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This paper applies a Bayesian probabilistic inferential methodology for the reconstruction of the location and emission rate
from an actual contaminant source (emission from the Chalk River Laboratories medical isotope production facility) using a
small number of activity concentration measurements of a noble gas (Xenon-133) obtained from three stations that form part
of the International Monitoring System radionuclide network. The sampling of the resulting posterior distribution of the source
parameters is undertaken using a very efficient Markov chain Monte Carlo technique that utilizes a multiple-try differential
evolution adaptive Metropolis algorithm with an archive of past states. It is shown that the principal difficulty in the reconstruction
lay in the correct specification of themodel errors (both scale and structure) for use in the Bayesian inferential methodology. In this
context, two different measurement models for incorporation of the model error of the predicted concentrations are considered.
The performance of both of these measurement models with respect to their accuracy and precision in the recovery of the source
parameters is compared and contrasted.

1. Introduction

In recent years, there have been remarkable advances in
sensor technology for the environmental monitoring and
surveillance of chemical, biological, or radiological agents
released into the atmosphere, either deliberately or acci-
dentally. Two examples of operational monitoring sensor
networks are the deployment of biological sensor arrays
by the Department of Homeland Security in various cities
across the United States as part of the BioWatch program
[1] and the global network of radionuclide sensors that form
part of the International Monitoring System deployed under
the auspices of the Comprehensive Nuclear-Test-Ban Treaty
[2]. In parallel with this development, there has been also
significant theoretical and computational progress in the
modeling and simulation of the transport and dispersion of
materials released into the atmosphere, involving ever more
accurate representations of the whole complex of processes
on the entire spectrum of scales responsible for the disper-
sion of windborne materials (from the microscale turbulent

motions in the atmospheric boundary layer that determine
the short-range dispersion to the larger-scale motions asso-
ciated with various weather systems within the whole global
atmosphere that determine the long-range transport).

Lying at the nexus of these two developments is the
requirement for ever more sophisticated statistical analysis
tools that can be used to fuse the information embodied
in the measurements of agent concentration provided by
the sensors and in the predictions of these concentrations
provided by the atmospheric dispersion model(s). This data-
driven sensor-modeling paradigm will enable the character-
ization of the unknown source following event detection by
the network of sensors (inverse problem), which in turn can
lead to a greatly improved situational awareness and to amore
informed decision-making process for response.

Inverse source modeling is a notoriously ill-posed prob-
lem in the following sense: (1) the sparse sampling (in
space) of and the presence of multiple sampling times for the
concentration in a dispersing cloud of contaminant may lead
to difficulties of nonuniqueness in the source reconstruction
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(namely, there may be many source configurations that are
consistent with the limited number of concentration data);
(2) the physical processes of mixing and diffusion of material
in the atmosphere, with continuing dilution, smooth the
concentration field leading to a progressive loss of high-
frequency information that could potentially lead to an
instability in the source reconstruction; and (3) actual mea-
surements of concentration by sensors and predictions of
concentrations by atmospheric dispersionmodel(s) are never
exact (owing to measurement and model errors, resp.) which
exacerbates the nonuniqueness associated with incomplete
concentration observations and the instability associated
with the intrinsic smoothing of the concentration field by the
natural mixing processes in the atmosphere.

To overcome the problems of nonuniqueness and insta-
bility in the inverse sourcemodeling problem, themost popu-
lar approach is regularization which emphasizes the selection
of a “well-behaved” source configuration from the possibly
infinite set of such configurations that are consistent with
the limited number of noisy concentration measurements.
In this approach, the idea is to find a source configuration
that minimizes (optimizes) a penalty functional that involves
two independent terms, namely, a regularization functional
(source model norm) that imposes some constraint on the
solution and a misfit functional (also some form of norm)
that quantifies the discrepancy between the measured and
predicted concentrations. For the application of regulariza-
tion to inverse source modeling problems, see, for example,
Robertson and Persson [3], Robertson and Langner [4],
Thomson et al. [5], Bocquet [6], and Allen et al. [7].

Regularization provides a single “optimal” selection for
the unknown source distribution (deterministic solution)
with no rigorous quantification of the uncertainty in this par-
ticular selection. An alternative to obtaining a single optimal
source distribution is to characterize an ensemble of source
distributions using the Bayesian statistical paradigm (pro-
viding a fully probabilistic solution allowing the uncertainty
in the source reconstruction to be rigorously assessed). The
Bayesian inferential methodology for source reconstruction
provides fully probabilistic information on all the parameters
used to describe the unknown source distribution. The
probabilistic approach using a Bayesian inferential scheme
for source reconstruction has been developed by Keats et al.
[8], Chow et al. [9], Senocak et al. [10], Yee et al. [11], and Yee
[12–15]. The primary limiting factor in the application of the
Bayesian inferential methodology for source reconstruction
is computational and, as a result, it has not been as widely
used as the regularization methodology.

Most of the applications of the Bayesian inferential
methodology for source reconstruction have used high-
quality concentration data from well-designed atmospheric
dispersion experiments to validate the schema. The objective
of this paper is to use concentration data obtained from an
operational network of sensors (more specifically from a very
small subset of the global network of radionuclide sensors
that form part of the International Monitoring System) to
provide a real-world test of source reconstruction based
on the Bayesian statistical paradigm applied to long-range
atmospheric transport on a continental or hemispheric scale.

It will be demonstrated that one of the key problems that
need to be properly addressed for the successful application
of Bayesian inference for source reconstruction when using
operational concentration data is the “correct” specification
of the expected model errors arising from the putative
accuracy of a long-range forecast (or, alternatively, reanalysis)
of meteorological fields and the concomitant prediction
of material dispersion based on this forecast or reanalysis
(which can result in significant model errors with a complex
structure in the predicted concentrations required for the
source inversion).

2. Bayesian Probability Theory

In a remarkable paper, Cox [16] demonstrated that proba-
bility theory, when interpreted as logic, is the only calculus
that conforms to a consistent theory of inference. This
demonstration provides the firm logical basis for asserting
that probability calculus is the unique quantitative theory
of inference. More specifically, the cornerstone of logical
inference is embodied by Bayes’ theorem which itself is
nothingmore than the product law of probability calculus (or
Bayesian probability theory):

𝑝 (𝜃 | 𝐼) 𝑝 (d | 𝜃, 𝐼) = 𝑝 (d | 𝐼) 𝑝 (𝜃 | d, 𝐼) . (1)

In (1), 𝑝(⋅) denotes the probability of a proposition or
hypothesis, “|” denotes “conditional upon” or “given that”, 𝜃
denotes a set of parameters of a model under consideration,
d denotes the data used for the inference, and 𝐼 denotes the
background assumptions or contextual information available
in the problem. More specifically, as applied to the problem
of source reconstruction, 𝜃 can be identified with the set
of parameters used to characterize the source distribution
(e.g., location and emission rate); d can be associated with
the measured concentration data; and 𝐼 corresponds to the
contextual information that is relevant to the source recon-
struction problem (e.g., reanalyzed or forecast meteorology,
atmospheric dispersion model used to define the source-
receptor relationship).

The input quantities for Bayesian inference are on the
left-hand side of (1) and are as follows: 𝑝(𝜃 | 𝐼) is the prior
probability for a hypothesis about the values of the source
parameter vector 𝜃 which encodes our state of knowledge
about these parameters before the receipt of the concentra-
tion data d and 𝑝(d | 𝜃, 𝐼) is the likelihood function and
is considered to be a function of 𝜃 for fixed data d. The
likelihood function incorporates the information provided
by the measured concentration data d into the inferential
scheme.

The output quantities provided by the Bayesian inference
are on the right-hand side of (1) and are as follows: 𝑝(d | 𝐼) is
referred to as the evidence or global likelihood and 𝑝(𝜃 | d, 𝐼)
is the posterior probability for the hypothesis about the
values of the source parameter vector 𝜃, evaluated in light
of the additional information provided by the measured
concentration data d. The evidence is given by the following
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multidimensional integral over the source parameter space
[cf. (1)]:

𝑝 (d | 𝐼) = ∫𝑝 (𝜃 | 𝐼) 𝑝 (d | 𝜃, 𝐼) 𝑑𝜃, (2)

which ensures the proper normalization of the posterior
distribution 𝑝(𝜃 | d, 𝐼) (namely, the condition that the
integral of the posterior distribution over its domain of
definition is unity). In the context of the determination of the
plausible values for the source parameter vector (parameter
estimation problem), it should be noted that the evidence is
simply a normalization constant that is independent of the
source parameter vector and, as a consequence, can therefore
be ignored. However, it should be stressed that the evidence
assumes a central role in the problem of model selection
as discussed in Yee [15] and, in this context, this quantity
cannot be ignored as in the parameter estimation problem
considered herein.

In view of the fact that the 𝑝(d | 𝐼) is merely a normaliza-
tion constant in the context of the source estimation problem,
the key output of the Bayesian inference methodology in this
case is the posterior probability𝑝(𝜃 | d, 𝐼)which embodies all
the information about the unknown source parameters 𝜃. In
particular, 𝑝(𝜃 | d, 𝐼) provides the full solution for the inverse
source determination (or source term estimation) problem.
Determining this quantity requires assigning appropriate
functional forms for the two input quantities for Bayesian
inference: (1) the prior probability 𝑝(d | 𝐼) and (2) the likeli-
hood function 𝑝(d | 𝜃, 𝐼).

2.1. Assignment of the Likelihood Function. To assign a spe-
cific functional form for the likelihood function, one needs to
relate the source parameters 𝜃 to the available concentration
data d. In this sense, the likelihood function defines the
probabilistic model of how the concentration data were
generated. Towards this purpose, if the concentration data
acquired (by a sensor) at the space-time point (x𝐽, 𝑡𝐽) is
represented by 𝑑(x𝐽, 𝑡𝐽), then the concentration data and the
source parameters 𝜃 are assumed to be related by

𝑑𝐽 ≡ 𝑑 (x𝐽, 𝑡𝐽)

= 𝐶 (𝜃; x𝐽, 𝑡𝐽) + 𝑒 (x𝐽, 𝑡𝐽)

≡ 𝐶𝐽 (𝜃) + 𝑒𝐽, 𝐽 = 1, 2, . . . , 𝑁,

(3)

where𝑁 is the total number of measured concentration data.
In (3), 𝐶𝐽(𝜃) is the modeled (predicted) mean concentration
at the 𝐽th space-time point. The predicted concentration is
determined using an atmospheric dispersion model for a
source distribution characterized by the parameter vector 𝜃.

The error (discrepancy) between the measured concen-
tration 𝑑𝐽 and the predicted concentration 𝐶𝐽(𝜃) is repre-
sented symbolically in (3) by 𝑒𝐽. In the problem considered in
this paper, there are two major contributions to the error 𝑒𝐽,
namely, the observation or instrument error in the measured
concentration𝑑𝐽 arising from the noise inherent in the sensor
and the model error in the determination of the predicted
concentration 𝐶𝐽(𝜃). Of these two errors, the model error is

by far the most dominant contribution to the total error 𝑒𝐽
and is also the most difficult to characterize.

In our current application, the model error arises from
three primary sources. These are as follows:

(1) uncertainties in the representation of various physical
processes in the dispersion model;

(2) uncertainties in the inputmeteorological fields (initial
and boundary conditions) used to “drive” the dis-
persion model (either numerical weather prediction
uncertainties if these fields are obtained as a forecast
or data assimilation uncertainties for the state of the
atmosphere if these fields are obtained through a
reanalysis);

(3) uncertainties in the numerical solution of the model
equations that characterize the dispersion model
which comprise both discretization (including rep-
resentativity) errors and statistical model errors, the
latter of which arises from using necessarily a finite
number of “marked” fluid particles to estimate the
mean concentration field in the case of a Lagrangian
stochastic model of dispersion.

As a consequence of the complexity in structure of the
error 𝑒𝐽 [cf. (3)] for our current application, it is extremely
difficult (if not insuperable) to specify a priori an exact value
𝜎𝐽 for the standard deviation of 𝑒𝐽 (𝐽 = 1, 2, . . . , 𝑁). If the
standard deviation 𝜎𝐽 of 𝑒𝐽 was exactly known, then it can be
shown by application of the principle of maximum entropy
that a Gaussian distribution of the form

𝑝 (d | 𝜃, 𝐼) =
1

∏
𝑁

𝐽=1
√2𝜋𝜎𝐽

exp (−1
2
𝜒
2
(𝜃)) , (4)

where

𝜒
2
(𝜃) ≡

𝑁

∑
𝐽=1

(
𝑑𝐽 − 𝐶𝐽 (𝜃)

𝜎𝐽
)

2

, (5)

would be the most conservative choice for the direct
probability (or likelihood) of the concentration data d ≡

(𝑑1, 𝑑2, . . . , 𝑑𝑁) [17].
Because 𝜎𝐽 is not known a priori, it is useful to character-

ize the uncertainty in the specification of 𝜎𝐽 with a probability
distribution. Following Yee [15], we choose this probability
distribution to be an inverse gamma distribution with the
following form:

𝜑 (𝜎𝐽 | 𝑠𝐽, 𝛼, 𝛽) = 2
𝛼𝛽

Γ (𝛽)
(
𝑠𝐽

𝜎𝐽
)

2𝛽

exp(−𝛼
𝑠2
𝐽

𝜎2
𝐽

)
1

𝜎𝐽
,

𝐽 = 1, 2, . . . , 𝑁.

(6)

Here, Γ(𝑥) denotes the gamma function, 𝛼 and 𝛽 are scale
and shape parameters of the inverse gamma distribution, and
𝑠𝐽 is the quoted (nominal) estimate for the true but unknown
standard deviation 𝜎𝐽. The values for the hyperparameters 𝛼
and 𝛽 are chosen as 𝛼 = 𝜋−1 and 𝛽 = 1 following the rationale
described in Yee [15].
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The likelihood function in (4) and (5) depends on the
error standard deviations 𝜎𝐽 (𝐽 = 1, 2, . . . , 𝑁) which are
generally unknown. To remove these unwanted parameters
(nuisance parameters), we can multiply the likelihood given
in (4) by the (assigned) probability distribution for each of
the error standard deviations embodied in (6) and integrate
the result with respect to the unwanted parameters (error
standard deviations) to give an integrated likelihood function
with the following form [15]:

𝑝 (d | 𝜃, s, 𝛼, 𝛽)

= ∫𝑝 (d | 𝜃, 𝐼)

𝑁

∏
𝐽=1

𝜑 (𝜎𝐽 | 𝑠𝐽, 𝛼, 𝛽) 𝑑𝜎

=

𝑁

∏
𝐽=1

𝛼𝛽Γ (𝛽 + 1/2)

√2𝜋𝑠𝐽Γ (𝛽)
[

[

𝛼 +
(𝑑𝐽 − 𝐶𝐽 (𝜃))

2

2𝑠2
𝐽

]

]

−𝛽−1/2

.

(7)

In (7), s ≡ (𝑠1, 𝑠2, . . . , 𝑠𝑁) is the vector of estimated (quoted)
standard deviations for the error 𝑒𝐽 (𝐽 = 1, 2, . . . , 𝑁) and𝑑𝜎 ≡
𝑑𝜎1𝑑𝜎2 . . . 𝑑𝜎𝑁.

To be more specific with respect to the source parameter
vector 𝜃, a source distribution 𝑆 with the following form is
considered in this paper:

𝑆 (x) = 𝑄𝑠𝛿 (x − x𝑠) , (8)

where 𝛿(⋅) is the Dirac delta function. Equation (8) describes
a (continuous) point source located at the vector position
x𝑠 that is emitting contaminant at a constant emission rate
𝑄𝑠. The parameters describing this source distribution can
be assembled into a source parameter vector given by 𝜃 ≡
(x𝑠, 𝑄𝑠).

2.2. Assignment of the Prior. To assign the prior probability
for the source parameters 𝜃, it is necessary to state explicitly
what is known about these parameters. Firstly, it is assumed
that the source parameters are logically independent with the
result that the prior distribution 𝑝(𝜃 | 𝐼) factorizes as follows:

𝑝 (𝜃 | 𝐼) = 𝑝 (x𝑠 | 𝐼) 𝑝 (𝑄𝑠 | 𝐼) . (9)

Secondly, the source location and emission rate are known
a priori to be bounded. In particular, it is assumed that the
location x𝑠 of the source is contained in some spatial region
D ⊂ R3. Furthermore, the emission rate 𝑄𝑠 is assumed
to be bounded by 𝑄min < 𝑄𝑠 < 𝑄max where 𝑄min and
𝑄max are the lower and upper bounds for the emission rate,
respectively. Finally, if nothing else is known about these
parameters except for the bounds, then application of the
principle of maximum entropy to our state of knowledge
concerning the source parameters results in the assignment
of a uniform prior distribution for these parameters, so

𝑝 (𝜃 | 𝐼) ∝ ID (x𝑠) I(𝑄min ,𝑄max)
(𝑄𝑠) , (10)

where I𝐴(𝑥) denotes the indicator function for set 𝐴 defined
as I𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and I𝐴(𝑥) = 0 if 𝑥 ∉ 𝐴.

2.3. Posterior Distribution:The Output. The key output of the
Bayesian inference is the posterior distribution 𝑝(𝜃 | d, 𝐼)
which can be obtained by combining the assignments for the
likelihood function and the prior distribution given by (7)
and (10), respectively, to give [cf. (1)]

𝑝 (𝜃 | d, s, 𝛼, 𝛽, 𝐼)

∝ ID (x𝑠) I(𝑄min ,𝑄max)
(𝑄𝑠)

×

𝑁

∏
𝐽=1

𝛼𝛽Γ (𝛽 + 1/2)

√2𝜋𝑠𝐽Γ (𝛽)

× [𝛼 + (𝑑𝐽 − 𝐶𝐽(𝜃))
2
/(2𝑠
2

𝐽
)]
−𝛽−1/2

.

(11)

Note that the quantities s, 𝛼, and 𝛽 have been added explicitly
to the posterior probability of the source parameters 𝜃 in (11)
to indicate that these quantities are known (namely, they are
provided a priori by the user, in addition to the measured
concentration data d).

3. Computational Aspects

There are two computational problems that need to be
addressed before the Bayesian inferential methodology for
source reconstruction can be applied to practical real-world
applications; namely, (1) that Bayesian inversion of concen-
tration data requires a fast and efficient technique for the
determination of the source-receptor relationship (namely,
for the fast computation of 𝐶𝐽(𝜃) for a given hypothesis
about the source parameters 𝜃) and (2) methodology for
the efficient sampling of the posterior distribution 𝑝(𝜃 |

d, s, 𝛼, 𝛽, 𝐼).
To address the first problem, Keats et al. [8] and Yee

et al. [11] demonstrated that the use of a receptor-oriented
representation for the source-receptor relationship (rather
than the more usual source-oriented representation) enabled
the efficient computation of the predicted concentration at
a fixed receptor location associated with the exploration of
a large number of source parameter hypotheses required
in the simulation-based Bayesian inference methodology.
For the application reported herein, a backward Lagrangian
stochastic (LS) model for long-range transport was used
to determine the adjoint concentration field 𝐶

∗ over the
northern hemisphere.

The backward LS model employed here is an opera-
tional model used by the Canadian Meteorological Centre
to support both Canadian Treaty monitoring and the var-
ious mandates of the Provisional Technical Secretariat of
the Comprehensive Nuclear-Test-Ban Treaty Organization,
including event analysis by member states. The backward
LS model for the determination of 𝐶

∗ was “driven” by
reanalyzed meteorological fields that were obtained at a
relatively low temporal and spatial resolution, namely, at a
temporal resolution of 6 h (rate of the data assimilation) with
a core spatial resolution of 0.5∘ on a geographical latitude and
longitude coordinate system.ThebackwardLSmodelwas run
retrospectively using these reanalyzed meteorological fields,
providing𝐶∗ fields with a temporal resolution of 3 hours over
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a period of 14 days prior to the commencement of the sam-
pling for a particular activity concentration measurement.

It should be noted that, with the source distribution
𝑆 given by (8), the predicted concentration at a receptor
location x𝐽 and time 𝑡𝐽 can be easily determined from the
following relationship once the adjoint concentration field𝐶∗
has been computed for this location and time:

𝐶𝐽 (𝜃) ≡ 𝐶 (𝜃; x𝐽, 𝑡𝐽)

= ∫
𝑡𝐽

−∞

𝑑𝑡
󸀠
∫
D

𝑑x󸀠𝐶∗ (x󸀠, 𝑡󸀠 | x𝐽, 𝑡𝐽) 𝑆 (x
󸀠
)

≡ ⟨𝐶
∗
| 𝑆⟩ (x𝐽, 𝑡𝐽) ,

(12)

where 𝐶∗(x󸀠, 𝑡󸀠 | x𝐽, 𝑡𝐽) is the adjoint concentration at space-
time point (x󸀠, 𝑡󸀠) associated with the sensor concentration
datum measured at location x𝐽 and time 𝑡𝐽. In (12), D is
a volume in space that contains the source. The reader is
referred to Marchuk [18] and Le Dimet and Talagrand [19]
for a more detailed explanation of the adjoint formulation in
a more general context.

Note that the predicted mean concentration 𝐶𝐽(𝜃) “seen”
by a sensor for a given hypothesis about the source parame-
ters 𝜃 can be rapidly computed by simply evaluating the inner
(or scalar) product ⟨𝐶∗ | 𝑆⟩ of the adjoint concentration
𝐶∗ and the source distribution 𝑆 corresponding to the given
hypothesis. In other words, the predicted concentration 𝐶𝐽 is
obtained fromamathematicalmodel (backward LSmodel for
dispersion) by evaluation of the bounded linear functionals
𝐶𝐽 = ⟨𝐶∗

𝐽
| 𝑆⟩ for 𝐽 = 1, 2, . . . , 𝑁 where 𝐶∗

𝐽
denotes the

adjoint concentration field obtained at the sensor space-time
point (x𝐽, 𝑡𝐽) and where 𝑆 corresponds to a given hypothesis
about the source. In applied mathematics, the elements 𝐶∗

𝐽

are referred to usually as representers. More specifically, if we
substitute (8) into (12), the model (predicted) concentration
𝐶𝐽(𝜃) “seen” by the sensor at location x𝐽 and time 𝑡𝐽 is given
explicitly by

𝐶𝐽 (𝜃) = 𝑄𝑠 ∫
𝑡𝐽

−∞

𝐶
∗
(x𝑠, 𝑡
󸀠
| x𝐽, 𝑡𝐽) 𝑑𝑡

󸀠
. (13)

To address the second computational problem mentioned
above, we apply a Markov chain Monte Carlo (MCMC) algo-
rithm for the efficient sampling of the posterior distribution
of the source parameters (see Gilks et al. [20], Gelman et al.
[21], Savchuk and Tsokos [22], and Yuen [23]). In general,
MCMC algorithms generate a Markov chain whose station-
ary distribution coincides exactly with the target probability
distribution that we are trying to sample from (which in
our case is the posterior distribution 𝑝(𝜃 | d, s, 𝛼, 𝛽, 𝐼) given
in (11)). The Metropolis-Hastings (M-H) algorithm [20, 21]
forms the underlying basis for MCMC sampling and it is
perhaps not too surprising that the M-H algorithm has
become almost synonymous with MCMC sampling. Indeed,
most of the algorithms for MCMC sampling reported in the
literature [20–23] can be interpreted as either special cases or
extensions of the basic M-H algorithm.

For the current study, we use a multiple-try differ-
ential evolution adaptive Metropolis algorithm with sam-
pling from an archive of past states which is referred to

as MT-DREAM(ZS). The details of this MCMC sampling
algorithm are described by Laloy and Vrugt [24], but, for
completeness, we will briefly summarize the main compo-
nents of this algorithm. In particular, only the relevant details
of the algorithm that are required for the interpretation
of the results in this paper are emphasized. Firstly, MT-
DREAM(ZS) samples from an archive of past states to generate
the candidate points (proposals) for each of the individual
Markov chains that are used to explore the target posterior
distribution. Secondly, as already alluded to here, the algo-
rithm utilizes multiple (different) Markov chains that are
run simultaneously in parallel. These multiple chains employ
a self-adaptive randomized subspace sampling of difference
vectors from the archive of past states to generate new
candidate points in these chains. As part of the randomized
subspace sampling strategy, each element of the candidate
points for the parallel proposals is updated (accepted) in
accordance with a binomial scheme (Bernoulli trial) with
a crossover probability 𝑝𝑠; otherwise, the proposed element
retains its previous (old) value.This multiple-chain approach
automatically adjusts or adapts the scale and orientation of
the proposal function. Thirdly, a snooker step update of the
state with an adaptive step size is included with a fixed (albeit
small) probability in order to improve the mixing efficiency
of the algorithm for exploration of the hypothesis space. The
updated states from the various parallel Markov chains are
periodically stored in the archive of past states after every 𝐾
(𝐾 ≥ 1) updates.

Fourthly, to further improve the efficiency of the sam-
pling, MT-DREAM(ZS) incorporates a multiple-try Metropo-
lis (MTM) approach proposed initially by Liu et al. [25]. The
basic idea underpinning the MTM approach is as follows:
longer range candidate moves are rarely accepted, but if
multiple points are proposed for these longer range moves
then the acceptance probability will be increased. The MTM
algorithm is applied individually to each of the different
Markov chains used in the MT-DREAM(ZS), involving gen-
erating 𝐾 draws using the randomized subspace sampling
procedure for each chain, choosing one of these draws
(proposals) as the reference point, and generating a new set
of (𝐾 − 1) draws with respect to this reference point using
the randomized subspace sampling strategy. The acceptance
rule is simply the Metropolis-Hasting acceptance probability
applied to the sequence of proposals that comprise the MTM
schema.

Finally, to determine if the multiple Markov chains used
in MT-DREAM(ZS) have achieved stationarity (namely, have
converged to the stationary distribution associated with the
chains), the Gelman and Rubin [26] convergence diagnostic
𝑅̂ is computed for each dimension of each chain using the
last 50% of the samples of the chain.This simple convergence
statistic determines whether a chain has achieved stationarity
by comparing the variancewithin each chain and the variance
between chains (interchain variance).

4. Example: A Real-World Application

The International Monitoring System (IMS) consists
of a comprehensive network of seismic, hydroacoustic,
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Figure 1: Locations of the three sampling stations from the Interna-
tional Monitoring System radionuclide network used for the source
reconstruction. The release location of the Xe-133 tracer source was
at Chalk River Laboratories.

infrasound, and radionuclide sensors as part of the
verification regime of the Comprehensive Nuclear-Test-
Ban Treaty (CTBT) which bans nuclear explosions. A
subset of the IMS is the subnetwork of radionuclide gamma
detectors/particle filters for the measurement of the activity
concentration for various radionuclides (e.g., particulate
or aerosol species such as Cs-137 and I-131 and/or noble
gases such as Xe-133). The IMS radionuclide network
will (eventually) have 80 monitoring stations worldwide
for the measurement of the activity concentration for
particulate/aerosol radioactive species, of which at least
40 stations would also have the capability to measure the
activity concentration of noble gases [2].The stations provide
12 or 24 h averaged activity concentrations of the various
radionuclides depending on the technology used.

We applied the proposed source reconstruction method-
ology to some (albeit limited) measurements of activity
concentrations by a very small subset of the IMS radionuclide
network. The release event consisted of the stack emissions
from Chalk River Laboratories (CRL) which houses an
international production facility for medical radioisotopes.
ChalkRiver Laboratories, which at a latitude of 46.15∘Nand at
a longitude of −77.37∘E, is located about 180 km northwest of
the city of Ottawa, Ontario. A characterization of the weekly
stack emissions of Xe-133 from the CRL medical isotope
production facility over a 5-year period yielded a median
daily emission of about 24 TBq (or, equivalently, an emission
rate of about 1.0 × 10

12 Bq h−1).
Xe-133 activity concentrations were detected and mea-

sured by three sampling sites in North America. These three
sampling sites are shown in Figure 1.The three sites displayed
are part of the noble gas monitoring network of the CTBT
verification regime.More specifically, the three stations are as
follows: CAX17 (St. John’s, Newfoundland, at latitude 47.59∘N
and longitude −52.74∘E); USX75 (Charlottesville, Virginia, at
latitude 38.0∘Nand longitude−78.4∘E); andUSX74 (Ashland,
Kansas, at latitude 31.17∘N and longitude −99.77∘E).

At each monitoring site, one of two different moni-
toring technologies is employed to measure radioxenon.
The St. John’s site has a Système de Prélèvements et
d’Analyse en Ligne d’Air pour Quantifier le Xénon (SPALAX)
high-resolution gamma system operating on a 24 h sample
collection period, while the remaining sites have a Swedish
Automatic Unit for Noble Gas Acquisition (SAUNA) beta-
gamma coincidence system with a 12 h sample collection
period. Both systems employ activated charcoal to remove
xenon from the air for radioxenon analysis. After the mea-
surement process is complete, the xenon sample can be stored
in an archive bottle for optional remeasurement either on-
site or in an off-site laboratory. The stable xenon volume
collected varies approximately from 2mL to 8mL depending
on the technology used, but both technologies have a roughly
equivalent Xe-133 sensitivity of approximately 0.2mBq m−3.

The monitoring data for activity concentrations of Xe-
133 were obtained from a single month (December 2011). The
three monitoring stations used for this study were known
to be operating normally during this period of time. For
the purposes of source reconstruction, we used 36 of these
concentration samples extracted from the three sampling
sites. The concentration time series data at each station were
blocked averaged over a temporal duration of 3 days to give
8 concentration data 𝑑𝐽 that were used as the input for
the source reconstruction methodology (namely, 𝑁 = 8

for this example). It should be noted that predictions for
the temporally averaged concentration data were subject to
smaller statistical sampling errors (for a fixed number of
marked fluid particles used in the backward LS model),
which is the primary reason for aggregating the 12 or
24 h measurements in this manner. As mentioned earlier,
reanalyzed meteorological fields were used to “drive” an
operational backward LS model to determine 𝐶∗ which were
utilized subsequently for the fast calculation of the predicted
concentration 𝐶𝐽(𝜃) for an arbitrary hypothesis 𝜃 about the
source.

In addition to the measured activity concentration data
𝑑𝐽 and the predicted activity concentration data 𝐶𝐽(𝜃), it
is also necessary to provide an estimate for the noise error
variance 𝑠2

𝐽
[cf. (7)]. The estimate for the noise error variance

includes twomajor contributions; namely, (1) an estimate for
the sensor error sampling variance 𝑠2

𝑒,𝐽
in the measurement

of 𝑑𝐽 and (2) an estimate for the model error variance
𝑠2
𝑚,𝐽

in the prediction of 𝐶𝐽(𝜃). These estimates for the two
contributions to the noise error variance were added in
quadrature to give 𝑠2

𝐽
= 𝑠2
𝑒,𝐽

+ 𝑠2
𝑚,𝐽

. Very good estimates
for the sensor error standard deviation (or square root of
the variance) were provided for the expected precision in
the measurements of the activity concentration at each of
the three sampling stations. In contrast, no estimates for the
precision in the predicted concentrations were available. In
light of this, the model error standard deviation was assumed
(rather arbitrarily) to be 50% of the predicted concentration
𝐶𝐽(𝜃).

For our example, the emission source is assumed to be at
or near ground level so that the height of the source is not of
any interest in the reconstruction. As a result, the unknown
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Figure 2: Univariate (diagonal) and bivariate (off-diagonal) marginal posterior distributions of the source parameters; namely, longitudinal
position 𝑥𝑠, latitudinal position 𝑦𝑠, and emission rate 𝑄𝑠. The true parameter values are shown by a solid square or a solid vertical line and
the best estimates of the parameter values are represented as a solid circle or a dashed vertical line.

location parameters for the source are its longitudinal (𝑥𝑠)
and latitudinal (𝑦𝑠) positions, so 𝜃 = (𝑥𝑠, 𝑦𝑠, 𝑄𝑠). The
proposed stochastic sampling algorithm constructs an initial
population for the archive of past states by sampling from the
prior distribution 𝑝(𝜃 | 𝐼) (see (10)). The hyperparameters
defining the prior distribution 𝑝(𝜃 | 𝐼) are chosen as follows:
𝑄min = 1.0 × 1015 𝜇Bq h−1, 𝑄max = 1.0 × 1020 𝜇Bq h−1
which prescribes the lower and upper bounds for the source
emission rate and D = (−125∘E, −45∘E) × (25∘N, 75∘N)
which defines the prior bounds for the location (𝑥𝑠, 𝑦𝑠) of
the source. It is noted that D encloses the North American
continent.

The samples of 𝜃 drawn from the posterior distribution
𝑝(𝜃 | d, s, 𝛼, 𝛽, 𝐼) (cf. (11)) using the MT-DREAM(ZS) sam-
pling algorithm were used to determine the characteristics
(location and emission rate) of the source. Estimates of these
source parameters were obtained directly from the multiple
chains of samples generated by the MCMC algorithm after
convergence of the chains as determined by the Gelman-
Rubin 𝑅̂ statistic. Figure 2 exhibits the univariate (diagonal)
and bivariate (off-diagonal) marginal posterior distributions
for the source parameters. For the univariate marginal

posterior distribution of a parameter, the solid vertical line
delineates the true value of the parameter, and the dashed
vertical line corresponds to the best estimate of the parameter
obtained as the posterior mean. Similarly, for the bivariate
marginal posterior distribution of various combinations of
parameters, the solid square marks the position of the true
source parameter values and the solid circle exhibits the best
estimate of the true source parameter values obtained as
the posterior mean. It should be noted that the axes limits
are chosen to display the regions of the highest probability
in the marginal posterior probability distributions for the
parameters and, in certain cases, these regions do not contain
the true parameter values (with the result that some of the
panels in Figure 2 do not contain either the solid square or
solid vertical line representing the true parameter values).

The posterior mean, posterior standard deviation, and
lower and upper bounds for the 95% highest posterior
distribution (HPD) interval (the p% HPD (or credible)
interval is that interval that contains the parameter with a p%
(posterior) probability, with the lower and upper bounds of
the interval specified such that the probability density within
the interval is everywhere larger than that outside it) for the



8 International Scholarly Research Notices

Table 1: The posterior mean, posterior standard deviation, and lower and upper bounds of the 95% HPD interval of the parameters 𝑥𝑠 (
∘E),

𝑦𝑠 (
∘N), and 𝑄𝑠 (𝜇Bq h

−1) calculated from samples of 𝜃 drawn from the posterior distribution 𝑝(𝜃|d, s, 𝛼, 𝛽, 𝐼).

Parameter Mean Standard deviation 95% HPD Actual

𝑥𝑠 (
∘E) −72.71 1.22 (−76.71, −71.56) −77.37

𝑦𝑠 (
∘N) 42.51 0.32 (41.86, 43.35) 46.15

𝑄𝑠 (𝜇Bq h
−1) 6.68 × 1017 8.55 × 1016 (4.98, 8.33) ×1017 1.0 × 1018

Figure 3: Two-dimensional marginal posterior distribution of the
source location georeferenced on a Google Earth image.

reconstructed source parameters are summarized in Table 1.
It is noted that the accuracy in the reconstruction of the
source parameters is fairly good for both the location (con-
sidering the fact that the reconstruction was undertaken on
a continental scale) and the emission rate. More specifically,
the distance between the true source location and the best
estimate of the source location (obtained as the posterior
mean) is only about 572 km (see Figure 3) and the best
estimate of the emission rate (obtained again as the posterior
mean) is within 33% of the true emission rate.

Even so, a perusal of Table 1 indicates that the precision
in the estimates of both the source location and the emission
rate is poorly determined. Indeed, it should be noted that
the 95% HPD intervals for longitudinal/latitudinal positions
and the emission rate of the reconstructed source do not
contain the true source parameters. This defect in the source
reconstruction can be attributed to the difficulties in provid-
ing good estimates for the model errors in the prediction
of 𝐶𝐽(𝜃). It is evident that the inability to provide good
estimates for themodel errors (which in principle can be quite
significant in our example) can lead to a loss of power in the
source reconstruction and may mask important features of
the measured activity concentration data.

Given the complexity in the heteroskedastic variance of
the model error in our application, the specification of the
prior information on the structure of the model error is
extremely difficult. In light of these seemingly insuperable
difficulties, we consider an alternative measurement model

to that introduced earlier in (3). To this purpose, let us now
focus on the following alternative measurement model:

𝑑𝐽 = 𝑚𝐽𝐶𝐽 (𝜃) + 𝑛𝐽, 𝐽 = 1, 2, . . . , 𝑁, (14)

where 𝑚𝐽 are unknown multipliers (scale factors) that are
applied to the predicted concentration𝐶𝐽(𝜃) in order to com-
pensate for themodel uncertainty. It is important to note that,
in (14), the 𝑛𝐽 term represents only the measurement error
in the activity concentration 𝑑𝐽. The model errors incurred
in the predicted concentration 𝐶𝐽(𝜃) are compensated by the
introduction of the multiplier𝑚𝐽.

For the alternative measurement model, the multipliers
𝑚𝐽 (𝐽 = 1, 2, . . . , 𝑁) are unknown parameters and need
to be estimated in addition to the source parameters. Let
us denote the source parameters in this alternative model
by 𝜃𝑠 ≡ (x𝑠, 𝑄𝑠) and by 𝜃𝑚 ≡ (𝑚1, 𝑚2, . . . , 𝑚𝑁) all other
relevant parameters (multipliers in our example).These latter
parameters are usually referred to as nuisance parameters.
Both sets of parameters define the parameter vector as
𝜃 = (𝜃

𝑠
, 𝜃
𝑚
). The likelihood function for the alternative

measurement model is still given by (7) with the implicit
understanding that the estimated noise variances 𝑠2

𝐽
now

only include the measurement error contribution (namely,
𝑠2
𝐽
= 𝑠2
𝑒,𝐽
). As already noted above, this contribution to the

uncertainty is well characterized in our current application
(implying that the prior uncertainty in the measurement
errors can be specified correctly). For the alternative mea-
surement model, one requires also the specification of the
prior distributions for the multipliers (nuisance parameters).
Towards this objective, uniform priors defined over the
range from 𝑚min to 𝑚max will be adopted as priors for the
multipliers. In view of this, the prior distribution for the
alternativemeasurementmodel replaces (10) by the following
assignment:

𝑝 (𝜃 | 𝐼) ∝ ID (x𝑠) I(𝑄min ,𝑄max)
(𝑄𝑠) ×

𝑁

∏
𝐽=1

I(𝑚min ,𝑚max)
(𝑚𝐽) .

(15)

Using the new measurement model and the modified
likelihood function and prior distribution, we applied the
MT-DREAM(ZS) algorithm to sample from themodified pos-
terior distribution for 𝜃. The hyperparameters that define the
prior distribution for the source parameters 𝜃𝑠 were exactly
as described above. The prior bounds for the multipliers 𝑚𝐽
were 𝑚min = 0.1 and 𝑚max = 10.0 for 𝐽 = 1, 2, . . . , 8

(recall that 𝑁 = 8 in our example). The one-dimensional
and two-dimensional marginal posterior distributions of the
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Table 2: The posterior mean, posterior standard deviation, and lower and upper bounds of the 95% HPD interval of the parameters 𝑥𝑠 (
∘E),

𝑦𝑠 (
∘N), and 𝑄𝑠 (𝜇Bq h

−1) calculated from samples of 𝜃 drawn from the posterior distribution 𝑝(𝜃|d, s, 𝛼, 𝛽, 𝐼). The results are obtained using
the alternative measurement model which employs multipliers to compensate for the unknown model error structure.

Parameter Mean Standard deviation 95% HPD Actual

𝑥𝑠 (
∘E) −77.66 1.04 (−79.21, −74.88) −77.37

𝑦𝑠 (
∘N) 45.80 1.96 (42.69, 52.64) 46.15

𝑄𝑠 (𝜇Bq h
−1) 7.97 × 1017 1.75 × 1017 (6.37, 12.5) ×1017 1.0 × 1018
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Figure 4: Univariate (diagonal) and bivariate (off-diagonal) marginal posterior distributions of the source parameters; namely, longitudinal
position 𝑥𝑠, latitudinal position 𝑦𝑠, and emission rate 𝑄𝑠. The true parameter values are shown by a solid square or a solid vertical line and
the best estimates of the parameter values are represented as a solid circle or a dashed vertical line. The reconstruction was obtained using
the alternative measurement model which employs multipliers to compensate for the unknown model error structure.

source parameters 𝜃𝑠 are displayed in Figure 4. The true
source parameters represented by either the solid square or
solid vertical line should be compared with the best estimates
of these parameters (posterior mean) marked by either a
solid circle or dashed vertical line. Table 2 summarizes the
posterior mean, posterior standard deviation, and lower and
upper bounds for the 95% HPD interval for the source
parameters.

It is clear from an examination of Figure 4 and of
Table 2 that all the source parameters have been recovered

with very good accuracy. More specifically, the distance
between the actual source location and the best estimate
(posterior mean) of the source location is about 44 km (see
Figure 5), and the recovered emission rate is within 20% of
the actual emission rate.Note that the accuracy in the inferred
source location is roughly a factor of ten better than that
obtainedusing the standardmeasurementmodel (which does
not use multipliers to try to compensate for the unknown
model errors). More importantly, the precision of the source
parameter estimates (namely, the 95% credible intervals) for
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Figure 5: Two-dimensional marginal posterior distribution of
the source location georeferenced on a Google Earth image. The
marginal distribution is for the alternative measurement model
which employs multipliers to compensate for the unknown model
error structure.

the alternativemeasurementmodel which utilizesmultipliers
to compensate for model errors contains the actual (true)
values for the source parameters, in stark contrast to the
reconstruction using the standard measurement model (cf.
the inferred values for the source parameters in Table 1 with
those in Table 2).

In the practical real-world example of source recon-
struction considered herein using activity concentration data
obtained from the IMS radionuclide network, it is extremely
difficult to correctly specify a priori both the magnitude (or
scale) of the model error and the model error structure. In
light of this difficulty, it is apparent from this example that
incorporating multipliers (scale factors) with the predicted
concentrations to attempt to compensate for the model
error can improve significantly the quality of the source
reconstruction. As an indication of the complexity in the
model error structure for the current problem, Figure 6
exhibits the one-dimensional marginal posterior distribu-
tions for the various multipliers 𝑚𝐽 (𝐽 = 1, 2, . . . , 8).
An examination of Figure 6 provides an indication of the
complexity in the heteroskedastic model error structure,
which makes it difficult to provide a priori estimates for the
model error for use in the source reconstruction. Note that
the distributions for the multipliers associated with some
of the predicted concentrations are quite broad, indicating
that the model errors for these predicted concentrations are
not well determined. In other cases, the distributions for
the multipliers (e.g., 𝑚2 and 𝑚3) are quite narrow, implying
that the data contain reasonable information to constrain
the model errors associated with these multipliers fairly
well.

The true values for the multipliers are not known.
However, we can obtain an independent estimate for the
values of the multipliers in the current example because
the actual source parameters are known. We can use the

actual source parameters 𝜃∗
𝑠
to predict the activity con-

centration 𝐶𝐽(𝜃
∗

𝑠
) that would be expected at the various

observation stations. With this information, we can provide
an independent point estimate for the multipliers as 𝑚̂𝐽 =
𝑑𝐽/𝐶𝐽(𝜃

∗

𝑠
), 𝐽 = 1, 2, . . . , 8. These “actual” values for the

multipliers are shown as the solid vertical lines in Figure 6,
which should be compared with best estimates of the mul-
tipliers obtained as the mean of the posterior distributions
for 𝑚𝐽. A visual inspection shows that the best estimates
of the multipliers are consistent with the “actual” values for
the multipliers obtained from the indicated point estimates.
Furthermore, the width of the posterior distribution of the
various multipliers is seen to enclose the “actual” values for
the multipliers. Finally, even though some of the multipliers
are highly uncertain, inclusion of multipliers to compensate
for the model errors does lead to significantly improved
estimates for the source parameters (both in accuracy and in
precision).

5. Conclusions

In this study, a Bayesian inferential methodology has been
applied to the problem of source reconstruction for real-
world activity concentration datameasured by an operational
network of sensors (more particularly by the IMS radionu-
clide network that is maintained under the auspices of the
United Nations CTBT Organization). This methodology for
source reconstruction has been applied to a difficult situation,
namely, reconstruction of the source characteristics from the
CRL release using only a small number of activity concen-
tration measurements (8 measurements) obtained from only
three sampling stations. The problem involved utilization of
an operational backward LS model for long-range transport
by the atmosphere on a continental scale.

The principal difficulty in the reconstruction lay in
providing the correct a priori specification of the model
error for the various predicted concentrations associatedwith
the measured concentrations used for the source parameter
recovery. A naı̈ve specification for the model error gave a
source reconstruction that was quite reasonable in terms of
the accuracy in the recovery of the location and emission rate,
but the precision in the estimates was generally poor in the
sense that the reported uncertainty bounds in the recovery of
the source parameters did not include the actual (true) values
for these parameters. This led to an alternative measurement
model which incorporated multipliers (scale factors) with
the predicted concentrations in order to compensate for
the model errors. The application of this alternative model
was shown to yield significantly improved estimates for the
source parameters, both in terms of their accuracy and their
precision.

Although Bayesian probability theory offers a coherent
and rational approach for source reconstruction, its applica-
tion to real-world problems using real sensor networks and
operational dispersion models will require a better under-
standing of both the scale and structure of the model error in
the predicted concentrations. It is anticipated that the proper
incorporation of information about the underlying model
error in conjunction with Bayesian inference employing
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Figure 6: One-dimensional marginal posterior distribution of the multipliers𝑚𝐽 (𝐽 = 1, 2, . . . , 8) used to compensate for the model error in
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state-of-the-scienceMCMCsampling algorithms (such as the
MT-DREAM(ZS) algorithm) will provide the most flexible
framework for source reconstruction.
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