements using these techniques (bottom panel) include signalling response, 

cell proliferation, cell frequencies and serum protein levels (see REFS 128,168–170 for 

applications). CXCL5, CXC chemokine ligand 5; IFNγ, interferon-γ; IL, interleukin; TNF, 

tumour necrosis factor.
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