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Abstract
AIM: To investigate the molecular or cellular mech
anisms related to the infection of epithelial colonic 
mucosa by pks -positive Escherichia coli  (E. coli ) using 
optical imaging.

METHODS: We choose to evaluate the tumor meta
bolic activity using a fluorodeoxyglucose analogue as 
2-deoxyglucosone fluorescent probes and to correlate 
it with tumoral volume (mm3). Inflammation measuring 
myeloperoxidase (MPO) activity and reactive oxygen 
species production was monitored by a bioluminescent 
(BLI) inflammation probe and related to histological 
examination and MPO levels by enzyme-linked immu
nosorbent assay (ELISA) on tumor specimens. The 
detection and quantitation of these two signals were 
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validated on a xenograft model of human colon adeno
carcinoma epithelial cells (HCT116) in nude mice 
infected with a pks -positive E. coli . The inflammatory 
BLI signal was validated intra-digestively in the colitis-
CEABAC10 DSS models, which mimicked Crohn’s 
disease. 

RESULTS: Using a 2-deoxyglucosone fluorescent probe, 
we observed a high and specific HCT116 tumor uptake 
in correlation with tumoral volume (P  = 0.0036). Using 
the inflammation probe targeting MPO, we detected 
a rapid systemic elimination and a significant increase 
of the BLI signal in the pks -positive E. coli -infected 
HCT116 xenograft group (P  < 0.005). ELISA confirmed 
that MPO levels were significantly higher (1556 ± 313.6 
vs  234.6 ± 121.6 ng/mL P  = 0.001) in xenografts 
infected with the pathogenic E. coli  strain. Moreover, 
histological examination of tumor samples confirmed 
massive infiltration of pks -positive E. coli -infected 
HCT116 tumors by inflammatory cells compared to the 
uninfected group. These data showed that infection with 
the pathogenic E. coli  strain enhanced inflammation 
and ROS production in tumors before tumor growth. 
Moreover, we demonstrated that the intra-digestive 
monitoring of inflammation is feasible in a reference 
colitis murine model (CEABAC10/DSS).

CONCLUSION: Using BLI and fluorescence optical 
imaging, we provided tools to better understand host-
pathogen interactions at the early stage of disease, such 
as inflammatory bowel disease and colorectal cancer.

Key words: Colorectal carcinoma; Escherichia coli ; 
Colibactin; Myeloperoxidase; In vivo  optical imaging
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Core tip: Approximately 15% of cancers are related 
to infectious agents. Colorectal cancer (CRC) is thus 
a complex association of non-neoplastic and tumoral 
cells and a large amount of microorganisms. Recent 
studies reported that pks -positive Escherichia coli  (E. 
coli ) strains are more frequently detected in CRC, 
suggesting their possible role in tumor development. 
Optical imaging has emerged as a powerful tool in 
translational cancer research, providing new possibilities 
for the spatiotemporal monitoring of carcinogenesis in 
mouse models. It may be particularly helpful in better 
understanding the in vivo  host-pathogen-interactions in 
tumor development. This is the first study to use optical 
imaging to explore CRC carcinogenesis and associated 
pathogenic E. coli .
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INTRODUCTION
Colorectal cancer (CRC) is the third most frequently 
diagnosed cancer worldwide[1]. Despite recent advances 
in therapeutic care, CRC remains the second cause 
of cancer-related death after lung neoplasia and is 
responsible for over 600000 deaths annually[1,2]. It 
is a multifactorial disease, strongly associated with 
genetic and environmental factors that favor tumor 
development[3]. Approximately 15% of cancers can be 
related to infectious agents[4,5], such as Helicobacter 
pylori (H. pylori) and gastric cancer[6]. Colorectal 
cancer thus involves a complex association of non-
neoplastic and tumoral cells and a large amount of 
microorganisms. Gut microbiota, a bacterial community 
of over 100 trillion microbial cells, plays a major role 
in colorectal carcinogenesis. Indeed, high bacterial 
density in the colon (1012 commensal bacteria/g of 
intestinal contents) compared to the small intestine 
(102 commensal bacteria/g of intestinal contents) is 
correlated with a higher risk of cancer development[7]. 
Gut microbiota dysbiosis has recently been linked to 
CRC[8-13], and several bacteria are involved in colorectal 
carcinogenesis, such as Streptococcus bovis[14,15], 
Enterococcus spp.[16], H. pylori[17-19], Bacteroides 
fragilis[20,21], Clostridium septicum[22], Fusobacterium 
spp.[23,24] and Escherichia coli (E. coli)[25,26]. 

E. coli is a commensal bacteria of the human gut 
microbiota that plays a major role in maintaining 
intestinal homeostasis[27]. Some strains became 
pathogenic, carrying virulence factors and producing 
toxins, such as cyclomodulins. These toxins can affect 
differentiation, apoptosis, and cell proliferation by 
interfering with the eukaryotic cell cycle and/or inducing 
DNA damage. Particularly, one of these toxins, the 
colibactin, is encoded by the pks genomic island and 
can lead to the creation of double-strand DNA breaks 
and thus induce the chromosomal instability involved 
in CRC[28,29]. Recent studies reported that pks-positive 
E. coli is more frequently detected in CRC patients, 
suggesting a possible role in tumor development[30-32]. 
Various independent studies showed that pks-positive-E. 
coli exhibit procarcinogenic properties in murine models, 
such as the multiple intestinal neoplasia (Min) mice 
model[33], azoxymethane (AOM)-treated Il10-/- mice[34] 

and AOM/DSS models[26]. Thereby, some pathogenic 
E. coli strains involved in colon carcinogenesis are now 
emerging. Nevertheless, mechanisms of action remain 
to be clarified, particularly in in vivo models. 

The aim of the present study was to investigate in 
vivo the molecular or cellular mechanisms related to 
the infection of epithelial mucosa by pks-positive E. 
coli using 2D optical imaging. Indeed, optical imaging 
is emerging as a new powerful sensitive technology 
for the non-invasive spatiotemporal visualization of 
carcinogenesis in mice models, and it may help to better 
understand the host-pathogen interactions in colorectal 
tumor development[35-37]. Because chronic inflammation 
and reactive oxygen species (ROS) production are 
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key factors in bacteria and CRC interactions, we chose 
to evaluate pks-positive E. coli infection on these 
mechanisms using commercial, available and validated 
probes[31,38-40]. Indeed, inflammation could play a 
key role in the development of dysbiosis related to 
CRC[40]. E. coli is also the most characterized bacteria 
associated with inflammatory bowel disease, which 
is a known risk factor for CRC[41,42]. Moreover, Raisch 
et al[38] demonstrated that E. coli in colon cancer 
induces a significant increase in COX-2 expression 
in macrophages, the predominant type of immune 
cell that infiltrates tumors. Moreover, macrophages 
and other immune cells infiltrate the tumors, release 
myeloperoxidase (MPO), and produce ROS by several 
chemical reactions. Arthur et al[31,39] investigated in 
vivo the complex interplay between inflammation, 
bacteria and carcinogenesis and suggested that chronic 
inflammation is essential for tumor development by 
maintaining the expression of pks island genes. ROS 
production has also been reported in many suspected 
mechanisms related to CRC development. Neutrophils 
and macrophages, which are present in inflamed 
tissues such as colon tumors, are major providers 
of ROS. Maddocks et al[40,43] described a possible 
interaction between E. coli and the DNA repair system 
with elevated ROS levels. Because ROS oxidizes the 
luminescent probe and thus produces proportional light 
that is detectable in vivo with an optical imager[44,45], 
we choose to monitor the inflammatory pathway 
and ROS production using on a bioluminescent (BLI) 
approach. The monitoring of inflammation was first 
performed and validated on a colitis murine model 
(CEABAC10/DSS mice). Then, by this approach, we 
showed, on a xenograft murine model, that pks-
positive-E. coli significantly induces oxidative stress 
and inflammation before stimulating HCT116-tumor 
growth. While monitoring longitudinal inflammation, we 
choose to assess tumor growth by determining tumor 
metabolic activity with a fluorescent tool based on the 
fluorodeoxyglucose analogue 2-deoxyglucosone. 

MATERIALS AND METHODS
Animal models
Studies were performed in accordance with the 
French Regional Ethical Animal Use Committee (No. 
CEEA-02). All mouse models were housed in specific 
pathogen-free conditions (22 ± 2 ℃, 50% humidity, 
12 h light/12 h dark) in the animal care facility of the 
Université d’Auvergne, Clermont-Ferrand, France.

HCT116 xenograft models
The HCT116 colorectal cancer cells were maintained 
as monolayers in culture flasks using culture me
dium consisting of McCoy’s 5a Medium (Modified) 
supplemented with 10% FCS (Biowest, Nuaillé, France), 
2 mmol/L glutamine and 1% antibiotics. All the 
cells were grown at 37 ℃ in a humidified incubator 

containing 5% CO2. 
Xenografts of human CRC were induced in male 

nude mice (Swiss nu/nu), weighting 26-33 g at the time 
of injection (7 wk old, Charles Rivers). We excluded 
female nude mice in order to avoid a possible hormonal 
influence. A total of 10 male nude mice were divided 
into two groups: Non-infected control xenograft (n = 
5) and pks-positive E. coli-infected xenograft (n = 5). 
According to the infected xenograft, HCT116 cells were 
mixed with pks-positive E. coli as previously described 
by Cougnoux et al[34]. Beforehand, bacteria were grown 
at 37 ℃ in Luria-Bertani medium. Pks-positive E. coli 
is an ampicillin- and kanamycin-resistant E. coli strain 
named 11G5, isolated from a patient presenting with 
colon cancer and previously presented by Bonnet et 
al[33]. We used human colon adenocarcinoma epithelial 
cells (HCT116) to establish the xenograft models.

Then, animals anesthetized by isoflurane inhalation 
were inoculated with 2 × 106 HCT116 cells embedded 
in growth factor-reduced Matrigel (Becton Dickinson) 
by dorsal subcutaneous injection at day 0 of the 
experiment.

Tumor size was assessed two times per week 
and tumor volume was obtained according to the 
following formula: (width2 × length)/2 = V (mm3). 
The longest diameter (L) and maximum diameter (W) 
perpendicular to the direction of the longest diameter 
were determined using a caliper. Mice were sacrificed 
at 35 d post-injection, and the xenograft was collected 
from all animals and subjected to histologic examination 
and enzyme-linked immunosorbent assay (ELISA).

Colitis-CEABAC10 DSS models
Six CEABAC10 transgenic mice in an in vivo model 
mimicking colitis and Crohn’s disease[46] were used to 
monitor intra-digestive inflammation. They were divided 
into two groups. Mice from the same generation were 
used for experimentation. One group (n = 3) received 
one cycle of dextran sodium sulfate (DSS) in drinking 
water for 6 d at 1% (DSS-treated mice group) as 
described previously in Denizot et al[46]. The other group 
received only drinking water (n = 3; DSS-). 

Optical imaging
For both BLI and fluorescence imaging acquisition, 
all animals were imaged using a dedicated high-
sensitivity peltier-cooled (-90 ℃) backlit charge-coupled 
device camera (IVIS Spectrum®, Perkin Elmer, United 
States). All acquisitions were performed under the 
same exposure conditions according to fluorescence 
or BLI imaging, with acquisition settings (binning and 
duration) set up depending upon the signal at the time 
of acquisition.

Prior to imaging, animals were anesthetized with 
2%-3% isoflurane in an induction chamber; then, 
2% isoflurane in air/O2 was continuously delivered via 
a nose cone system in the dark box of the imaging 
system (delivered gas to up to 5 mice). To limit auto-
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fluorescence related to melanin, mice were shaved 
before all imaging procedures (except nude mice, which 
are hairless).

We used the XénoLight Rediject 2-DG-750 fluore
scent probe or the XénoLight Rediject Inflammation 
chemiluminescent probe (Perkin Elmer, United States) 
to monitor metabolic activity or inflammation (MPO and 
ROS detection), respectively. 

To monitor inflammation in HCT116-grafted nude 
mice at 20 d and 34 d post-xenograft, we administered 
by intraperitoneal (i.p.) injection of 150 µL of the 
XenoLight Rediject Inflammation probe per mouse. 
Mice were then imaged 10 min post-injection (exposure 
time of 5 min). In the colitis CEABAC10 model, imaging 
was performed 6 d after the DSS cycle. To monitor 
inflammation at depth and limit the decrease of the 
BLI signal intensity in this model, we administered by 
an intravenous (i.v.) injection of 150 µL/mouse. With 
i.v. injection, the best time to image the animal was 
immediately post-injection (exposure time of 5 min). 

For tumor metabolic activity, we administered by 
an intravenous injection of 100 µL/mouse and imaged 
them 3 h after 2-DG-750 probe injection using one filter 
set (excitation: 745 nm, emission: 820 nm) and a high-
throughput epi-illumination acquisition mode. All nude 
mice were imaged individually at 17 d and 24 d post-
xenograft. 

Quantitative analysis of imaging was performed 
using Living Image® Software (Caliper Life Science, 
United States) with the region of interest delineated 
manually over organs exhibiting probe accumulation. 
Every image series had the same scales, set manually, 
to facilitate the visual comparison of signal intensity 
at each time point. For the BLI signal, photon flux 
was expressed as the average radiance in p/s/cm2/sr. 
Fluorescence emission was also normalized to photons 
per second per centimeter squared per steradian (p/s/
cm2/sr).

Histological analysis 
After mouse sacrifice, tumor pieces were fixed in 
formol solution. Paraffin-embedded sections were cut 
into 5-µm slices, and tissue sections were prepared for 
hematoxylin-eosin-safran staining and routine patho
logical analysis with focus on the mitotic index, infiltrating 
cells and tumor necrosis. Sample preparations and 
observations were made in the Centre Imagerie Cellu
laire Santé platform (Clermont-Ferrand). 

MPO activity determination
After mouse sacrifice, tumor pieces were frozen in liquid 
nitrogen and stored at -80 ℃ until used. We performed 
an enzyme-linked immunosorbent assay to determine 
the levels of MPO (ng/mL) in all the tumors according 
to the manufacturer’s instructions (R and D systems). 
Data were standardized on whole protein extracts 
stained with Coomassie blue.

Statistical analysis
Graph Pad Prism 5 STATA (StataCorp) was used for all 
statistical analysis. Unpaired Student’s t test was used 
for the comparisons of the 2 groups. We determined the 
Pearson’s correlation coefficient r to assess the degree 
of correlation. We considered P values of < 0.05 to be 
statistically significant. 

RESULTS
Metabolic activity of the CRC xenograft model 
In HCT116-grafted nude models, we confirmed a 
rapid systemic elimination of the 2-deoxyglucosone 
fluorescent probe with a very weak whole body 
uptake 180 min after probe-injection (Figure 1A). 
Moreover, a high and specific HCT116 tumor uptake 
was evidenced for each tumor 17 and 34 d post-graft. 
We demonstrated an increase of signal intensity over 
time, reflecting tumor growth. The tumor uptake of the 
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caliper and increase in fluorescence signal intensity (Pearson’s correlation factor r = 0.4197; P = 0.0036).
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2-deoxyglucosone fluorescent signal was significantly (P 
= 0.0036) correlated with tumor volume, as determined 
using a caliper (Figure 1B). The in vivo monitoring 
of HCT116 tumor growth by the 2-deoxyglucosone 
fluorescent probe was efficient. No difference in tumor 
uptake was observed between uninfected and pks-
positive E. coli-infected HCT116 cells (data not shown), 
as previously described with caliper determination by 
Cougnoux et al[34] at 34 d post-xenograft. 

We tested 2-deoxyglucosone fluorescent imaging 
on Colitis-CEABAC10 DSS models. We did not observe 
any fluorescent signal in vivo in mice, reflecting that 
the targeting probe is specific for tumor cells (data not 
shown).

Pks-positive E. coli in vivo induces inflammation in the 
CRC xenograft model 
Using the inflammation probe, all nude mice were 
imaged 20 and 34 d post-xenograft. We detected a 
rapid systemic elimination in all mice and a strong BLI 
signal in HCT116 tumors in the infected group 10 min 
after probe injection (Figure 2A and B). Figure 2A and B 
clearly show that the intensity of the BLI signal (average 
radiance in p/s/cm2) was stronger in xenografts infected 
with the pathogenic pks-positive E. coli strain compared 
to uninfected ones at each time point investigated (20 
and 34 d post-xenograft). Quantitation confirmed a 
significant increase of the BLI signal in the infected 
tumors 20 d (P = 0.0132, Figure 2C) and 34 d (P = 

0.0006, Figure 2D) after the xenograft. 

Monitoring intra-digestive BLI signals in 
Colitis-CEABAC10 DSS models
Then, we analyzed the monitoring of intra-digestive BLI 
signals using the inflammation probe in the CEABAC10 
colitis mouse model. We induced intra-digestive 
inflammation using DSS in the first group, while control 
mice received only drinking water. To visualize BLI 
imaging in deep tissues in vivo in mice, the probe was 
injected intravenously. DSS group imaging showed 
a high BLI signal in DSS animals, reflecting severe 
intra-digestive inflammation (DSS+) relative to the 
untreated group (DSS-) (Figure 3). We demonstrated 
that monitoring intradigestive inflammation with the BLI 
signal is feasible and consistent.

Histological characterization 
The histologic analysis of tumor samples indicated 
and confirmed that tumor cells in pks-positive E. coli-
infected xenografts were surrounded by a remarkable 
infiltration of activated phagocytes (Figure 4C and D) 
compared to the uninfected group (Figure 4A and B). 
In addition, tumor necrosis was observed, especially 
in the pks-positive E. coli-infected group (Figure 4C). 
Moreover, HCT116 are characterized by megalocytosis 
and the progressive enlargement of the cell body and 
nucleus in pks-positive E. coli-infected xenografts. 
Histological examination confirmed the data from BLI 
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imaging (inflammation probe).

MPO levels by ELISA 
To confirm the quantitation of inflammation imaging, 
we assessed MPO activity on HCT116-xenograft-tu
mor specimens by performing an ELISA. MPO levels 
(ng/mL) were significantly higher (1556 ± 313.6 vs 
234 ± 121.6, P = 0.001) in xenografts infected with 
the pks-positive E. coli strain. These results showed 

that the pathogenic E. coli strain enhanced MPO release 
compared to uninfected xenografts and confirmed the 
data from BLI imaging. 

DISCUSSION
Optical imaging appears to be a powerful, highly 
sensitive tool in translational cancer research, providing 
new possibilities for in vivo molecular imaging and 
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Figure 4  Histological and molecular analyses of HCT116 tumor samples. A-D: Histological examination of representative HCT116 tumor samples. Xenografts 
were harvested, paraffin embedded and processed for hematoxylin/eosin/safran. A and B are representative histological examinations from the uninfected xenograft group. 
C and D are representative histological examinations from the pks-positive-E. coli infected xenograft group. We noted that HCT116 tumor cells (arrowheads) infected with 
pathogenic E. coli strains are characterized by megalocytosis and progressive enlargement of the cell body and nucleus. Tumor cells in the pks-positive E. coli-infected 
xenograft group were surrounded by a remarkable infiltration of inflammatory cells (red arrow) compared to the uninfected xenograft group. Tumor necrosis was observed, 
especially in the infected xenograft group (black arrow). (Scale bars: 50 µm = × 20); E: MPO levels by enzyme-linked immunosorbent assay (ELISA) on HCT116 tumor 
specimens. An ELISA test was performed on tumor specimens after mouse sacrifice (day 34 post-xenograft). MPO standardized levels were significantly higher (1556 ± 
313.6 vs 234.6 ± 121.6, aP = 0.001) in xenografts infected with pathogenic pks-positive E. coli strains. E. coli: Escherichia coli; MPO: Myeloperoxidase. 
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allowing a better understanding of host-pathogen 
interactions in several tumor processes. Some studies 
have reported the pro-carcinogenic activities of pks-
positive E. coli in murine models[26,33,34]. Most of 
these studies required animal sacrifice and did not 
allow longitudinal investigation. Ideally, it would be 
useful to non-invasively, longitudinally monitor these 
procarcinogenic processes. Here, we report the first 
study that utilized optical imaging in these settings. 
More precisely, we focused on CRC carcinogenesis and 
pathogenic E. coli association. 

We described a specific accumulation of the 2-deoxyg
lucosone fluorescent probe to the tumor site (CRC 
xenograft model), thus establishing a correlation 
between tumor volume and fluorescent signal intensity. 
We showed that this method provides an effective 
tool to assess longitudinal data on CRC tumor growth 
in vivo. Moreover, in our experimental conditions, 
xenografts infected with pks-positive E. coli exhibited 
comparable development to uninfected ones, confirming 
results reported for the same experimental conditions 
by Cougnoux et al[34]. However, they observed a signifi
cant increase in tumor volume induced by colibactin, 
starting from day 44 after the xenograft. In the present 
study, we chose to evaluate inflammation and ROS 
production at an early stage, before the effect of 
colibactin on tumor cells proliferation. Indeed, Arthur 
et al[39] suggested that inflammation is necessary for E. 
coli’s cancer-promoting activity, probably through the 
enhancement of its resilience among gut microbiota 
in the intestine. Our results showed that the BLI 
signal significantly increases with bacterial infection. 
Pathogenic E. coli seemed to enhance inflammation 
and ROS production, which could participate in carcino
genesis. Using luminol-based BLI, we showed that 
pks-positive E. coli induced oxidative stress, which 
is involved in carcinogenesis process. We confirmed 
this observation on histological examination, which 
showed that inflammatory cells were mostly recruited 
in infected xenografts. Tumor necrosis also appeared 
in the pks-positive E. coli group. Moreover, a significant 
increase of MPO activity, which led to ROS production by 
infiltrating immune cells, was confirmed with an ELISA 
on HCT116-cells tumor specimens. Finally, these data 
showed that pks-positive-E. coli induced inflammation 
and ROS production at an early stage after infection, 
and could thus be an important mechanism involved in 
pro-carcinogenic activity. 

To validate the use of luminol-based BLI imaging to 
monitor inflammation and oxidative stress, we used an 
in vivo colitis model (CEABAC10/DSS). We proved that 
monitoring inflammation in deep tissues is feasible and 
effective. This suggests that optical imaging should be 
tested on other murine models (APCmin/+, AOM-IL10-/-, 
AOM-DSS) used to determine the pro-carcinogenic 
proprieties of pks-positive E. coli strains, and it may 
facilitate a better understanding of how pathogenic 
bacteria impact the carcinogenesis process by various 

mechanisms. Using CEABAC10 models mimicking 
Crohn’s disease, we suggest that optical imaging is 
an effective method in inflammatory bowel disease 
research.

In conclusion, by using optical imaging, particularly 
the BLI approach, we provided additional tools to better 
understand host-pathogen interactions in digestive 
pathology, including CRC and inflammatory bowel 
disease.

COMMENTS
Background
Colorectal carcinoma (CRC) is a complex association of non-neoplastic and 
tumoral cells and a large amount of microorganisms. Escherichia coli (E. coli) 
is a consistent commensal of the human gut microbiota but some pathogenic 
strains have acquired the ability to produce toxins as cyclomodulins that can 
interfere with eukaryotic cell cycle or directly induce DNA damages. It was 
observed that cyclomudulin-producing-E. coli are more frequently detected on 
CRC patients and exhibit procarcinogenic properties on murine models.

Research frontiers
Novel imaging techniques like optical imaging could be a powerful tool in 
translational cancer. Particularly, in vivo optical imaging is an innovative tool 
for non-invasive, spatiotemporal and quantitative monitoring of carcinogenesis 
process in murine models. It may help to better understand the host-pathogen 
interactions in colorectal tumor development.

Innovations and breakthroughs
This study investigates the in vivo mechanisms of epithelial colonic mucosa 
infection by cyclomodulin-positive-E. coli. Because chronic inflammation and 
reactive oxygen species (ROS) production are key factors in bacteria and 
CRC interactions, the authors choose to evaluate cyclomodulin-positive-E. coli 
infection on these mechanisms using optical imaging and commercial, available 
and validated probes. By using this technique, the authors provided tools to 
better understand host-pathogen interactions on murine models at the early 
stage of disease, such as inflammatory bowel disease and CRC.

Applications
By using optical imaging, particularly the bioluminescent approach, the authors 
provided additional tools to better understand host-pathogen interactions in 
digestive pathology, including CRC and inflammatory bowel disease. The data 
suggest that cyclomodulin-positive-E. coli induced inflammation and ROS 
production at an early stage after infection, and could thus be an important 
mechanism involved in pro-carcinogenic activity of these bacteria.

Terminology
Oxidative stress reflects an imbalance between the systemic manifestation of 
ROS and the cellular biological system’s ability to readily detoxify the reactive 
intermediates or to repair the resulting damage. Disturbances in the normal 
redox state of cells can cause toxic effects through the production of peroxides 
and free radicals that damage all components of the cell, including proteins, 
lipids, and DNA. In humans, oxidative stress is thought to be involved in the 
development of several cancers.
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