
Original article

AuDis: an automatic CRF-enhanced disease

normalization in biomedical text

Hsin-Chun Lee1,†, Yi-Yu Hsu2,† and Hung-Yu Kao1,2,*

1Institute of Medical Informatics, National Cheng Kung University, Tainan, Taiwan, R.O.C, 2Department

of Computer Science and Information Engineering, National Cheng Kung University, Tainan, Taiwan,

R.O.C

*Corresponding author: Tel: þ886-06-2757575 ext 62546; Fax: þ886-06-2747076; E-mail: hykao@mail.ncku.edu.tw

†These authors contributed equally to this work.

Citation details: Lee,H.-C., Hsu,Y.-Y. and Kao,H.-Y. AuDis: an automatic CRF-enhanced disease normalization in biomedical

text. Database (2016) Vol. 2016: article ID baw091; doi:10.1093/database/baw091

Received 4 December 2015; Revised 10 April 2016; Accepted 9 May 2016

Abstract

Diseases play central roles in many areas of biomedical research and healthcare.

Consequently, aggregating the disease knowledge and treatment research reports be-

comes an extremely critical issue, especially in rapid-growth knowledge bases (e.g.

PubMed). We therefore developed a system, AuDis, for disease mention recognition and

normalization in biomedical texts. Our system utilizes an order two conditional random

fields model. To optimize the results, we customize several post-processing steps,

including abbreviation resolution, consistency improvement and stopwords filtering. As

the official evaluation on the CDR task in BioCreative V, AuDis obtained the best perform-

ance (86.46% of F-score) among 40 runs (16 unique teams) on disease normalization of

the DNER sub task. These results suggest that AuDis is a high-performance recognition

system for disease recognition and normalization from biomedical literature.

Database URL: http://ikmlab.csie.ncku.edu.tw/CDR2015/AuDis.html

Introduction

In the biomedical field, it has a rapid and exponential

growth of producing large-scale biomedical literature (1).

From the investigation of PubMed queries, the topics of

chemical/drug, gene/protein and disease are within top 5

(2). Over the last decade, an online database named

Comparative Toxicogenomics Database (CTD) (3) pro-

vided a cross-species resource for building interaction net-

works containing manually curated information, such as

chemical–gene/protein interactions, chemical–disease and

gene–disease relationships. With further curated informa-

tion, the researchers could understand how environmental

exposures affect human health. However, the manual cur-

ation of literature is usually time-consuming and low effi-

cient because a rapid literature growth in the biomedical

field causes problems on aggregating knowledge to biocu-

rators. To facilitate the integration of biomedical articles,

developing an automatic annotation system will effectively

help biocurators to curate the relations between biocon-

cepts. For example, chemicals, diseases, and their relations
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play central roles in many areas of biomedical research and

healthcare. Before extracting their relations from PubMed

articles, the system has to retrieve the mentions of biocon-

cepts from unstructured free texts and assign the mention a

relative database identifier (e.g. MeSH) as illustrated in

Figure 1.

The process of biocuration is critical and complicated

because it involves the problems of natural language pro-

cessing, such as information retrieval, information extrac-

tion and speech processing. In past few years, the

recognition and normalization of bioconcepts in biomed-

ical literature have attracted attention, such as chemicals

(e.g. tmChem, ChemSpot etc.) (4–6), diseases (e.g.

DNorm) (7), genes (GNormPlus, GNAT etc.) (8–12), spe-

cies (e.g. SR4GN, LINNAEUS etc.) (13–15), variations

(e.g. tmVar, MutationFinder etc.) (16–18) and composites

(e.g. SimConcept) (19), respectively. When biocurators in-

vestigate biomedical articles, disease mentions are import-

ant in many lines of inquiry involving diseases, including

etiology (e.g. gene-variation-disease relationships) and clin-

ical aspects (e.g. diagnosis, prevention and treatment) (20).

In the biomedical texts (e.g. literature and medical re-

cords), medical terminology should be collected and organ-

ized by the schemes of medical nomenclature. Medical

terminology is a language utilized to describe human body

(e.g. ‘cardio’ refers to ‘heart’ which was combined by ‘cor’

in Latin and ‘kardia’ in Greek), disease, symptom or spe-

cific terminologies (e.g. ‘Code Blue’ is a specific type of

emergencies often used to refer to a cardiopulmonary ar-

rest). These medical terms are different from the English

words we use in daily life. Further, medical terminologies

are combined by medical roots, suffixes and prefixes

derived from ancient Greek or classical Latin. Therefore,

the medical compound words will generate a great diver-

sity of disease names. Moreover, the medical compound

words are easily comprehended by biomedical experts, but

they are difficult to be effectively recognized by machine

learning.

To approach the biocuration of disease names, we

defined four major variation challenges which disease men-

tion recognition would face. (i) Disease terminology:

disease names naturally exhibit a complicate and inconsist-

ent terminology problem. For example, ‘cancer’, ‘carcin-

oma’ and ‘malignant tumor’ share a similar meaning (20).

(ii) Combination word: as principles of disease word for-

mation, they are mostly composed of prefix, suffix and

root. For instance, the word ‘hyper-’ represents overactive,

therefore, ‘hypertension’ means high blood pressure. For

another example, ‘nephritis’ and ‘nephropathy’ are the

root word ‘nephro’ combined with ‘-itis’ and ‘-pathy’,

which mean inflammation and disease. Prefixes and

Suffixes also have droppable –o- which always acts as a

joint-stem to connect two consonantal roots (e.g.

‘Cardiology’ is combined by ‘cardi(o)’ and ‘logy’ (iii)

Abbreviation: disease abbreviations are frequently used in

text (e.g. ‘HD’ presents ’Huntington disease’) which may

be ambiguous with other concepts (e.g. gene). (ii)

Composite disease mention: a coordination ellipsis which

refers to two or more diseases. For example, ‘ovarian and

peritoneal cancer’ indicates that two individual diseases

are MeSH: D010051 (Ovarian Neoplasms) and MeSH:

D010534 (Peritoneal Neoplasms), respectively.

In recent years, the aforementioned problems can be

solved by controlled vocabulary (e.g. MeSH) or on-hand

tools (e.g. BIOADI) (21). The BIOADI corpus is used to de-

tect abbreviations (Short Form, SF) and their original names

(Long Form, LF) in each abstract. On the other hand, as-

signing a best-matching database identifier to each mention

is a complicated issue because there are many ancestors and

descendants in the database tree structure. For instance, the

same concept name will belong to different categories. For

example, the concept name ‘Kidney Diseases (MeSH:

D007674)’ is under two categories ‘Male Urogenital

Diseases’ and ‘Female Urogenital Diseases and Pregnancy

Complications’, but they have the same descendants. In add-

ition, mentions are difficult to exact match concept names,

and assign their database identifiers even though the data-

base contains synonyms of each concept name as well. From

our observations, most problems are partial matching and

overlapping. For example, ‘hemorrhagic bronchopneumo-

nia’ has a describing word (or an adjective). In this case, the

disease mention should belong to ‘bronchopneumonia

(MeSH: D001996)’. Furthermore, ‘cognitive disorders’ has

a part-of-speech variation problem, and the disease mention

should belong to ‘Cognition Disorders (MeSH: D003072)’.

In contrast, the different writing type between American

and British English could also cause problems (e.g.

‘Hypokalaemia’ and ‘Hypokalemia’ (MeSH: D007008)),

abbreviations (e.g. ‘LV’ should be returned to its long form

‘Leukocytoclastic Vasculitides’. Last but not least, the most

difficult problem is the compound terms, such as ‘vestibulo-

toxicity (MeSH: D015837)’ are composed of ‘vestibul(ar)’,

‘oto’ and ‘toxicity’.
Figure 1. An example of extracting mentions from PubMed literature,

and assigning MeSH concept identifier for each mention.
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Continuing the previous BioCreative IV CTD task, the

BioCreative V CDR Track focuses on the two topics:

Disease Named Entity Recognition and Normalization

(DNER) and Chemical-induced-disease relation (CID).

Meanwhile, the disease named entity recognition is diffi-

cult and may affect the performance in downstream infor-

mation extraction (e.g. relation extraction) according to

the four variation challenges and the lack of a large-scale

training corpus. In previous works, most of researches are

devoted to optimize disease mentions extraction problem,

but how to assign a suitable database identifier to each

mention is a current and critical work which was not

solved effectively before.

In our participation of DNER subtask in the CDR

track, we not only developed a machine learning-based dis-

ease recognition system to deal with the four major vari-

ation challenges but also attempted to extend a dictionary-

look up approach, which can provide a simple, high-speed

and outstanding performance system to effectively solve

the disease name extraction problems and inflexible

dictionary-based approach problems in the normalization

step.

In this work, we propose a system AuDis equipped with

recognition and normalization methods. The brief process-

ing steps of AuDis are as below: (i) select significant fea-

tures related to diseases for CRFs models, (ii) take three

post-processing steps after CRF tagging: consistency im-

provement, abbreviation resolution, stopwords filtering,

(iii) perform a lexicon extension and a dictionary-lookup

in our normalization step. As the official evaluation on the

CDR task in BioCreative V, AuDis not only presented a

better performance than DNorm (80.64% of F-score) and

also obtained the best performance (86.46% of F-score)

among 40 runs (16 unique teams) on the disease normal-

ization of the DNER sub task.

Related work

In previous works, there are many efforts on genes and

chemicals but a fewer attempts on disease named entity

recognition and normalization. Nevertheless, many disease

terminology resources are available such as MeSH, UMLS,

SNOMED-CT (22) and Disease Ontology (23). In recent

years, CTD focuses on curating disease information, and

released an unique resource ‘MEDIC’, a disease vocabu-

lary, combined with the Online Mendelian Inheritance in

Man (OMIM) and the ‘Diseases’ branch of the National

Library of Medicine’s Medical Subject Headers (MeSH).

Moreover, the NCBI provides a disease corpus consisting

of 793 PubMed abstracts with 6,892 disease mentions

(24), and it could be split into three subsets: 593 articles

for a training set, and 100 articles for a development set

and 100 articles for a test set. The corpus is fully annotated

at the mention and concept level to serve as a research re-

source for the biomedical natural language processing

community.

DNorm (7) is a state-of-the-art disease normalization

tool, which was released from NCBI. It is the first machine

learning approach which overturns the typical method

such as a dictionary-lookup, accounting the string similar-

ity of query terms to the disease concept name and its

recognized synonyms, and a semantic-based ranking algo-

rithm. Based on pairwise learning to rank, DNorm pre-

sents a high-performing and mathematically principled

framework for learning similarities between mentions and

concept names directly from training data in normalization

for disease names, and it is also a strong benchmark of

DNER subtask on BioCreative V CDR Track.

In participation of the DNER sub task in CDR track,

here we discuss some methods and the performance

derived from other multiple teams. LeadMine (Team 304)

(25) used a dictionary/grammar based approach collected

from MeSH, Disease Ontology. They especially focused on

the source derived from Wikipedia for recognition and

normalization, and obtained F-score of 86.12%. Team 277

(26) used CRF models to recognize disease mentions. In

addition to MeSH lexicons, they built the semantic exten-

sions by adding corpus-derived semantic variants (from

CDR and NCBI) to MeSH, such as automatic translation

of medical root words and affixes to potential variants.

Then they used similarity-based methods for normaliza-

tion, and finally obtained F-score of 85.56%; Team 363

(27) used ExB‘s existing NER ensemble framework and

combined the second-order (i.e. ExBCRF) Conditional

Random Fields (CRFs) libraries using linguistic features

and word dependency to extract mentions. Then they

looked up mentions in a dictionary collected from the

CDR corpus. Their system could detect common variations

and specificity of each term, and obtained F-score of

85.38% in the official run.

The submissions for three runs are combined with three

different training sets from our system. We not only col-

lected multiple lexicons but also extracted some significant

features for our CRF modules. After extracting disease

names, we took three post-processing steps and used a

dictionary-lookup approach in normalization step. One of

our submissions achieved the highest F-score (86.46%).

Methods

DNER dataset

The datasets we used are released from the CDR corpus

(28) which is developed by a group of experts and
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annotators from MeSH and Comparative Toxicogenomics

Database (CTD). The CDR corpus (inter-annotator agree-

ment (IAA) scores: 88.75%) consists of 1500 articles from

PubMed with manual annotated entities of 4409 chem-

icals, 5818 diseases and 3116 chemical–disease inter-

actions, and it is divided into three subsets: training,

development and test sets with 500 articles, respectively.

Note that 1400 articles (400 for test set) are selected from

the existing curated data of CTD-Pfizer corpus. The add-

itional 100 articles for the test set are generated during the

CDR challenge, and made public after the challenge was

completed. The detailed description of dataset is illustrated

in Table 1 as below.

System description

To handle the DNER task, we defined a semantic based

recognition method which contains two individual mod-

ules (Figure 2). (i) Disease name recognition. We defined

recognition model based on the linear-chain conditional

random fields (CRFs) (29) with rich features and used

two lexicons [NCBI Disease corpus (24), MEDIC (30)] to

generate our CRFs dictionary features. Moreover, we also

employed multiple post-processing steps, consistency

improvement, abbreviation resolution, stopwords filter-

ing, to further optimize the recognition results. (ii)

Disease name normalization. To normalize disease men-

tions to specific concepts in existed repository, we de-

veloped a dictionary-lookup method based on the

collection of MEDIC, NCBI disease corpus and CDR task

released corpus (training set and development set) and

our own extension dictionary. MEDIC is a well-known

resource which uses a modified subset of descriptors from

the ‘Diseases’ [C] branch of MeSH and OMIM identifiers

to organize disease concepts, and we utilized the version

released on 4 June 2015.

Disease recognition: CRF module

A CRF is a statistical sequence-labeling algorithm which

was introduced by Lafferty et al. (2001), and it has been

applied in natural language processing and bioinformatics

(e.g. entities extraction in biomedical literature). It is an ar-

bitrary undirected probabilistic models for computing the

conditional probability distribution p YXð Þ of a random

variables (label sequence) Y given the input X which is also

called the observation sequence. The general model formu-

lation of linear-chain CRFs is derived:

p YXð Þ ¼ 1

ZðXÞ exp f Y;Xð Þð Þ ¼ expðf Y;Xð ÞÞP
Y 0expðf Y 0 ;Xð ÞÞ

where Y ¼ y1; y2; . . . ; ynf g is a label sequence from an ob-

servation sequence X ¼ x1;x2; . . . ;xnf g which means a

token sequence. f Y;Xð Þ ¼
Pn

j¼1

Pm
i¼1 xifi yi; yi�1;Xð Þ, a

weighted feature function consists of state and transition

feature function between position i and i� 1 where each in-

put xi is a vector of real-valued features known as

Table 1. Statistics of CDR corpus

Task Dataset Articles Chemical Disease CID

Mention ID Mention ID Relation

Training 500 5203 1467 4182 1965 1038

Development 500 5347 1507 4244 1865 1012

Test 500 5385 1435 4424 1988 1066

Figure 2. The overall architecture of the AuDis.
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containing all the components of the global observation se-

quence X, and a feature weight can learn from training data

by a limited-memory Broyden–Fletcher–Goldfarb–Shanno

(L-BFGS) (31). Finally, Z Xð Þ is the normalization function

to [0, 1] given by
P

Y 0exp
Pn

j¼1

Pm
i¼1 xifi yi; yi�1;Xð Þ

� �

In this model, we leveraged the CRFþþ toolkit (https://

taku910.github.io/crfpp/) to train our disease named entity

recognition model. The model also utilizes BIEO states (B:

begin, I: insides, E: end and O: outside) and a second order

template of CRFs, which assists our system to recognize a

disease named entity. Note that we only use state ‘B’

(begin) as the single word of disease name.

Pre-processing: tokenization

In the pre-processing stage, we break tokens at white

spaces, punctuations and digits. Table 2 presents the con-

cepts of breaking tokens. Then, the BIEO state of disease

mention ‘hepatitis’, ‘autoimmune hemolytic anemia’ and

‘erythroblastocytopenia’ are tagged, as shown in Table 3.

Each token will not only have its feature vector but also be

tagged a BIEO state (label). The state ‘O’ represents the

outside token which is not related to the disease mention.

Note that the chemical mention would be tagged as an out-

side state, even though it is also a correct named-entity in

the CDR corpus.

Feature group

The mention recognition issue has been addressed for

many years. To reduce the development cost, we adapted

the feature extraction from three recent recognition tools

[i.e. CoINNER (32), tmChem (4), tmVar (16)]. In add-

ition, we specifically expand our CRFs features to be suit-

able for assisting disease name extraction. The six

significant feature groups we utilized in this model are

described as below:

1. Morphology: We employed the general features includ-

ing the original tokens, stemmed tokens (extracted by

Snowball library) and its prefixes/suffixes (length 1–5).

2. Terminology: We manually gathered some common

conditions from CTD, and defined three significant

types, disease terminologies, body part and human abil-

ity to determine whether each token matches the condi-

tion we set. The detailed conditions that manually

gathered from CTD are described in Table 4.

3. Part of speech: A series of binary features for each part

of speech.

4. Vowel: We defined a frame to represent the token.

Continued vowels change to only one ‘-’. For example,

the words ‘tumor’ and ‘tumour’ are turned into the

same frame ‘t-m-r’. Taking this definition, we could

modify the divergence between American and British

English.

5. Dictionary-lookup: We used the CTD disease vocabu-

lary (MEDIC) and NCBI disease corpus as features.

Furthermore, we set the length parameter which is> 3

to avoid false positives (i.e. an abbreviation of other

concepts).

6. Abbreviation: We also annotated abbreviations and full

names which are detected by BIOADI (21). Note that

we only annotated them when they were detected in

that article. That is, to avoid tagger inconsistency, the

abbreviations or full names (e.g. ‘congestive heart

Table 2. The example of PMID: 9625142

Title Acute hepatitis, autoimmune hemolytic anemia and erythroblastocytopenia induced by ceftriaxone.

Abstract An 80-yr-old man developed acute hepatitis shortly after ingesting oral ceftriaxone. Although the

transaminases gradually returned to . . .. . .

PMID Start offset End offset Mention Mention type Database identifier

9625142 6 15 hepatitis Disease D056486

9625142 17 44 autoimmune hemolytic anemia Disease D000744

9625142 50 72 erythroblastocytopenia Disease �1

9625142 130 139 hepatitis Disease D056486

Table 3. The example of breaking the title of PMID: 9625142 into tokens, and tagging label to each token

Acute Hepatitis , Autoimmune Hemolytic Anemia ,

O B O B I E O

and erythroblastocytopenia induced by ceftriaxone .

O B O O O O
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failure’) will not be annotated even if they were de-

tected in other articles.

Post-processing for disease recognition

We employed a post-processing to improve the recognition

results. In the first step, we improved the consistency by

tagging all instances of a disease mention if the proportion

of each mention is at least a within an article. As shown in

Table 2, a disease term ‘hepatitis’ appears two times in an

article, but our CRF model only recognizes one of all men-

tions in title. Thus, p hepatitisð Þ is 1=2ð Þ ¼ 0:5, and the

missed instances would be added in the recognition results

when the ‘hepatitis’ occupy 50% within an article over the

threshold (a ¼ 0:25) we set. This step could assist AuDis to

raise the performance of Recall and become a robust recog-

nition system, even though it would not play an important

role in the normalization step.

p mð Þ ¼ Quantity of CRF tagging

Actual quantity of each mention
> a;

where a ¼ 0:25

Next, we used an abbreviation detection tool – BIOADI

(21) to deal with the abbreviation challenge. We defined

three rules in recognizing the correct disease abbreviation

pairs. First, the instance was not recognized by CRF models,

but was detected by BIOADI. All pairs would be annotated

as disease mention when the lexicon contains the long form.

On the other hand, if the long form of the pair is recognized

as a disease mention by CRF models, all instances of the ab-

breviation pairs including both long and short forms are rec-

ognized as diseases. Besides, when the short form is

recognized as a disease mention, the long form would be

also recognized as a disease mention if the long form con-

tains a disease terminology, such as ‘disease’, ‘cancer’, ‘syn-

drome’, ‘symptom’, ‘tumor’, ‘deficiency’ and ‘disorder’.

We also made the overlap modifications in the abbrevi-

ation resolution step. For example, when tagging the short

form ‘PD’ in PMID: 19234905, the mention ‘UPDRS’

should not be tagged even though the word ‘PD’ is in

‘UPDRS’. That is, we should avoid tagging the mention

which contains the character of the alphabet or digit in the

string. The final step of our post-processing is stopwords fil-

tering which can be found at the MySQL website (https://

dev.mysql.com/doc/refman/5.1/en/fulltext-stopwords.html).

Disease normalization

To identify relevant MeSH identifiers for recognized disease

mentions, we developed a dictionary-lookup approach. The

disease name lexicons are collected from the MEDIC

(Comparative Toxicogenomics Database), the NCBI disease

corpus, and the CDR training/development sets (28) which

are adapted from a subset of the BioCreative IV CTD train-

ing corpus. All the disease names and their synonyms are

utilized for normalization. Note that all the punctuations

and white spaces are removed.

Since the term variation is a very critical issue in the dis-

ease recognition, and it would further affect the performance

(especially the Recall) of normalization. We therefore gener-

alize two common synonym problems from our false negative

results when the CDR development set is regarded as our test

set. In our observations, ‘disease’ and ‘failure’ are highly vari-

ant as shown below: ‘Infection’, ‘damage’, ‘abnormalities’,

‘disorder’, ‘impairment’, ‘loss’, ‘complication’, ‘injury’, ‘def-

icit’, ‘anomaly’ and ‘symptom’ are regarded as the synonyms

of ‘disease’; likewise, ‘deterioration’, ‘diminished’, ‘reduced’,

‘subnormal’, ‘dysfunction’, ‘degeneration’, ‘decrease’, ‘im-

pairment’, ‘insufficiency’, ‘weakness’, ‘lesion’ are regarded as

the synonym of ‘failure’. That is, we exhaustively gathered

those synonyms, and extended the MEDIC lexicons more

flexibly. All plurals of those synonyms are appended as well.

However, there are some ambiguous concepts among

our lexicons. To address this problem, we defined different

orders to approach the best performance of nomalization,

as shown in Table 5. In addition, extracted mentions in

texts and disease synonyms in lexicons are changed to low-

ercase. The disease identifier is assigned to the exact

matched mention. The priorities of dictionary-lookup ap-

proach we used in the official evaluation step are shown

below: CDR development sets>CDR training

sets>MEDIC>NCBI disease corpus>MEDIC extension

lexicon. Once a mention indicates to more than two or

more identifiers, the identifier in a higher priority lexicon

would be admitted.

Table 4. The groups of three disease types

Groups Conditions

Disease

terminologies

Impairment, nausea, vomiting, disease, cancer,

toxicity, insufficiency, effusion, deficit,

dysfunction, injury, pain, neurotoxicity, infect,

syndrome, symptom, hyperplasia, retinoblast-

oma, defect, disorder, failure, hamartoma,

hepatitis, tumor, damage, illness, abnormality,

tumour, abortion

Body part Pulmonary, neuronocular, orbital, breast, renal,

hepatic, liver, hart, eye, pulmonary, ureter,

bladder, pleural, pericardial, colorectal, head,

neck, pancreaticobiliary, cardiac, leg, back,

cardiovascular, gastrointestinal, myocardial,

kidney, bile, intrahepatic, extrahepatic,

memorygastric

Human ability Visual, auditory, learning, opisthotonu, sensory,

motor, memory, social, emotion
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Besides, if an abbreviation is not in the lexicons, our

system would assign the identifier which matched by the

long form. Finally, we defined two heuristic mention modi-

fications to handle the American and British English issue

(e.g. turn ‘ae’ into ‘e’) and the suffix issue (e.g. turn ‘-mia’

into ‘-mic’). In this step, a few mentions can be matched

exactly if the original mentions cannot be matched cor-

rectly. Otherwise, our system would assign ‘-1’ if the men-

tions cannot be matched in lexicons.

Result

In the DNER subset, precision (the fraction of retrieved in-

stances that are relevant), recall (the fraction of relevant in-

stances that are retrieved) and F-score (also called F1 score

or F-measure, the harmonic mean of precision and recall)

are used as the official evaluation criteria to our results.

For evaluation, the organizers only focus on the results of

relative database identifiers (i.e. Normalization results) to

each abstract. That is, it considers the relevant concept

identifiers without overlap. The false positive fpð Þ results

mean that the total number of false concept identifiers is

retrieved from each abstracts. The false negative fnð Þ re-

sults are defined as the total number of correct concept

identifiers (i.e. gold standards) which are not retrieved

from each abstracts. The formulations of precision pð Þ, re-

call rð Þ and F-score fð Þ are derived, respectively.

p ¼ tp

tpþ fp
r ¼ tp

tpþ fn
f ¼ 2� p�r

pþ r

The official evaluation is done by an online testing. All

participants of the CDR task should prepare a RESTful

API equipped with their own recognition method for or-

ganizers to an online test. The performance of AuDis was

officially evaluated by the BioCreative V CDR corpus (18).

In the official three runs, we made up three different

training sets to our CRF model. The detailed combinations

for three runs and their performance are presented in

Table 6.

Table 6. The performance of disease normalization on the

CDR Testing for three runs

Run Training set for CRF Precision Recall F-score

1 Train 0.8942 0.8244 0.8579

2 Train þ Dev 0.8963 0.8350 0.8646

3 Train þ Dev þ 791 0.8832 0.8365 0.8592

The highest value is shown in bold.

Table 7. The performance of disease normalization on the

CDR testing set, the results are the best submissions of all

participating teams and the best result of our submission is

the current setting of AuDis

Team TP FP FN Precision Recall F-score

AuDis 1660 192 328 89.63% 83.5% 86.46%

304 1713 277 275 86.08% 86.17% 86.12%

277 1629 191 359 89.51% 81.94% 85.56%

363 1606 168 382 90.53% 80.78% 85.38%

310 1627 247 361 86.82% 81.84% 84.26%

Average of

all teams

1487 418 501 78.99% 74.81% 76.03%

Baseline and strong benchmark

Dictionary-

lookup

1341 1799 647 42.71% 67.45% 52.30%

DNorm 1593 370 395 81.15% 80.13% 80.64%

Table 5. The performance of four different orders on the CDR development set

Run Different order of four lexicons Precision Recall F-score

1 Train > 791 > MEDIC 0.8827 0.7909 0.8343

2 Train > MEDIC > 791 0.8832 0.7909 0.8345

3 Train > MEDIC > 791 > Extend 0.8791 0.8070 0.8415

4 MEDIC > Train > 791 > Extend 0.8567 0.7920 0.8231

The highest value is shown in bold.

Figure 3. The flowchart of normalization step.
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We used 1000 abstracts (500 abstracts in the training

set and 500 abstracts in the development set) with human

annotated gold standard for training, and tested on 500 ab-

stracts. The results presented in Table 7 show the official

evaluation results from the BioCreative V CDR track. Our

system presents a better performance than DNorm and

also obtained the best result among all participation runs

on the DNER task (21).

Discussion

Unique disease mentions in CDR corpus

Due to a large number of disease mentions in the CDR cor-

pus, we make some comparisons with our training set and

test set in two different views. When we analyzed non-

repetitive disease mentions, there are 2044 and 1253 non-

repetitive disease mentions in the training set and the test

set, respectively. Note that there are 662 unique disease

mentions in the test set, which the disease mentions are not

found in the training set but they appear in the test set. The

performance of AuDis shows that it could recognize 335

mentions among them from our CRF module.

The other analysis of unique disease mentions is

from non-repetitive concept. It contains a number of 1088

(include ‘-1’) and 646 non-repetitive concept in the training

set and the test set, respectively. The test set also contains

180 unique disease mentions, and AuDis could extract a

number of 115 unique disease mentions among them.

Evaluation of feature group

To assess the importance of our features, we used a leave-

one-out cross-validation to observe the best performance

in our six features. The performance of each removed fea-

ture and their results are presented in Table 8. In this ex-

periment, the dictionary-lookup feature plays a central role

in our system and provides a solution to the lack of large-

scale training corpus problem. Without the dictionary-

lookup feature, the performance decreases around 6% of

F-score and has a low recall, which means that a number

of relative identifiers cannot be found.

Error analysis

In the error analysis of AuDis, we focus on the results from

our run2 (86.46% of F-score) and their false positives and

false negatives on the CDR testing set. Note that disease

mention extraction is also an important step because it

may affect the performance in downstream information

(i.e. Normalization and building relations between diseases

and chemicals). Although we extracted some significant

features to help our system recognize the correct mentions

for normalization, we still have some problems, such as

making numbers of partial match mentions and overlap-

ping lexicons. Hence, we classify our results into several

categories, such as boundary issues, divergence of lexicons,

redundant mentions, missing mention, synonyms and

others. In our observations, 63% are false negatives and

37% are false positives. The detailed description is shown

in Figure 4.

The boundary issues are the major errors of our system,

and the problem could be traced to the recognition of our

CRFs module, which 15% errors are false positives and

28% are false negatives. That is, some mentions have more

or less adjective words, such as ‘acute’ or ‘end-stage’.

These mentions would increase false positives and false

negatives at the same time. For instance, disease mention

‘encephalopathy’ in PMID: 17356399 was tagged a rela-

tive identifier ‘D001927’. However, the correct mention

should be extracted as ‘Acute encephalopathy’ and should

be assigned an identifier ‘D020803’, or ‘acute hepatitis

(D017114)’ should be tagged as ‘hepatitis (D056486)’ cor-

rectly. This issue is complicated because we do not have a

standard to extract mentions or not. On the other hand,

some mentions should be further normalized, such as ‘sen-

sory and motor dysfunction (D007049)’ or ‘central ner-

vous system leukemia (D002493)’. Since these mentions

have new sequences, our CRF modules cannot control the

OFFSET exactly. As the examples we mentioned above,

our system will only extracts mentions such as ‘motor dys-

function (D020258)’ and ‘leukemia (D007938)’ and result

in false positive.

The missing mentions and redundant mentions are

20% in false negatives and 13% in false positives, re-

spectively. When analyzing the missing mentions, they

can also be classified into several categories, such as

synonyms, abbreviations, morphological variations and

the most difficult issue of the combinations of prefix, suf-

fix and root. Because of the lack of the training corpus,

some mentions have been ignored, such as ‘metabolic de-

rangement (D008659)’ in PMID: 1756784, ‘FSGS

Table 8. The performance of removing one of our six feature

groups

Removed feature Precision Recall F-score

All features 89.63% 83.5% 86.46%

Dictionary-lookup 91.67% 71.43% 80.29%

Morphology 88.23% 82.24% 85.13%

POS 88.93% 82.44% 85.57%

Vowel 89.09% 82.60% 85.72%

Abbreviation 89.05% 82.65% 85.73%

Terminology 89.15% 82.70% 85.80%
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(D005923)’ in PMID: 3323599, ‘gram-negative bacillary

infections (D016905)’ in PMID: 256433. The combin-

ation word, such as ‘Blepharoconjunctivitis (D003231)’

in PMID: 2931989, is still difficult to determine its con-

cept name because some disease mentions are generated

arbitrarily according to the rules of medical

nomenclature.

Using a dictionary-lookup approach in the normaliza-

tion step, the system resulted in 8% divergence of concept

identifiers because we used the multiple lexicons. Although

we set the best priority to our dictionary-lookup approach,

there are still noises. For example, some mentions, such as

‘renal disease’, are assigned to ‘D052177’ from the CDR

development set, but the database identifier ‘D007674’

from the NCBI disease corpus is assigned correctly in most

cases. The other example is the mention ‘parkinsonian

(D010300)’, which has two different identifiers ‘D010300’

and ‘D020734’ from the CDR training set and develop-

ment set, respectively. Thus, the divergence of lexicons be-

comes apparent, especially between the CDR training set,

the development set, the CDR corpus and the NCBI

corpus.

When analyzing the error cases of synonyms, we found

that the synonym problems are different from the missing

mentions. Here, our synonyms are defined as the mentions

which are extracted correctly by our CRF modules but can-

not be assigned a correct identifier from our normalization

step. Furthermore, we observe that some mentions are

similar to the concept names from MEDIC. Although we

tried to extend our lexicons, some ambiguous concepts

such as ‘abnormal ocular motility (D015835)’ in PMID:

12912689, ‘myocardial degeneration (D009202)’ and

‘renal disturbance (D007674)’ in PMID: 20859899 could

not be solved.

As for the abbreviation problems, we found that most

problems occur in the different disease full names. For ex-

ample, ‘PD’ in PMID: 17445520 indicates that ‘panic dis-

order’, but our system assigned a relative database

identifier ‘D010300’, which is an abbreviation of

‘Parkinson’s Disorder’. We believe that the problems of ab-

breviation synonyms could be solved after updating our

normalization rules. Moreover, punctuation problems

arise in the CDR training set and the development set, such

as ‘nausea, vomiting’. In our experience, the mentions

combined with ‘nausea’ and ‘vomiting’ should be assigned

to an identifier ‘D020250’ rather than ‘D009325’ and

‘D014839’, which are derived from ‘nausea’ and ‘vomit-

ing’, respectively. However, in the CDR test set, we should

consider ‘nausea, vomiting’ as two individual mentions.

The other example is ‘ischemia-reperfusion injury’, which

also should be considered as two separate mentions with-

out hyphen.

Conclusions

We developed a disease recognition/normalization tool

with a state-of-the-art performance and an efficient pro-

cessing speed. In terms of efficiency, it typically takes

<50 s to run 500 PubMed abstracts through the system on

dual quad-core windows server with 24 GB RAMs. Then,

Figure 4. The eight categories of false positives and false negatives.
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we setup a RESTful API for end-users to access the service.

According to the observed performance, we believe that

AuDis would be a useful resource for text mining down-

stream research. We proposed a robust CRF-based recog-

nition module to precisely recognize disease mentions, and

employed a post-processing to improve the recognition re-

sults. The recognition performance is 85.64% of F-score.

In the normalization step, we present a dictionary-lookup

approach which obtains 86.46% of F-score. However, the

recall of our method is relatively lower. In our future

work, we will focus on raising the performance of normal-

ization by a robust machine learning approach.
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