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Abstract

This review provides the first comprehensive overview of the use of both nanoparticles and 

nanofibers for topical drug delivery. Researchers have explored the use of nanotechnology, 

specifically nanoparticles and nanofibers, as drug delivery systems for topical and transdermal 

applications. This approach employs increased drug concentration in the carrier, in order to 

increase drug flux into and through the skin. Both nanoparticles and nanofibers can be used to 

deliver hydrophobic and hydrophilic drugs and are capable of controlled release for a prolonged 

period of time. The examples presented provide significant evidence that this area of research has

—and will continue to have — a profound impact on both clinical outcomes and the development 

of new products.
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1. Introduction

1.1. Skin structure

The skin is the largest organ of the human body and performs several critical functions: It 

protects the body from the external environment, serving as both a first line of defense 

against the entry of chemicals and microorganisms as well as providing a barrier to the loss 

of fluids and salts and helps regulate body temperature. Human skin can vary widely in 

structure and thickness, but is usually about 1.5 mm thick and consists of three layers (Fig. 

1) [1]: (i) The epidermis consists of the stratum corneum and the viable epidermis. The 

stratum corneum (SC) is the outermost layer of the skin. It is largely responsible for the 

barrier function of the skin and the poor absorption of drugs. It is comprised of a 10–20 µm 

thick matrix of dehydrated and dead corneocytes (terminally differentiated keratinocytes) 

that are embedded in highly ordered lipid layers [2]. The viable epidermis (usually about 

0.06–0.8 mm thick) is immediately under the SC and represents the first layer of living cells. 

It consists of about 4–5 layers of dermal fibroblasts and keratinocytes. (ii) Below the 
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epidermis is the dermis, usually a 0.3–5 mm thick layer that contains connective tissue, 

sweat glands, hair follicles, and a network of capillaries, lymphatic vessels and nerve 

endings. (iii) The deepest layer of the skin is the subcutaneous tissue or hypodermis, which 

is composed of loose, white, fibrous connective tissue in which fat provides cushioning [3].

1.2. Drug delivery and the skin

The large surface area of the skin (nearly 20 square feet) makes it a potentially interesting 

route for drug delivery. Topical drug delivery is primarily intended for a local effect, where it 

can (i) potentially eliminate the need for systemically administered drug therapies, (ii) 

minimize the total dose required to reach the targeted site (skin), and (iii) reduce off-target 

adverse effects. Some examples of topical dermatologic products include cutaneous anti-

fungal treatments, sunscreens, keratolytic agents, local anesthetics, antiseptics and anti-

inflammatory agents for skin diseases such as psoriasis. Transdermal drug delivery, on the 

other hand, is intended for a systemic drug effect with the skin merely being the drug's entry 

portal into the body. For example, transdermal patches are used to deliver nicotine for 

smoking cessation, buprenorphine and fentanyl for chronic pain, and hyoscine (also known 

as scopolamine) for motion sickness.

In both topical and transdermal drug delivery, drug permeation through the SC is regulated 

by Fick's second law [4]:

(1)

where J is the flux, D is the diffusion coefficient of the drug, C is the drug concentration in 

the carrier, P is the drug partition coefficient, and L is the thickness of the SC. Beyond the 

SC, the applied drug must penetrate the various layers of the skin, encountering both 

lipophilic and hydrophilic domains as it travels toward the dermis. Human skin equivalents 

with lipid and permeability profiles closer to human skin have been developed as alternatives 

to human cadaver and animal skin to characterize in vitro drug permeation [5]. Depending 

on the drug's properties and the method of delivery, the drug may remain local or traverse 

into the dermis, where, if hydrophilic, it may be rapidly absorbed into the circulation via 

capillaries. The capillary bed extends into the upper layers of the dermis right underneath the 

dermato-epidermal junction.

In general, small molecules (both lipophilic and hydrophilic) can penetrate the SC without 

assistance or traverse the epidermis through shunt pathways created by sweat glands and hair 

shafts. In contrast, the delivery of larger molecules, such as peptides, proteins, siRNA, or 

DNA, through the skin continues to be a major research challenge. Therefore, the scientific 

community has been studying ways to facilitate and enhance the penetration of a wide range 

of drugs through the SC (for topical delivery) or to assist drug molecules to traverse into the 

dermis (for transdermal delivery). Some of these strategies are briefly described below.

Chemical enhancers, such as fatty acids, surfactants, esters, alcohols, polyalcohols, 

pyrrolidones, amines, amides, sulfoxides, terpenes, alkanes and phospholipids [3,6], can be 
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used to enhance topical drug penetration by: (i) perturbing the highly ordered structure of 

the SC; (ii) solubilizing and extracting the keratin and/or lipid components of the SC; (iii) 

fluidizing the crystalline structure and dissolving the lipids of the SC; or (iv) improving the 

partitioning of a drug, co-enhancer or solvent into the SC [3,6,7]. Unfortunately, chemical 

penetration enhancers tend to be skin irritants, due to their disruptive effect on the lipid 

structures of the skin. Usually, the amount of enhancer required to achieve 

pharmacologically effective drug penetration rates is higher than the concentration tolerated 

by skin [6]. For this reason, the utility of chemical penetration enhances has so far been 

limited.

Physical enhancers use physical methods to temporarily compromise the integrity of the 

skin's barrier function, such as hydrating the skin via occlusion, sonophoresis, laser and or 

thermal ablation, electroporation, radiofrequency treatment, iontophoresis, magnetophoresis, 

high pressure jets, and microneedle arrays [6,8]. Although some of these technologies have 

been translated into FDA-approved products for topical and transdermal drug delivery, 

physical enhancers are invasive, may cause longer-term damage to the skin's barrier 

properties, and may produce tingling, irritation and burning sensations [9].

As an alternative, researchers have explored the use of nanotechnology, specifically 

nanoparticles and nanofibers, as drug delivery systems for topical and transdermal 

applications. This approach increases the drug concentration in the vehicle or formulation 

(Cv), and as a result, increases drug flux (see eq. (1)). Both nanoparticles and nanofibers can 

be used to deliver hydrophobic and hydrophilic drugs and are capable of controlled release 

for a prolonged period of time. In this review, we provide an overview of nanoparticles and 

nanofibers that have been developed for topical drug delivery applications. While 

nanoparticle and nanofibers drug delivery systems have been reviewed before separately 

[10–12], as far as the authors are aware this is the first comprehensive review that combines 

nanofiber and nanoparticle systems. Together, these systems have significantly impacted the 

treatment of many prevalent dermatologic conditions and have collectively generated 

substantial commercial revenues [8]. The examples of nanoparticles and nanofibers 

presented herein as topical or transdermal drug delivery systems, provide significant 

evidence that this area of research has — and will continue to have — a profound impact on 

both clinical outcomes and the commercialization of these technologies.

2. Nanoparticles for topical therapy

Nanoparticles (also sometimes referred to as nanocarriers) have been investigated for various 

biomedical applications for over a decade. In general, the use of nano-sized particles offers 

several advantages over other drug delivery systems. They are used to (i) enhance the 

solubility of highly hydrophobic drugs; (ii) provide sustained and controlled release of 

encapsulated drugs; (iii) increase the stability of therapeutic agents by chemical or physical 

means; (iv) deliver higher concentrations of drugs to target areas due to an Enhanced 
Permeation and Retention (EPR) effect; and (v) provide targeted treatments when modified 

with cell-specific ligands. Drug-loaded nanoparticles often accumulate in hair follicles and 

thereby facilitate the penetration of drug molecules through the superficial layers of the SC, 

followed by drug release into the deeper layers of the skin. The most commonly used 
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nanoparticles for topical and/or transdermal drug delivery are polymeric nanoparticles, 

nano-emulsions, lipid-based nanoparticles (liposomes and solid-lipid nanoparticles), metal 

nanoparticles and dendrimers. The following section discusses the different types of 

nanoparticles and their potential uses in various topical therapeutic applications (see Table 1 

for a summary).

2.1. Natural polymeric nanoparticles

Although a wide range of natural polymers have been used to prepare nanoparticles, 

chitosan-based nanoparticles have been the most extensively studied for topical drug 

delivery applications [13]. In addition, a few publications report on the use of alginic acid 

and albumin-derived nanoparticles for topical drug delivery, which are also briefly described 

in this section. Chitosan is a linear polysaccharide derived from chitin, which is found in the 

exoskeleton of crustaceans. The amino group of chitosan readily undergoes protonation in 

acidic to neutral conditions, resulting in a net positive charge. This makes chitosan water-

soluble and act as a bioadhesive, since the positively-charged chitosan can bind to 

negatively-charged mucoproteins. This interaction helps prolong the circulation time of 

chitosan-bound drugs, leading to enhanced drug bioavailability [14]. Chitosan nanoparticles 

can be prepared using (i) ionic cross-linking, (ii) covalent cross-linking [15], (iii) 

precipitation [16], (iv) polymerization [17], or (v) self-assembly methods [18], with sizes 

ranging from 20 to 800 nm dependent on the method of preparation. Chitosan-drug 

complexes are generally formed via electrostatic interactions between cationic chitosan and 

anionic drugs [19,20]. For example, Cheng et al. [19] prepared chitosan nanoparticles linked 

with antisense oligonucleotide to produce particles with a size of 102.6 ± 12.0 nm, zeta 

potential of 1.45 ± 1.75 mV, and an encapsulation efficiency of 87.6 ± 3.5%. Kim et al. [20] 

increased the solubility of retinol by more than 1600-fold by encapsulating it into chitosan 

nanoparticles. Drug delivery via chitosan nanoparticles can be controlled by the degradation 

of the polymer, which can be tuned by varying the molecular weight and degree of 

deacetylation of chitosan. As a result, chitosan nanoparticles have been shown to provide 

sustained release from days to months [21]. In addition, chitosan nanoparticles can be 

formulated as pulsatile delivery vehicles, where release of the payload is dependent on the 

physiological needs of the patient; for example, the release of insulin from glucose-sensitive 

gels in response to varied glucose concentrations has been demonstrated in vitro [22].

Alginate is an anionic polysaccharide derived from algae. Although alginate-derived 

nanoparticles are not extensively studied as topical drug delivery vehicles, two reports have 

been recently published in the literature. Ibrahim et al. prepared brimonidine-loaded alginate 

nanoparticles and showed that they provide a sustained release without an initial burst in 

vitro and provided an improvement on the intraocular pressure lowering effects when 

compared to marketed brimonidine tartrate eye drops in vivo [23]. Friedman et al. explored 

the use of nanoparticles synthesized from chitosan and alginate for the delivery of 

antimicrobial agents against Propionibacterium acnes for the topical treatment of acne and 

showed superior antimicrobial activity as compared to benzoyl peroxide alone in vitro [24].

Albumin is a non-toxic, biocompatible and biodegradable carrier protein used in drug 

delivery. Albumin nanoparticles have gained considerable attention as drug delivery vehicles 
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due to their high binding capacity. Despite this, it is our finding that there is only one report 

in the literature on the use of albumin nanoparticles for topical drug delivery. Das et al. 

showed that aspirin-loaded albumin nanoparticles provide prolonged release in vitro for 72 h 

and hold promise as a topical treatment for diabetic retinopathy [25].

2.2. Synthetic polymeric nanoparticles

Natural polymers sometimes lack batch-to-batch consistency, making it difficult to prepare 

particles with reproducible characteristics and drug delivery profiles [26]. On the other hand, 

synthetic polymers can be supplied with high purity and batch-to-batch reproducibility, for 

preparing nanoparticles with more consistent drug release profiles. Synthetic polymeric 

nanoparticles are predominantly used to deliver lipophilic, small molecule drugs [26]. Since 

volatile organic solvents are often used during the preparation of synthetic polymeric 

nanoparticles, it is challenging to maintain the biological activity of peptides and proteins 

during the nanoparticle manufacturing process. Tyrosine-derived polymers, aliphatic 

polyesters, and poly (ε-caprolactone) are examples of biodegradable synthetic polymers that 

have been extensively explored as nanoparticle drug delivery vehicles for topical 

applications. These have been described in the following sections.

2.2.1. Tyrosine-derived polymeric nanospheres (TyroSpheres)—Tyrosine-derived 

polymeric nanospheres (abbreviated TyroSpheres) are synthesized from a family of fully-

degradable, ABA-type triblock co-polymers made of poly(ethylene glycol), oligomers of 

desaminotyrosyltyrosine alkyl esters, and several different, naturally occurring dicarboxylic 

acids such as succinic acid, adipic acid, suberic acid, or sebacic acid [27]. These tyrosine-

derived copolymers spontaneously self-assemble in aqueous media to form nanospheres 

with a hydrodynamic diameter of approximately 70 nm [27]. These nanospheres form strong 

complexes with hydrophobic molecules, as demonstrated using the model compound DAF, 

and clinically used antitumor agent paclitaxel, a powerful chemotherapeutic drug [28]. In 

contrast, TyroSpheres do not strongly associate with hydrophilic compounds such as 

fluorescein [29,30]. Batheja et al. demonstrated that a gel formulation of TyroSpheres loaded 

with Nile red (a hydrophobic model drug) significantly enhanced skin permeation (1.4–1.8 

fold) compared to an aqueous dispersion of Nile red-loaded TyroSpheres, both in vitro and 

in vivo [31]. As these TyroSpheres are suitable only for hydrophobic drugs, they have been 

extensively studied for the binding and delivery of various therapeutic agents that are 

hydrophobic and water-insoluble, for example curcumin (unpublished data), cyclosporine A 

[32], sildenafil [33], rolipram [34] and paclitaxel [30,35,36]. Moreover, these nanospheres 

are stable for about 6 months, after which time they degrade, most likely through hydrolysis 

of their ester bonds [28]. Drug release from TyroSpheres is dependent on the properties of 

the drug, the binding and loading efficiencies, and the pH of the solution [37]. For example, 

Goyal et al. showed that the release of cyclosporine A was inversely proportional to the 

amount of drug loaded in the TyroSpheres [32].

In vitro cytotoxicity assays in serum-free media showed no significant decrease in cell 

metabolic activity at concentrations up to 2 mg/mL, demonstrating that empty TyroSpheres 

are non-cytotoxic [27]. Further studies have also shown that TyroSpheres can deliver agents 

into the skin [29,31] and have no detrimental effects on the skin's morphology [31]. 
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Paclitaxel-loaded TyroSpheres have been shown to effectively deliver paclitaxel to tumor 

cells as determined using an in vitro cell killing assay [37]. In addition, in vivo studies were 

performed to compare the toxicity and anti-tumor efficacy of paclitaxel administered 

intravenously using TyroSpheres or commercially available Cremophor® EL in two breast 

cancer murine xenograft models [30]. It was shown that animals treated with paclitaxel-

loaded Cremophor® EL lost significant weight and failed to recover following treatment, 

whereas those treated with paclitaxel-loaded TyroSpheres gained weight normally. 

Moreover, the anti-tumor efficacy of the two treatments was the same. In addition, a larger 

volume of distribution and longer half-life were measured for animals treated with 

paclitaxel-loaded TyroSpheres. These data suggest that TyroSpheres could be used as a more 

effective delivery vehicle for paclitaxel with fewer side effects for the treatment of breast 

tumors. Moreover, through modification of the triblock copolymer, ligands could be 

covalently attached to the TyroSpheres that could target drug-loaded TyroSpheres to specific 

recipient cells, thereby reducing unwanted side effects to non-targeted cells [35].

TyroSpheres also offer versatility in their storage and handling properties since they can be 

prepared as a liquid formulation [29], dry formulation [33,34] or incorporated into a gel to 

prevent runoff when used topically [31]. Tyrosine-derived nanospheres offer a promising 

tool for the topical skin delivery of lipophilic drugs and personal care agents — as may be 

desired in the treatment of dermatological conditions such as skin cancer, psoriasis, eczema, 

microbial infection, sunscreens and cosmetics.

2.2.2. Poly (lactic-co-glycolic acid) nanoparticles—Poly (lactic-co-glycolic acid) 

(PLGA) has been extensively studied in topical drug delivery applications because it is 

biocompatible, biodegradable, widely used in medical devices and pharmaceutical 

formulations approved by the FDA, commercially available with different molecular weights 

and copolymer ratios, able to encapsulate a wide range of drugs from hydrophobic to 

lipophilic, and capable of surface modification for site-specific drug delivery. Furthermore, 

PLGA can be formulated as nanoparticles using several different methods, such as solvent 

displacement, solvent diffusion, emulsification–evaporation, and phase-inversion; with sizes 

ranging from 10 to 1000 nm. PLGA nanoparticles have been incorporated into gels using 

hydroxypropyl methylcellulose (HPMC) or Carbopol® to further enhance the penetration of 

drugs [38] into the deeper layers of the skin by increasing contact time with the skin and 

reducing the loss of water from the skin.

2.2.3. Poly(ε-caprolactone) nanoparticles—Poly(ε-caprolactone) (PCL) is another 

synthetic polymer that is widely employed for the preparation of nanoparticle formulations 

due to its biocompatibility, biodegradability and favorable rheological properties, including a 

low glass transition temperature. The degradation of PCL is slower than other polyesters due 

to its semi-crystalline structure (erosion rates: poly(glycolic acid) > PLGA > poly(L-lactic 

acid) > PCL) [39]. As a result, PCL is often modified [40] to change its biodegradability to 

meet specifications of the targeted clinical application (see review by Abedalwafa et al. 

[41]).
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2.3. Lipid-based nanoparticles

2.3.1. Solid-lipid nanoparticles (SLNs)—SLNs are made of solid lipids with an 

average diameter between 50 and 1,000 nm [42] and prepared using three main components: 

lipid(s), surfactant(s), and water. The type of lipids used to prepare SLN is very broad, 

including triglycerides (e.g., tristearin), partial glycerides, fatty acids (e.g., stearic acid), 

steroids (e.g., cholesterol) and waxes (e.g., cetyl palmitate) [43]. Surfactants are typically 

required to stabilize the lipid dispersion. SLNs were developed in the early 1990s and are 

still considered promising drug carrier systems, especially for applications that require 

sustained release. SLNs can be prepared without organic solvents. In addition, they are 

biodegradable, biocompatible, physicochemically stable, have low toxicity, and can be 

produced at large industrial scales at relatively low cost. Jeon et al. prepared surface-

modified SLNs containing retinyl palmitate and showed that these negatively-charged SLNs 

enhanced the cutaneous distribution of retinyl palmitate 4.8-fold as compared to neutral 

SLNs [44].

2.3.2. Liposomes—Liposomes are spherical vesicles made of lipids, the major component 

of the cell membrane. Liposomes have at least one bilayered lipid membrane and can be 

loaded with drugs. The average diameter of liposomes varies from 50 to 300 nm [45]. To 

date, about 600 clinical trials have involved lipid-derived drug delivery systems [46]. 

Overall, lipids reduce the interaction of drugs with serum proteins and thereby increase the 

circulation time of drugs in the body, preventing rapid clearance and providing drug delivery 

to the targeted site [45]. Liposomes can be prepared using: (i) thin film hydration [47], (ii) 

reverse-phase evaporation [48], (iii) solvent injection [49], (iv) detergent depletion [50], (v) 

supercritical fluid [51], (vi) size reduction sonication [52], (vii) high-pressure 

homogenization [52], and (viii) low-pressure extrusion [53]. Liposomes are able to provide 

sustained [54] and triggered [55] release of their payload, however the correlation between 

in vitro and in vivo release kinetics has been poor [56].

2.4. Metallic and silica nanoparticles

A variety of metallic nanoparticles have captured much attention due to their effective 

application to various areas of science and technology. One example is silver nanoparticles 
(AgNPs), which have been shown to have antiseptic and antimicrobial activity against gram-

positive and gram-negative bacteria [57]. AgNPs (ranging in size from ~1–100 nm) can be 

prepared using a variety of methods: (i) chemical synthesis, (ii) physical dispersion, (iii) 

photochemical synthesis, and (iv) biological synthesis [58]. Recently, Zhang et al. reported 

on three multistep methods used to prepare silver nanostructures with well-controlled 

shapes: (i) double reductant method, (ii) etching technique, and (iii) construction of core-

shell nanostructures [59]. These nanoparticles had excellent optical properties. Another 

example is gold nanoparticles (AuNPs), which exhibit a unique combination of physical, 

chemical, optical, and electronic properties for drug delivery. They are easy to prepare in a 

range of sizes (1–150 nm), are biocompatible, and can be conjugated to other molecules. 

AuNPs of ~5 nm diameter have been reported to diffuse though the SC of intact mouse skin 

[60]. Other examples are the use of metallic nanoparticles, such as titanium dioxide (TiO2) 

and zinc oxide (ZnO) nanoparticles, in cosmetics and sunscreens for ultraviolet radiation 

protection [61]. Recently, cerium oxide nanoparticles have also gained attention in wound 
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healing applications [62]. The sizes of the metallic nanoparticles can be optimized to be 

large enough to reflect and refract the high energy, very short wavelengths of ultraviolet A 

and B (~290–400 nm), while being too small to reflect the lower energy, longer wavelengths 

of visible light (~400–700 nm). In this way they can remain invisible on the skin [63].

2.5. Dendrimers

Dendrimers are a class of highly branched, monodispersed, synthetic macromolecules with a 

well-defined composition and structure. The most commonly referenced dendrimers used in 

nanomedicine are polyamidoamines (PAMAM), poly(L-lysine) (PLL) scaffold dendrimers, 

polyesters (PGLSA-OH), polypropylimines (PPI), poly(2,2-bis (hydroxymethyl)propionic 

acid) scaffold dendrimers (bis-MPA), and aminobis (methylenephosphonic acid) scaffold 

dendrimers. Dendrimer-based NPs have been widely studied because of the scientific and 

technological interest relating to their possible applications in a broad range of areas, such as 

catalysis, optics, electronics, and biomedical applications [64]. The tunable surface 

chemistry of dendrimers allows their assembly onto various nanoparticles [65]. For example, 

magnetic iron oxide nanoparticles have been stabilized using dendrimers [65]. Dendrimer 

nanoparticles are usually smaller than 5 nm and can be prepared using fast reduction and 

nucleation chemistry [66]. Perumal et al. [67] showed that dendrimers could be used to 

enhance the skin permeation of hydrophilic drugs. Dendrimer size, molecular weight, 

surface charge and hydrophobicity are key parameters guiding topical drug delivery and skin 

permeation [68].

3. Topical applications of nanoparticles

3.1. Acne

Acne vulgaris is the most common skin disease. It is associated with an elevated rate of 

sebum secretion, which manifests as mild-severe inflammatory lesions on areas of the body 

containing large numbers of sebaceous follicles such as the face, back and chest [69]. Acne 

is classified as mild, moderate, or severe based on the number and type of lesions. Treatment 

options vary with the stage and intensity of the disease. In general, topical treatment is 

preferred for mild and moderate acne, whereas systemic therapy is used to treat severe cases 

[70]. Topical therapy includes the use of antibiotics, retinoids (vitamin A), and combinations 

thereof. The retinoids often irritate the skin, and can cause dryness, peeling/exfoliation and 

photosensitivity with resultant hyperpigmentation. The alternative treatment (prolonged use 

of antibiotics) can lead to bacterial resistance. Because of these complications, nanoparticles 

are being developed to provide gradual and sustained delivery of these drug(s) into the skin. 

Comparable or increased effectiveness with concomitantly reduced topical side effects are 

the key criteria used to evaluate the utility of nanoparticulate formulations of acne drugs 

[71]. Table 1 lists the drugs used to treat acne by topical application of nanoparticle systems. 

These new formulations have been shown to provide efficacy, tolerability, compliance, and 

cosmetic acceptability [72,73].

3.2. Infection

The rate at which infectious diseases and drug-resistant pathogens are emerging is a matter 

of serious concern. Despite increased knowledge of microbial pathogenesis and a wide 

Goyal et al. Page 8

J Control Release. Author manuscript; available in PMC 2016 October 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



repertoire of antimicrobial therapies, the morbidity and mortality resulting from microbial 

infections remains high. Therefore, there is a clinical need for novel strategies and new 

antimicrobial agents to treat infections.

A recent review has reported on the use of nanoparticle systems as antimicrobial and 

antinfective agents [74]. For example, AgNPs have been studied as antimicrobials, where it 

has been shown that AgNPs with diameters less than 20 nm can attach to sulfur-containing 

proteins of bacterial cell membranes. This increases the permeability of the bacterial 

membrane, causing death to the bacteria [75]. The antibacterial properties are related to the 

total surface area of the nanoparticles, where smaller particles with larger surface-to-volume 

ratios have greater antibacterial activity [76]. It has been demonstrated that composites of 

AgNPs and polymer gels have increased bactericidal activity compared to higher 

concentrations of AgNPs alone [77].

AuNPs have been used to coat a wide variety of surfaces, such as implants, wound dressings, 

and glass surfaces for maintaining antimicrobial surfaces [78]. AuNPs have optical 

absorption in the near-infrared region and can destroy bacteria via photothermal heating 

[79]. AuNPs generate holes in the cell wall, resulting in the leakage of cell contents and cell 

death. It is also possible that AuNPs bind to the DNA of bacteria and inhibit the uncoiling 

and transcription of DNA [80]. Stable conjugates of AuNPs coated with antibiotics have 

demonstrated bactericidal activity against both Gram-positive and Gram-negative bacteria 

[81].

Other metal oxide nanoparticles have also been studied for antibacterial activity. For 

example, halogen-treated magnesium oxide (MgO) nanoparticles have demonstrated 

antimicrobial activity against bacteria and spores [82]. Copper oxide (CuO) nanoparticles 
have a high antimicrobial activity against Bacillus subtilis [83]. This has been attributed to 

the greater abundance of amines and carboxyl groups on the cell surface of B. subtilis for 

which Cu has a high affinity. Cu ions may also interact with DNA molecules, intercalate 

with nucleic acid strands, and/or disrupt biochemical processes [83,84]. Titanium dioxide 
(TiO2) nanoparticles have also been explored to fight infection. It has been suggested that 

UV irradiated nanostructured TiO2 surfaces can be used as effective disinfectants, 

eliminating pathogenic microorganisms on food-contacting surfaces [85]. The major 

disadvantage of using TiO2 in this way is that UV light is required to activate the 

photocatalyst, which initiates the killing of bacteria and viruses. Zinc oxide (ZnO) 

nanoparticles have been shown to generate hydrogen peroxide (H2O2) from surfaces and 

thereby inhibit bacterial growth. It is presumed that by decreasing the particle size, the 

number of ZnO powder particles per unit volume of powder slurry increases, resulting in an 

increased surface area with an increased capacity for the generation of H2O2. Another 

possible mechanism is that released Zn2+ ions can directly damage the cell membrane and 

interact with intracellular contents [86]. Table 1 lists metal-based nanoparticles that have 

been explored to treat infection.

3.3. Skin cancer

Skin cancer is the most common form of malignancy, although it is not the deadliest [87]. 

The most common forms of skin cancer are basal cell carcinoma (~2.8 million U.S. cases 
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annually [88]), and squamous cell carcinoma (~700,000 U.S. cases annually [89]). 

Malignant melanoma, on the other hand, represents only a very small proportion of skin 

cancers (~74,000 U.S. cases annually [90]), but accounts for the vast majority of skin cancer 

deaths. Excision is the current standard treatment for localized skin cancers, and in the case 

of melanoma this can involve extensive surgeries with deep dissections and wide margins, 

often requiring soft tissue reconstruction. Furthermore, skin cancers may metastasize to 

regional lymph nodes and distant sites (particularly in the case of melanoma, and sometimes 

with squamous cell carcinoma) [91]. Nanoparticles may provide targeted and effective 

chemotherapeutic delivery to these sites, improving treatment efficacy. Treatments for 

metastatic malignant melanoma have recently incorporated nanoparticular formulations of 

cytostatic compounds, as reviewed in 2014 by Berciano-Guerrero et al. [92]. Liposomes, 

SLNs, polymeric nanospheres and dendrimers are all nanoparticles that have been explored 

as topical delivery systems for treating skin cancer. Iwamoto et al. recently reviewed the 

types of drugs and delivery systems used in skin cancer chemotherapy [93]. Table 1 provides 

a list of nanoparticle-based formulations developed for the treatment of melanoma.

Liposomes exhibit excellent circulation, penetration, and diffusion properties [94]. Early 

research demonstrated that liposomes are retained in the tumor interstitial fluid in close 

proximity to tumor vessels [95]. Currently, several liposome-based drug delivery 

formulations are in clinical use for treating cancer, including melanoma [96]. Several other 

liposomal carriers for chemotherapeutic drugs are currently in clinical trials [97]. Moreover, 

major advances with cationic liposomes have led to the successful delivery of small 

interfering RNA (siRNA) [98]. Finally, theragnostic liposomes offer a new approach for 

loading a wide variety of diagnostic nanoparticles with anticancer drugs [99].

SLNs can protect drugs against degradation, and provide control over drug release kinetics. 

SLNs releasing docetaxel have been shown to improve efficacy against colorectal (C-26) and 

malignant melanoma (A-375) cell lines in vitro and in vivo. SLNs containing cholesteryl 

butyrate have been shown to inhibit the ability of human umbilical vein endothelial cells to 

adhere to cancer cell lines derived from human melanoma, colorectal, breast, and prostate 

cancers. This approach offers promise by interfering with the vascularity needed for tumors 

to grow [100].

Polymeric micelles are usually more stable in blood as compared to liposomes and other 

surfactant micelles. Due to their considerably large size, polymeric micelle systems can be 

used to co-deliver two or more drugs for combinational treatment modalities, such as 

radiation agents and anticancer drugs [101]. The use of polymeric micelles was recently 

investigated for the treatment of mice with melanoma and it was shown that the animals 

treated with drug-loaded polymeric micelles inhibited tumor growth and increased the 

survival rate as compared to animals treated with free drug [101].

Dendrimers have also been successfully used in immunotherapy and radio-immunotherapy 

of various types of tumors [102], including melanoma [103] and cutaneous squamous cell 

carcinoma [104]. However, the controlled release of drugs from dendrimers remains a 

significant challenge. New developments in polymer and dendrimer chemistry have provided 

a new class of molecules called dendronized polymers, which are linear polymers that bear 
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dendrons at each repeat unit. Dendrons are monodisperse, wedged-shaped sections that 

make up the structure of dendrimers. Dendrimers and dendrons both possess three key 

architectural features; 1) an initiator core, 2) interior branching units, and 3) a function of 

generation (G) level. These molecules have an increased circulation time, and may offer 

drug delivery advantages such as targeted and sustained delivery.

3.4. Inflammatory diseases

Inflammation is characteristic of many dermatologic disease processes and affects cutaneous 

physiology, such as the skin's barrier function. This disruption can serve as a portal of entry 

for microbes, allergens and other pro-inflammatory stimuli, which can cause further 

inflammation. While many of these disease processes are not fully understood, therapies that 

modulate inflammation have been shown to significantly decrease morbidity [105]. 

Inflammatory stimuli are omnipresent in the environment, from microbes that colonize the 

body, to UV rays, and even commonly ingested foods [106]. These factors can result in 

cutaneous inflammation with varying degrees of physiological and esthetic impact, such as 

psoriasis, eczema, atopic dermatitis, rosacea, lichen planus, erythroderma, Stevens–Johnson 

syndrome and toxic epidermal necrolysis. According to statistics provided by the National 

Psoriasis Foundation, psoriasis is the most prevalent autoimmune disease in the U.S. with as 

many as 7.5 million Americans and 125 million people worldwide affected. Nanotechnology 

has provided an alternative approach for the delivery of drugs that can reduce inflammation 

and its effects on the skin's barrier function and esthetics. For example, Kilfoyle and co-

workers have shown that TyroSpheres are able to provide dose-controlled delivery of 

paclitaxel, an anti-proliferative agent, and that the paclitaxel is preferentially deposited in the 

epidermis [36]. These results suggest that paclitaxel-loaded TyroSpheres are a promising 

approach to the treatment of psoriasis, while minimizing systemic exposure to paclitaxel. 

Table 1 lists the types of nanoparticle-based formulations used to topically treat 

inflammatory diseases or conditions of the skin.

3.5. Cosmetics

Many skin conditions, such as dry skin, oily skin, hyper/hypopigmentation, vascular 

deformities, and photoaging, are major concerns in the field of cosmetic dermatology. A 

variety of products have been formulated to address these issues [107]. However, there has 

been much controversy regarding the safety of the topical application of nanoparticles 

revolving around whether nanoparticles get absorbed systemically, evade immunologic 

defense mechanisms, form complexes with proteins, and/or induce the formation of free 

radicals, ultimately damaging healthy skin cells. This controversy is particularly evident 

with regard to the use of nanoparticles in sunscreens (which are regulated as drugs in the 

U.S.).

ZnO and TiO2 nanoparticles have traditionally been used in sunscreens because of their 

ability to reflect ultraviolet (UV) light [108]. In recent years, nanosized forms of ZnO and 

TiO2 have been optimized to be more transparent, less viscous (more spreadable) [109], and 

easier to blend, while maintaining their potency against UV irradiation [110]. However, their 

toxicity profiles need to be assessed since smaller sized particles will likely have different 

chemical, optical, magnetic, and structural properties [111]. Due to the safety concerns 
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around metal nanoparticles in sunscreens, Cross et al. performed a penetration study using a 

Franz-cell diffusion setup [112]. ZnO nanoparticles were applied topically to cadaver skin 

and after 24 h, 0.03% of the applied ZnO nanoparticles were detected in the upper SC, with 

0% in the lower SC and epidermis. These data suggest that it is unlikely that ZnO 

nanoparticles penetrated through the epidermis and into the dermis in this model.

Vitamin A, in various natural and synthetic retinoid forms has been explored for the 

treatment of skin aging and hyperpigmented lesions [113], however, certain forms such as 
retinoic acid cause irritation, burning, scaling and/or dermatitis, limiting their acceptance by 

patients. Retinaldehyde and retinol are considerably less irritating. The retinyl palmitate and 

acetate esters are the least irritating forms of Vitamin A, most probably because they are the 

natural storage forms of Vitamin A in the skin. In order to improve efficacy and minimize 

the aforementioned side effects, various novel drug delivery systems, including 

nanoparticles, have been developed. For example, Yamaguchi et al. [114] observed the effect 

of nano-scale tretinoin (ali-trans retinoic acid, atRA) on photo-damaged skin and showed 

reduced irritation and inflammation.

Coenzyme Q10 is a naturally occurring antioxidant used widely in cosmetics [115]. It is a 

lipid-soluble provitamin with low solubility in aqueous solutions (logP > 10) [116]. 

Therefore, SLNs, liposomes and other formulations have been explored as drug delivery 

vehicles for Coenzyme Q10 to facilitate penetration into the deeper layers of skin [117].

Octyl methoxycinnamate (OMC), also called ethylhexyl methoxycinnamate, is used as an 

active ingredient in sunscreens [118]. Puglia et al. [119] incorporated two components, 

OMC and diethyltoluamide, into SLNs and used differential scanning calorimetry to 

determine the percutaneous absorption. This study provided evidence that the topical 

application of SLN delivery systems could reduce their systemic absorption, and enhance 

their safety and efficacy for this application. However, when exposed to sunlight, OMC can 

change from the primary transform to the cis-form, resulting in a reduced UVB filtering 

efficiency [120]. Table 1 summarizes the various types of nanoformulations used in cosmetic 

applications.

3.6. Ophthalmology

The ocular surface epithelium, tear film, and blood-ocular barriers interfere with the 

penetration of topically applied drugs to the eye. Nanoparticles offer several desirable 

characteristics when dealing with ocular drug delivery: (i) They can improve the penetration 

of large, poorly water-soluble molecules, e.g., the delivery of glucocorticoid or 

immunosuppressive drugs for the treatment of immune-related, vision-threatening diseases, 

such as uveitis or scleritis [121]. (ii) They can increase the contact time of the administered 

drug with its target tissue, e.g., brimonidine for the treatment of glaucomaor corticosteroids 

for autoimmune uveitis [122]. (iii) Nanoparticles can be used to reduce side effects of highly 

potent drugs. (iv) They can reduce issues with patient non-compliance, e.g., glaucoma 

requires treatment with daily application of eye drops, which often adversely affects the 

anterior structure of the eye [123]. Wadhawa et al. reported a significant reduction in the 

intraocular pressure without irritation of rabbit eyes treated with chitosan-hyaluronic acid 

nanoparticles loaded with timolol compared to standard timolol eye-drops or empty 
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nanoparticles [124]. Table 1 lists the various types of nanoparticle formulations studied for 

the topical treatment of eye diseases.

3.7. Chronic wound healing

In the past, the topical treatment of cutaneous wounds has focused on infection [125], but in 

more recent years, researchers have developed new multifunctional nanosystems with the 

potential to provide more comprehensive therapeutic effects [126]. Chronic wounds fail to 

complete the normal wound healing cascade, resulting in delayed or failed wound closure 

[127]. These recalcitrant wounds occur most commonly in association with diabetes, 

peripheral arterial disease and infection. Unlike acute wounds, there is no standard treatment 

for chronic wounds. Treatment options include gels and occlusive dressings that retain 

moisture, surgical debridement to remove dead tissue and debris, skin substitutes, vacuum-

assisted wound closure, hyperbaric oxygen therapy, compression bandages, and topical 

drugs [128]. Nanoparticles have been explored to deliver silver and morphine to chronic 

wounds, to inhibit bacterial colonization, and to reduce pain [129]. In addition, nanoparticles 

have been used to encapsulate and protect therapeutic agents from degradation in the highly 

proteolytic wound environment [130]. Vasoactive agents, such as nitric oxide, have also been 

stabilized and released using nanoparticle technologies to prevent or treat ischemia [131]. 

Recently, Chigurupati et al. reported on the topical use of cerium oxide nanoparticles for 

healing full-thickness dermal wounds in mice via a mechanism that enhances the 

proliferation and migration of various skin cells. The results suggest that cerium 

nanoparticles penetrated into the wound tissue and reduced oxidative damage to cellular 

membranes and proteins [62]. Curcumin has also been explored in antimicrobial and wound 

healing applications [132]. Krausz et al. demonstrated that curcumin-loaded nanoparticles 

inhibited microbial growth and enhanced wound healing in an in vivo murine wound model 

[133]. Table 1 lists the various types of nanoparticle formulations explored to treat chronic 

wounds.

4. Electrospun nanofibers for drug delivery

4.1. Introduction to electrospinning

Electrospinning is a relatively simple, user-friendly and inexpensive process used to 

fabricate nanofibers. Electrospinning was first patented by Cooley in 1900 [134], and has 

gained popularity in the last 20 years for use in medical applications, including nanofiber 

drug delivery systems, tissue engineering scaffolds, filtration membranes, biosensors, and 

enzyme immobilizers. The typical setup includes at least one syringe pump, a polymer 

solution with or without drug, a high voltage supply, a source electrode, and a collector 

electrode (Fig. 2). During the electrospinning process, an electric field is applied to a viscous 

polymer solution, inducing charge within the polymer and needle. When the charge 

repulsion force exceeds the surface tension, a jet is initiated from the needle tip (referred to 

as a “Taylor cone”) that creates extremely thin, elongated droplets with very high surface 

area. As the solvent rapidly evaporates from these droplets, nanosized fibers are formed that 

are attracted to an oppositely charged or grounded collector, where a nonwoven, solid, 

fibrous mat is deposited. The collector may be stationary or rotating and/or translating. Fig. 

2 shows a scanning electron micrograph of an electrospun fiber mat. In the electrospinning 
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process, fiber formation is dependent on a variety of solution and process parameters, as 

reviewed by Bhardwaj et al. [135]. These include polymer concentration (Fig. 3), polymer 

molecular weight, solution viscosity, surface tension, conductivity of the polymer, solvent, 

field strength/voltage, flow rate of the feed, type of collector, and distance between the 

needle tip and the collector. This process can produce fibers with a diameter ranging from 2 

nm to greater than 5 µm, but most commonly fiber diameters from about 10 to several 

hundreds of nanometers are reported in the literature [136]. Through the optimization of 

these parameters and atmospheric conditions (e.g., humidity and temperature), 

electrospinning can be used to produce nanofibers with a desired diameter and morphology 

for a targeted clinical application.

Fig. 2 represents the standard electrospinning process used to produce drug delivery 

systems. The drug is either co-dissolved or finely dispersed in the polymer solution. 

Variations of this setup include coaxial spinning, emulsion electrospinning, and the use of 

dual spinnerets. Coaxial spinning is a modified electrospinning setup where two different 

solutions (e.g., one containing polymer and the other containing drug) are fed through a co-

axial capillary channel to produce nanofibers with a core-shell structure (drug in the core 

and polymer in the shell) [138]. Emulsion electrospinning uses a surfactant to separate the 

distinct phases (e.g., organic vs. acqueous) and produce nanofibers with a core-shell 

structure [139]. Coaxial and emulsion spinning provide alternative approaches to 

electrospinning materials that are not able to be electrospun via standard setups. Co-axial 

electrospinning can also be used to protect therapeutic molecules from denaturation or 

degradation. An alternative approach, using dual spinnerets, allows the user to 

simultaneously electrospin two polymer solutions onto a single collector [140]. The distance 

between the spinnerets is an additional process parameter that could be optimized by the 

user.

4.2. Electrospun nanofibers as topical drug delivery systems

Electrospun fiber mats offer several desirable features as drug delivery systems. (i) The 

electrospinning process can be used to fabricate nanofibers from a wide variety of solutions 

of both natural polymers (e.g., chitosan, fibronectin, gelatin, collagen, silk, ethyl cellulose) 

and synthetic polymers (e.g., PLA, PGA, PLGA, tyrosine-derived polycarbonates, 

polycaprolactone, polyurethane, poly(vinyl pyrrolidone), poly(vinyl alcohol)), or 

combinations thereof as reviewed by Bhardwaj et al. [135]. (ii) Fiber mats have high surface 

area-to-volume ratios that provide efficient delivery of both hydrophilic and hydrophobic 

drugs [141]. (iii) The drug release profile can be tuned to meet the specific clinical 

application by modulating a variety of parameters, such as the drug to polymer ratio, fiber 

diameter, morphology, and/or porosity [142]. Functionalization of the nanofibers (e.g., 

surface graft polymerization) is another approach used to modulate drug release, as reviewed 

by Yoo et al. [12]. (iv) Electrospun fiber mats can provide sustained release, which reduces 

the frequency of topical application to increase patient compliance. (v) Electrospun fiber 

mats have high porosity with interconnectivity, which can play a critical role in mass 

transport [143,144]. (vi) Nanofiber meshes are malleable, making them suitable for topical 

drug delivery applications. (vii) Fiber mats can be incorporated into wound dressings, as part 

of a drug-releasing wound treatment technology.
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Although electrospinning has been developed into an industrial scale process for the 

manufacture of HEPA filters and insulating materials, the exact reproducibility required for 

the production medical devices is still a challenge. Modifications, such as bubble 

electrospinning [145] and porous hollow tubes [146], have been explored to scale up the 

electrospinning process.

5. Areas of potential clinical use for the topical application of electrospun 

nanofiber drug delivery systems

5.1. Infected or highly contaminated wounds

Infection of cutaneous wounds can lead to delayed healing time, longer hospital stay, and 

death in some cases. The local delivery of antibiotics can be beneficial in the treatment of 

infection. Various antibiotic agents have been impregnated into electrospun fibers and shown 

to have bactericidal activity in vitro. Some examples are described below and summarized in 

Table 2.

Katti et al. showed that cefazolin, an antibiotic, can be loaded into PLGA nanofibers using a 

standard electrospinning setup [147]. Verrek et al. used nonbiodegradable polyurethane-

based nanofibers as a topical delivery system for itraconazole, a hydrophobic anti-fungal 

agent. This system provided ultrafast release (<24 h) of the payload, with a linear 

relationship to the square root of time, indicating diffusional release [141]. Kim et al. 

demonstrated the sustained release of cefoxitin sodium, a hydrophilic antibiotic, for up to 

one week, from electrospun copolymers of PLGA and polyethylene glycol (PEG), and 

confirmed the bioactivity of the released drug in an in vitro Staphylococcus aureus inhibition 

assay [148]. Huang et al. used co-axial electrospinning to incorporate gentamycin sulfate, an 

antibacterial agent, into polyurethane fibers, where the in vitro release followed zero-order 

kinetics for up to 7 days [149]. Mupirocin is an antibiotic commonly used to treat cutaneous 

infections, and typically formulated as a 2% cream or ointment that requires application 

three times a day for up to 10 days. Thakur et al. fabricated poly(L-lactic acid) (PLLA) fiber 

mats containing mupirocin and lidocaine hydrochloride (an anesthetic) using both a single 

and a dual spinneret setup, and showed that the setup significantly affected that the burst 

release profile of mupirocin [140]. In addition, the presence of both mupirocin and lidocaine 

hydrochloride in a single fiber mat changed the release kinetics of at least one of the drugs. 

This study demonstrated that the dual spinneret setup was preferred over the single spinneret 

to produce prototype dressings to treat infected wounds. Ciprofloxacin, a fluoroquinolone 

antibiotic, is effective against both Gram-positive Staphylococcus (S) and Gram-negative 

Pseudomonas (P) bacteria that cause cutaneous infections. Jannesari et al. demonstrated that 

the release of ciprofloxacin ranged from a few days from poly (vinyl alcohol) fibers to over 

80 days from poly (vinyl acetate) fibers. The release profile could be tuned by blending poly 

(vinyl alcohol) and poly(vinyl acetate) [150]. Said et al. demonstrated the release of fusidic 

acid, an antimicrobial agent, from PLGA nanofibers over 9–15 days, which proved 

efficacious against Pseudomonas aureus, Pseudomonas aeruginosa, and methicillin-resistant 

S. aureus (MRSA) [151]. This group also incorporated a bioburden-triggered release 

mechanism [152]. Linezolid is a synthetic antimicrobial that was shown to inhibit S. aureus 
when released from PCL fiber mats [153]. Alhusein et al. reported on the controlled release 
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of tetracycline hydrochloride from triple-layered electrospun fiber mats, where the two outer 

layers consisted of PCL and the inner layer consisted of poly(ethyleneco-vinyl acetate). It 

was shown that the nanofibers were effective at killing biofilms formed by S. aureus [154]. 

Poly (vinyl pyrrolidone) – iodine complexes are known to have broad-spectrum 

antimicrobial activity and as a result, have been explored as a treatment for various 

cutaneous injuries. Ignatova et al. showed that photo-crosslinked poly(vinyl pyrrolidone) or 

poly(vinyl pyrrolidone)/poly(ethylene oxide) fiber mats containing iodine had biocidal 

activity against S. aureus, Escherichia coli (E. coli), and Candida albicans (a type of fungus) 

[155].

The incorporation of metals into electrospun fiber mats has also been used to kill microbes, 

target bacterial colonization, and inhibit contamination. Thomas et al. incorporated 

biosynthesized AgNPs into PCL nanofibers via electrospinning and demonstrated their 

antimicrobial effects against Staphylococcus epidermidis and Staphylococcus haemolyticus 
[156]. Similarly, Dashdorj et al. incorporated AgNPs into zein (a corn protein) nanofibers 

and showed bactericidal activity against S. aureus and E. coli [157]. GhavamiNejad et al. 

used electrospinning to form AgNPs on the surface of poly(dopamine methacrylamide-co-

methyl methacrylate) (MADO) fibers [158]. The fibers released ~13% of the Ag payload 

within 1 day, followed by a slower release for the next 6 days. In addition, the fiber mats had 

bactericidal activity against E. coli, S. aureus, and P. auregenosa. An in vivo rat study 

confirmed the effectiveness of AgNPs-MADO fiber mats, where full thickness wounds 

treated for 15 days showed higher wound healing rates (92%) compared to controls (51%) 

and MADO-alone fiber mats (65%). Similarly, Woo et al. developed a bilayered construct 

with an upper layer consisting of TiO2-loaded chitosan nanofibers and a lower layer 

consisting of human adipose-derived extracellular matrix [159]. The bilayered construct was 

shown to have in vitro bactericidal activity against E. coli and S. aureus and inhibit bacterial 

penetration and accelerate wound healing in vivo in a rat model.

5.2. Chronic wounds/wound healing

The treatment of cutaneous wounds, such as burns, traumatic cutaneous injuries, and chronic 

wounds is currently a significant clinical challenge. Generally, normal cutaneous wound 

healing is categorized into three time-dependent phases: (i) inflammation, starts immediately 

after injury; (ii) new tissue formation, overlaps with the first stage; and (iii) tissue 

reorganization, where scar tissue is formed and may remodel for a year or more [160]. 

Typically, in cases of deep burns, the normal wound healing is not possible, as there is no 

source of cells remaining for regeneration. In chronic wounds, the inflammation stage often 

proceeds far too long, resulting in wounds that remain open for months to years. In these 

types of wounds, dressings play an important role to (i) protect the wound; (ii) maintain a 

moist wound environment; (iii) protect the wound from contamination with exogenous 

microorganisms; and (iv) accelerate wound closure. The ideal wound dressing should serve 

as a physical barrier between the wound and the external environment, but be permeable to 

oxygen. Electrospun fiber mats have properties that are suitable for wound healing 

applications, such as (i) a highly porous membrane structure that facilitates the exchange of 

liquids and gases with the environment; (ii) well-interconnected pores that are required to 

protect the wound from bacterial penetration; (iii) high surface area; and (iv) can provide the 
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local release of drugs into the skin. The electrospun fiber mats can be used as drug delivery 

vehicles that aid in wound healing.

Many groups have reported on the use of electrospun fiber mats as matrices for wound 

healing (summarized in Table 2). For example, Wang et al. reported on electrospun core-

shell fibers made of PCL/hyaluronic acid containing epidermal growth factor (EGF). This 

formulation accelerated wound closure in vivo [161]. Several other groups have also 

reported on the impregnation of EGF [162–164], basic fibroblast growth factor (bFGF) 

[165,166], vascular endothelial growth factor (VEGF) [167], and platelet-derived growth 

factor-BB (PDGF-BB) [167] into electrospun fiber mats as a strategy for accelerating wound 

closure. Systemic and topical administration of ketanserin, a selective S2-serotonin 

antagonist, accelerated wound healing of diabetic foot ulcers [168,169]. Macri et al. 

incorporated a fibronectin-derived peptide (P12) that holds promise in the treatment of burns 

[170] into tyrosine-derived polycarbonates using a standard electrospinning setup. It was 

shown that both polymer composition and drug loading significantly affected in vitro drug 

release [142]. Recently, Peh et al. impregnated a cocktail of compounds (Vitamin C, 

hydrocortisone, insulin, triiodothyronine, EGF, and Vitamin D3) into electrospun PLGA/

collagen fiber mats and tested their potential utility in wound healing applications. These 

researchers also confirmed the bioactivity of the released molecules in vitro [171].

5.3. Cosmetics/skin care

Electrospun fiber mats have been developed as cosmetic skin care masks due to their ability 

to be molded to the topography of the skin [135]. For skin care and renewal applications, 

various therapeutic molecules could be incorporated into the nanofibers (summarized in 

Table 2). For example, Sheng et al. impregnated silk fibroin nanofibers with Vitamin E, an 

antioxidant and stabilizer of biological membranes [172]. All formulations exhibited a burst 

release for the first 30 min followed by slow release for the next 72 h. In vitro studies also 

showed that Vitamin E-loaded silk fibroin fiber mats enhanced mouse skin fibroblast (L929 

cells) viability under oxidative stress. In addition, Taepaiboon et al. demonstrated the 

potential use of electrospun Vitamin A (retinoic acid)-loaded fibers in cosmetic applications 

[173].

5.4. Anesthetics

Local anesthetics, such as lidocaine hydrochloride or bupivacaine, are commonly used for 

pain management during surgical procedures. Most commonly, these require multiple 

injections to infiltrate a region. Weldon et al. developed electrospun fibers that provided 

sustained local analgesia using bupivacaine [174]. Efficacy was demonstrated in a rat model 

where local analgesia was reported in 9 of 10 animals treated with bupivacaine-loaded 

fibers, with an onset of effect at day 1 and the maximum noted at day 3, followed by loss of 

the effect between 7 and 9 days. Chen et al. developed a sandwich-structure electrospun 

fiber mat (two outer layers were made of PLGA/collagen fibers, and the inner layer 

consisted of PLGA fibers containing three drugs), which released gentamycin and 

vancomycin (antibiotics) and lidocaine (anesthetic) for more than 3 weeks and demonstrated 

promising repair of infected wounds, in an in vivo rat model [175]. Table 2 summarizes 

examples of fiber mats used as topical drug delivery vehicles for anesthetics.
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5.5. Keloids

A keloid is an excessive and abnormal type of scar tissue, which is firm, fibrous and extends 

beyond the normal boundaries of the healing cutaneous wound. It results from an 

overgrowth of granulation tissue produced by fibroblasts, but unlike a hypertrophic scar, a 

keloid grows beyond the margins of the original injury. Dexamethasone (DEX) has been 

shown to induce keloid regression by suppressing endogenous (not exogenous) VEGF 

expression and the proliferation of fibroblasts [176]. Li et al. impregnated DEX into PLGA 

fibers using a standard electrospinning setup and showed ~40% release of the payload within 

10 days, followed by very slow release for another 15 days (t = 25 days) [177]. Keloids 

treated with DEX-loaded PLGA fiber mats, in a mouse model, were significantly reduced in 

size compared to silicon gel sheet-treated controls. To further enhance this reduction in size, 

green tea polyphenols (GTP)were co-spun with DEX and PLGA to fabricate DEX/GTP-

loaded PLGA fibermats. It was shown that the addition of hydrophilic GTP into the PLGA 

fiber mat enhanced the release of hydrophobic DEX from the fiber mats. Further, the 

addition of GTP significantly enhanced the disappearance of distinguishing keloid 

characteristics in the mouse model, as noted by histological analyses [177]. Table 2 

summarizes examples of fiber mats used as topical drug delivery vehicles for keloids.

5.6. Electrospun sutures

Sutures can provoke pain, inflammatory reactions, or infection. Therefore, researchers have 

explored the use of electrospinning to produce drug-loaded ultrafine fibers as sutures, aiming 

to reduce these side effects (Table 2). He et al. incorporated an antibiotic, tetracycline 

hydrochloride (tetracycline-HCl), into PLLA fibrous sutures to minimize bacterial 

colonization [178]. It was shown that tetracycline HCl-loaded PLLA fibers electrospun from 

a standard setup released 30% of its payload within the first 8 h, followed by very slow 

release kinetics. On the other hand, core-shell tetracycline HCl-loaded PLLA exhibited a 

slight burst within the first 2 h, followed by sustained release for at least 5 days. Although 

the breaking strength of these fibers was three times less than a commercial suture, 

electrospinning is a promising approach for the production of drug-loaded, fibrous sutures. 

Hu et al. developed braided PLLA nanofiber sutures as a drug delivery system for 

cefotaxime sodium, a semisynthetic third-generation antibiotic, and showed effective 

bactericidal activity against E. coli and S. aureus [179].

6. Formulation of nanoparticles and nanofibers for topical application in the 

clinic

Topical drug delivery vehicles (e.g., nanoparticles and nanofibers) can provide therapeutic 

action directly to the targeted site, potentially reducing unwanted systemic side effects. 

There is a variety of ways that nanoparticles can be formulated for topical use in the clinic, 

for example, as solution/liquid formulations, dry formulations, or viscous formulations (i.e., 

creams, lotions, gels, ointments). The medium used to suspend the nanoparticles is typically 

selected with a specific clinical application in mind. This medium should be biocompatible 

and used to facilitate percutaneous absorption. The suspending medium may also alter the 
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release kinetics of the drug from the nanoparticles [32]. A recent review highlights the 

considerations employed for the development of topical dermatologic formulations [180].

Fiber mats can be applied directly onto a wound as drug-eluting dressings due to their 

malleable handling properties. The fiber mats may be covered with other clinically used, 

non-adherent bandages to maintain a moist wound environment. A recent review focuses on 

the design of electrospun fiber mats for tissue engineering, drug delivery and wound healing 

applications [181].

7. Conclusion

From the plethora of research involving nanoparticles in the past two decades, it is clear that 

nanoparticles have the potential to effectively deliver drugs across the skin barrier. Solid 

lipid nanoparticles and liposomes offer potential value as topical drug delivery systems in 

addition to polymeric and metal-based nanoparticles. Electrospun nanofibers have also 

shown great promise in the area of wound healing and as antimicrobial dressings. However, 

as demonstrated by the small number of advanced clinical studies, the clinical impact of 

nanoparticles and fibermats as topical or transdermal drug delivery systems has been limited. 

It seems that the translation of a very extensive global research effort into clinically used 

products has been slow. Although nanotechnology has proven promise in topical 

applications, a greater emphasis is needed on quantitative studies that can relate the dose and 

exposure of nanoparticle to nanoparticle penetration and therapeutic efficacy. More 

quantitative studies are warranted in the area of nanoparticle toxicity. Also, comparisons are 

lacking between healthy skin versus diseased skin in the context of nanoparticle penetration 

efficiency. Little is known about the mechanisms of nanoparticle transport through the three 

main skin layers. Another interesting observation is that very few studies use commercially 

relevant controls, e.g., the effect of a nanoparticular drug formulation is often compared 

against no treatment or drug-free formulation instead of using the current clinical “gold 

standard” as a point of reference. Consequently, there are many interesting unanswered 

questions and technical challenges that provide significant opportunity for further 

investigative studies.
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Fig. 1. 
A schematic of the structure of the skin illustrating the stratum corneum, the epidermis and 

the dermis. The hypodermis is not included in this diagram. Image created using Chem Bio 

Draw Ultra version 14.
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Fig. 2. 
Schematic of a standard horizontal electrospinning setup including at least one syringe 

pump, a polymer solution with or without drug, a high voltage supply, a source electrode, 

and a collector electrode. (Note, Taylor cone adapted from ref.: [137]).
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Fig. 3. 
Tyrosine-derived polycarbonate fiber mats were electrospun using a standard setup and 

glacial acetic acid as the solvent. The fiber diameter, morphology and overall porosity were 

affected by changes in the solution parameters, in this case, polymer concentration in the 

feed. Images are courtesy of the New Jersey Center for Biomaterials and were obtained by 

Charles Florek.
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Table 1

Types of nanoparticles and their clinical uses as topical drug delivery vehicles.

Application Drug Type of nanoparticle Reference

Acne Azelaic acid PLGA [71]

Adapalene SLN, Eudragit® EPO [182,183]

Isotretinoin SLN, Niosome, liposome [184–186]

Tretinoin Chitosan-SLN, Lipid-core-polymeric nanocapsules, lipid 
based

[187,188,189]

Benzoyl peroxide SLN, Niosome, liposome [190,191]

Retinoic acid SLN [192]

Cyproterone acetate Lipid, SLN [193]

Triclosan Eudragit® E 100 [194]

Clindamycin Liposome [195]

Salicylic acid Liposome [196]

Lauric acid Liposome [197]

Finasteride Liposome [198]

Tea oil Liposome [199]

Erythromycin Niosome [200]

Sphingosome SLN [201]

Target Microorganism Type of nanoparticle Reference

Antibacterial E. coli, B. subtilis, S. aureus, methicillin-
resistant coagulase-negative
staphylococci, vancomycin-resistant 
Enterococcus faecium,
ESBL-positive K. pneumonia, S. typhi, 
Vibri cholera

Silver [76,202,203]

MRSA, VRE, E. coli, Pseudomonas 
aeruginosa

Gold [204,205]

E. coli, B. subtilis, B. megaterium Magnesium oxide [82]

E. coli, S. aureus, Listeria monocytogenes Titanium dioxide [206]

E. coli 0157:H7, B. subtilis, Pseudomonas 
fluorescens,
L. monocytogenes, Salmonella enteritidis, 
S. aureus, S. typhimurium

Zinc oxide [207]

B. subtilis Copper oxide [83]

Antiviral HIV-1, Influenza virus, Herpes Simplex 
virus, Respiratory syncytial
virus, Monkey pox virus

Silver [208–211]

HIV and several strains of influenza virus Gold [208,212]

Antifungal Trichophyton mentagrophytes and Candida 
species

Silver [213,214]

Candida albicans Biofilms Titanium dioxide [215]

Drug Type of nanoparticle Reference

Skin cancer Cisplatin Lipids [216]

Hyaluronic acid nanoparticles [217]

Hexadentate-poly (DL-lactic-co-glycolic acid) 
nanoparticles

[218]

PAMAM dendrimer [219]
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Application Drug Type of nanoparticle Reference

Human ferritin [220]

Vincristine Lipids [221]

Doxorubicin Lipids [222]

SLN [223]

Hyaluronic acid nanoparticles [224]

Poly-L-lysine dendrimer [225]

Paclitaxel N-isopropylacrylamide/vinyl pyrrolidone based 
nanoparticles

[226]

Disease Type of nanoparticle Reference

Skin inflammation Eczema/psoriasis SLN [227]

Lipid nanoparticles [228]

Polymeric nanospheres [31]

Dermatitis Zinc oxide [229]

Hydrocortisone-loaded chitosan nanoparticles [230]

Hydrocortisone-loaded poly(ε-caprolactone) [231]

Stevens–Johnson syndrome/Toxic 
epidermal necrolysis

Nanocrytalline silver dressing [232]

Chronic skin inflammation Polymer-lipid [233]

Ammonium glycyrrhizinate-loaded niosomes [234]

Curcumin [235]

Intended therapeutic effect Type of nanoparticle Reference

Cosmetics

Sunscreen

Zinc oxide [236]

Magnesium oxide [237]

Titanium dioxide [238]

Octyl or ethylhexyl methoxycinnamate (OMC) with SLN 
and PLGA

[118,239]

Skin care, wounds, antioxidants Vitamin E with polymer [172]

Antioxidants/anti-aging Coenzyme Q10 with liposome [117]

Intended therapeutic effect Type of nanoparticle Reference

Ocular Glaucoma Nano-emulsion [240]

Liposomes [241]

SLN [242]

Polymeric nanoparticles [243]

Dendrimers [243]

Ocular inflammation Liposomes [244]

SLN [244]

Polymeric nanoparticles [245]

Chronic dry eye Nano-emulsion [244]

Liposomes [246]

SLN [247]

Eye cancer Polymeric nanoparticles [248]

Intraocular infections SLN [249]

Corneal neovascularization Nanoparticles [250]
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Application Drug Type of nanoparticle Reference

Wound healing Gold nanoparticle [251]

Copper oxide nanoparticle [252]

Cerium oxide nanoparticles [62]

Polymeric nanoparticles [253]

Liposomes [254]
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