
1Scientific Reports | 6:27292 | DOI: 10.1038/srep27292

www.nature.com/scientificreports

Dissolved oxygen content 
prediction in crab culture using a 
hybrid intelligent method
Huihui Yu1,2,3,*, Yingyi Chen1,2,3,*, ShahbazGul Hassan1,2,3 & Daoliang Li1,2,3

A precise predictive model is needed to obtain a clear understanding of the changing dissolved oxygen 
content in outdoor crab ponds, to assess how to reduce risk and to optimize water quality management. 
The uncertainties in the data from multiple sensors are a significant factor when building a dissolved 
oxygen content prediction model. To increase prediction accuracy, a new hybrid dissolved oxygen 
content forecasting model based on the radial basis function neural networks (RBFNN) data fusion 
method and a least squares support vector machine (LSSVM) with an optimal improved particle swarm 
optimization(IPSO) is developed. In the modelling process, the RBFNN data fusion method is used to 
improve information accuracy and provide more trustworthy training samples for the IPSO-LSSVM 
prediction model. The LSSVM is a powerful tool for achieving nonlinear dissolved oxygen content 
forecasting. In addition, an improved particle swarm optimization algorithm is developed to determine 
the optimal parameters for the LSSVM with high accuracy and generalizability. In this study, the 
comparison of the prediction results of different traditional models validates the effectiveness and 
accuracy of the proposed hybrid RBFNN-IPSO-LSSVM model for dissolved oxygen content prediction in 
outdoor crab ponds.

Dissolved oxygen is one of the most important physical properties in crab ponds because it has great influence 
on the overall health and growth status of the aquatic ecosystem1. Proper control and management of dissolved 
oxygen in crab pond aquaculture is crucial for the developing crabs and has a significant impact on the quality 
and quantity of the final product2.Thus, the efficient and accurate prediction of the dissolved oxygen content in 
modern aquaculture can provide a basis for water quality control and management, reducing aquaculture risk 
and financial losses and optimizing operation3,4. Liu et al.2 have built dissolved oxygen content prediction models 
using machine learning methods that use just the complete valid data to build the forecasting model without 
considering invalid data samples. In a practical application, however, the data provided by a single sensor may 
lack accuracy or have limits5, e.g., missing data or extreme data. Hence, this study presents a new hybrid dissolved 
oxygen content forecasting model that first uses the data fusion method to improve information accuracy and 
provide trustworthy training samples and then builds the dissolved oxygen content prediction model.

Irregularities in the data from multiple sensors may be due to incomplete or partial data or human activity6.
The accuracy of the prediction model relies on the accuracy of the training data. Moreover, the data collected by 
a single sensor maybe inaccurate or limited7. Hence, a good method must be adopted to improve the accuracy 
of the sensor data. In recent years, different data fusion5 strategies such as feature selection, activity recognition, 
fault detection and precise information provision7–10 have been developed to integrate information from multi-
ple sensors. Data fusion techniques are mathematical techniques used to combine multiple values into a single 
precise value. The radial basis function neural network (RBFNN) method is one of the artificial neural network 
methods used for multi-sensor data fusion that has high accuracy11. The goal of using data fusion in this research 
is to obtain more precise data for the dissolved oxygen content prediction model.

In the last few years, different approaches have been applied to water quality prediction. The typical water 
quality simulation and prediction models can be divided into physical models and black box models. The phys-
ical methods are based on mathematical theory12,13. Thus, it is a difficult task to determine the parameters or 
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extrapolate from the sub-models2. In contrast to physical models, ‘black box’ prediction models do not rely 
on situation-specific details and do not need to determine many parameters. Therefore, there have been many 
attempts made to use artificial intelligence techniques, such as time series methods, artificial neural network 
methods, and support vector machine methods1,14–17.

Time series methods have been used for linear water quality prediction models, for example, the auto regres-
sive moving average (ARMA) model and the auto regressive integrated moving average (ARIMA) model18–20. 
However, the dissolved oxygen content in crab aquaculture is complicated, changes nonlinearly and is influenced 
by many factors, hence, some time series methods cannot provide precise prediction accuracy21. Artificial neu-
ral networks (ANN) comprise a general purpose model that has been used to develop forecasting models with 
nonlinear series22. Hatzikos et al. develop neural network models to predict seawater quality indicators such as 
water pH, temperature and dissolved oxygen content23. Ma et al. use a back propagation neural network (BP-NN) 
model to predict water quality for aquaculture water management24. Although the neural network models have 
lower mean absolute error in their predictions and react more evenly to the indicators than their logistic counter-
parts25, ANN also suffers from drawbacks, such as no exact rule for setting the neural network parameters and the 
time complexity of the learning process21. To overcome these disadvantages, a new approach should be explored.

A least squares support vector machine (LSSVM) is a robust regression technique used to solve with few sam-
ples and perform nonlinear function regression26, so it has been applied in prediction methods for various 
fields25,27,28. In this study, a least squares version of SVM (LSSVM) is considered, in which the training is expressed 
in terms of solving a set of linear equations in the dual space instead of quadratic equations, as for the standard 
SVM case29. Moreover, the least squares support vector machine (LSSVM) improves on SVM by applying linear 
least squares criteria to the loss function4,30. In addition, the kernel parameter σ and the regularization parameter 
C in the LSSVM training procedure significantly influence forecasting accuracy31. To achieve a high level of per-
formance with LSSVM models, the key parameters have to be tuned. To date, an exact method of obtaining an 
optimal set of LSSVM hyper parameters has not been determined.

Particle swarm optimization (PSO) is a heuristic global optimization method introduced by Kennedy and 
Eberhart in 199532. It is widely used in fields such as function optimization, parameter training, model classifi-
cation due to its many advantages, including its simplicity and easy implementation33–35. However, basic particle 
swarm optimization does not ensure convergence to an optimal solution and is also prone to partial optimization, 
which reduces precision in the regulation of its speed and direction36. Due to comparatively poor efficiency, a 
number of studies have been conducted on improving the performance of PSO algorithms, which are used in 
parameter optimization2,37. This study presents an improved particle swarm optimization algorithm for simulta-
neously optimizing the LSSVM parameters.

Results and Discussion
Dissolved oxygen content fusion result analysis.  All computation for the prediction model was per-
formed in MATLAB by coding in M files. In the proposed algorithm, all the experimental data were obtained 
from the same crab pond. The meteorological data were collected by the weather station installed on the shore 
of the pond, and the water quality data were collected from sensors installed in the same pond. All these exper-
imental data were simultaneously transferred to the Digital Wireless Monitoring System of Aquaculture Water 
Quality and used by the proposed algorithm. The experimental data include water temperature, solar radiation, 
wind speed, rainfall, humidity, and four dissolved oxygen content sensor readings, which were used for data 
fusion. Because the data obtained from a single dissolved oxygen sensor is more unreliable, dissolved oxygen 
content values from dissolved oxygen sensors in four locations were used for data fusion along with other factors 
to obtain a relatively accurate dissolved oxygen content value. Then, the fused dissolved oxygen content value was 
used with the water temperature, solar radiation, wind speed, rainfall, and humidity data as the input sample for 
machine learning.

In the fusion method, we applied the RBF algorithm to the four DO sensors’ data to obtain a better forecast-model  
training sample. The dissolved oxygen content value obtained by sensor1 was accepted as the real dissolved oxy-
gen content value. For this part of the study, we used the first 500 data values from each of the four DO sensors 
as the fusion training samples and the next 200 as the test samples. Then, the water temperature, solar radiation, 
wind speed, rainfall, air humidity, and dissolved oxygen content values (from the 200 test sample groups) used for 
fusion were used as the prediction training and test samples for the dissolved oxygen content forecasting model.

After development, the RBFNN method was used to fuse or integrate the data; Fig. 1 shows the result of the 
data fusion. According to Fig. 1, there are many invalid (zero) and distorted (much higher than those nearby) dis-
solved oxygen content values in the original data. There is even one dissolved oxygen sensor (sensor 4) reporting 
data that is too low. However, fusion on the dissolved oxygen content data can effectively eliminate low credibility 
data. The data plots show that the fusion data discounts the bad sample data and generates more credible samples 
(Fig. 1).

Table 1 shows several invalid and distorted data values among the original dissolved oxygen content values 
obtained by the four DO sensors. As shown by the table, the results indicate that the fusion method can train with 
the other input factors to fuse data to obtain more trustworthy data for the prediction model. For example, at 
20:20, the dissolved oxygen content value from sensor 1 is valid, and at 10:20, the dissolved oxygen content values 
from both sensor 2 and sensor 3 are invalid. The fusion values are more accurate than the invalid values. As the 
accuracy of the prediction model is dependent on the training samples, the fusion method is suitable to obtain 
more reliable data.

Forecast results analysis with fusion data.  In the dissolved oxygen content forecasting model, the water 
temperature, solar radiation, wind speed, rainfall, air humidity, and previous fusion dissolved oxygen content 
value (test sample data) were combined for use as the prediction training and test values. The first 120 groups of 
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data were used as training data and the last 80 groups of data were used as test data. To compare and evaluate the 
regression results of the RBFNN-IPSO-LSSVM dissolved oxygen content prediction model, we also used the BP 
neural network and standard LSSVM methods to predict the dissolved oxygen content. To analyse and compare 
prediction performance, the BP neural network, standard LSSVM and the optimized LSSVM all used the fusion 
data as training samples and forecast the sequence fusion test samples for the same time period. The BP neural 
network method consists of six input variables and one output variable, a hidden layer with five initial neurons, 
and a maximum training step value of 104. The standard LSSVM model parameters were selected by a 5-fold 
cross-validation method.

In the optimized LSSVM, the parameters were optimized by the improved PSO algorithm. The population size 
of the traditional PSO and the improved PSO were set to 50, the maximum evolution generation was set to 200, 
the particle dimension is 2, the initial inertia weight = .u 0 6, and in the improved PSO the mutation probability 
= .p 0 3m  and = = .c c 1 51 2 . The fitness performance graph in Fig. 2 shows the fitness curves decrease rapidly at 

the outset of a generation but soon level off. The optimal parameters selected for the LSSVM by the improved 
IPSO were = .C 151 46, σ = .1 89.

In this step, the fused dissolved oxygen content data were used as the real data for the three comparison meth-
ods’ samples. Figure 3 contains the forecasting results of the BP, LSSVM and IPSO-LSSVM methods. The results 
show that the proposed hybrid model is more suitable and effective for dissolved oxygen content prediction. It has 
a strong ability to learn using a small nonlinear sample to achieve excellent generalizability.

As different algorithms employ different experimental methodologies, this study uses different standard statis-
tical performance evaluation criteria. The standard statistical criteria include the root mean square error (RMSE), 
the mean absolute percentage error (MAPE), the Nash-Sutcliffe efficiency coefficient (NSC), the coefficient of 
determination (R2) and the running time (T). Table 2 shows the error index for the three models. It indicates that 
the IPSO-LSSVM model combining the improved particle swarm optimization algorithm with the least squares 
support vector machine hybrid model is more adequate than the standard LSSVM and the BP neural network. 
The index (MAE, RMSE, MSE, NSC and T) of the IPSO-LSSVM is better than those of the other models. The run-
ning time (T) of the IPSO-LSSVM model is less than the LSSVM model, indicating the improved PSO method 
effectively selects the parameters of the LSSVM. Using the same test data, the relative MAE, RMSE and MSE dif-
ferences between the IPSO-LSSVM model and the LSSVM model were 34.63%, 47.62% and 60.14% in the testing 
period. The relative MAE, RMSE and MSE differences between the IPSO-LSSVM model and the BP neural net-
work model were 51.28%, 54.69%, and 67.32% in the testing period. So the IPSO-LSSVM model is more able to 
solve the solar greenhouse temperature prediction problem than the SVM and BP neural networks. Moreover, the 

Figure 1.  Fusion data and the original sensors’ dissolved oxygen content value. 

Time

Dissolved oxygen content

Sensor 1 Sensor 2 Sensor 3 Sensor 4 Fusion value

29-06-2015 20:20 0.00 1.21 1.72 1.05 1.4547

30-06-2015 02:40 1.72 0.06 6.00 1.97 2.0888

30-06-2015 03:00 2.34 0.06 6.00 1.28 1.8274

30-06-2015 14:00 7.43 0.06 6.38 3.87 8.4344

01-07-2015 09:20 3.20 0.06 2.03 0.00 3.2813

01-07-2015 10:20 4.28 0.06 0.00 4.25 4.1231

01-07-2015 18:40 0.00 0.06 1.64 2.40 2.1536

02-07-2015 03:00 1.40 1.40 1.51 0.00 1.2531

02-07-2015 05:40 1.16 1.16 7.00 0.89 1.6136

Table 1.  Error data fusion results obtained with the four DO sensor value-based RBF neural network data 
fusion methods.



www.nature.com/scientificreports/

4Scientific Reports | 6:27292 | DOI: 10.1038/srep27292

NSC of the IPSO-LSSVM is higher than that of the other models. It is obvious that the IPSO-LSSVM model has 
significantly more reliable performance and generalizability and a higher prediction accuracy than other models.

Conclusions
In this study, a novel hybrid algorithm has been proposed for dissolved oxygen content prediction in outdoor crab 
ponds. To remove redundant and erroneous data from the original data, the RBF neural network method is used 
to fuse the original data to prepare training samples for the prediction model. Then, improved particle swarm 
optimization is used for the selection of the parameters for least squares support vector regression. Obtained 
results show that the proposed model yields better prediction accuracy in comparison with several other machine 
learning methods. Looking at the fusion result, we can see the fusion method removes erroneous data, increasing 
the original data’s reliability, leading to a more trustworthy training sample for the prediction learning machine. 
The forecasting results show the IPSO-LSSVM model predicts more accurately than the traditional models. 

Figure 2.  Fitness performance for the proposed IPSO and the traditional PSO. 

Figure 3.  The dissolved oxygen content forecasting value of the RBFNN-IPSO-LSSVM in contrast with the 
comparison models. 

Model MAE RMSE MSE NSC T

IPSO-LSSVM 0.2814 0.4057 0.1085 0.9531 3.2143

LSSVM 0.4305 0.7745 0.2722 0.9187 3.1265

BPNN 0.5776 0.8954 0.3320 0.9002 4.3298

Table 2.  Error statistics of four forecasting models.
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The proposed hybrid model is used to predict the dissolved oxygen content in outdoor crab ponds. Our results 
demonstrate that the RBFNN-IPSO-LSSVM prediction model is effective and feasible.

For further study, the influence of some factors such as water temperature, wind speed, and solar radiation 
on the dissolved oxygen content is unclear. Hence, a method that can determine which factors should be used 
as input is important for improving the accuracy of the prediction model. Additionally, to obtain more precise 
hybrid predictor methods, the combination of different signal processing tools, feature selection and learning 
machines may be examined.

Materials and Methods
Data preparation.  The data used in this study were collected by the Digital Wireless Monitoring System 
of Aquaculture Water Quality. Figure 4(a) shows the system structure diagram. The system is applied in more 
than 1000 river crab farming ponds, approximately 10000 acres. The system is made up of three major parts: the 
data acquisition layer; the information transport layer; and the application layer. The data acquisition layer is 
comprised mainly of the water quality monitoring sensors, such as the pH sensor, DO sensor, salinity sensor, and 
the weather monitoring station for temperature, solar radiation, atmospheric humidity, and wind speed. All of 
the data are moved via the transport layer to the application layer for data apperception, intelligent information 
processing, and logical operations.

In this study, the water quality and meteorological data were obtained from 21 June to 12 July in intervals of 
twenty minutes, totalling more than 1000 samples. In this study, the experimental details are as follows: (a) The 
size and population density of the crabs. During late June and early July, crabs complete their third shelling and 
begin the growth process for the fourth shelling. During this period, the stocking density of crabs is approxi-
mately 2000 per acre, their average weight is approximately 75 grams, and they reach a diameter of approximately 
5.0 cm. (b) The area of the pond. The crab pond length is 130 meters and the width is 45 meters, for a total area of 
5850 square meters. (c) The location of the sampling sites. The dissolved oxygen content collection sites are all in 
the same crab pond. The four dissolved oxygen sensors are evenly distributed in the crab pond; the specific loca-
tions are shown in Fig. 4(b). The meteorological data are collected by the weather station installed on the shore 
of the pond. These collection data include water temperature, solar radiation, wind speed, rainfall, humidity, 
and the dissolved oxygen content values from the four dissolved oxygen sensors. All these experimental data are 
simultaneously transferred to the Digital Wireless Monitoring System of Aquaculture Water Quality and used for 
the proposed algorithm.

The structure of the prediction model.  Before training the machine learning model, we need to 
pre-process the original dissolved oxygen content data using the RBF neural network. Then, the improved particle 
swarm algorithm is used to determine the kernel parameter σ and the regularization parameter C for the least 
squares support vector machine. Finally, the dissolved oxygen content prediction model is built by training the 
forecasting method. As depicted in Fig. 5, the proposed method consists of three main parts:

•	 Data fusion.
•	 Least squares support vector regression parameters selection.
•	 Training of the learning machine.

Multi-sensor Data fusion by RBF neural network.  The radial basis function (RBF) neural network is 
one of the neural network models that learn by measuring Euclidean distance data38. The RBF neural network 
model has a three-layer structure: the input layer, the hidden layer, and the output layer39. Movement from input 
layer to hidden layer is nonlinear, and that from hidden layer to output layer is linear. Determining the number of 
hidden nodes is an important issue that has a substantial impact on the neural model quality40. The input X is an 
M-dimensional vector, = ...X x x x[ , , , ]m1 2 . The input layer units are only distributed to the hidden layer41.

In the RBFNN method, each neuron in the hidden layer has a Gaussian function described as:

ϕ =




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where = ...X x x x( , )m1 2  is the i th input element, Ci is th centre of the i th hidden unit, b is the width of the receiv-
ing field, and n is the number of input elements.

The output layer is activated by the linear combination of the hidden layer units, which can expressed as:

∑ϕ ω=
=

y
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i i
1

where ϕi is the weight of the connection from the hidden layer to the output layer. The RBF neural networks adopt 
the K-means clustering algorithm to improve the fusion result. The RBF neural network process for multi-sensor 
data fusion is shown in Fig. 6 and can be described as follows:

Step 1: Select the input vectors xi as the training sample, ∈x Ri
m represents each group of data coming from 

all m detectors;
Step 2: Train the RBF neural networks by the K-means clustering algorithm and select the parameters;
Step 3: Set the error value and run the algorithm until the termination criterion is satisfied;
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Figure 4.  Experimental data collection system and location: (a)The structure diagram of the digital wireless 
monitoring system; (b) The sensor layout in the river crab pond. The photographs of the man, computer systems 
and web browser in Fig. 4 were taken by first author Huihui Yu in Gaocheng town, Yixing city, Jiangsu province. 
The drawing of the man in the top right of the figure, and the drawing of the equipment next to the “Water 
quality monitor application system” were created by Yingyi Chen. And, the whole figure was designed and 
drawn by author Huihui Yu and Yingyi Chen.

Figure 5.  Proposed algorithm for dissolved oxygen content forecasting. 



www.nature.com/scientificreports/

7Scientific Reports | 6:27292 | DOI: 10.1038/srep27292

Step 4: Get the fused dissolved oxygen content value from the RBF neural network, then combine the environ-
mental data and the fused dissolved oxygen content value into a new sample for the IPSO-LSSVM.

Least squares support vector machine (LSSVM).  The least squares support vector machine (LSSVM) 
has been introduced as a reformulation of the standard support vector machine (SVM), which has simple tech-
niques42,43. The LSSVM can address linear and nonlinear systems with structured risk minimization, and it has 
been successfully applied in many fields. In an LSSVM model, the training dataset is assumed to be x y{ , }k k
= ...k l1, 2, , , where ∈x Rk

n is an input vector and ∈y Rk  is its corresponding target vector. The regression 
problem can be transformed into the following optimization problem:

∑= +
=

J w j e w w C emin ( , , ) 1
2

1
2 (3)w b e

T

k

l

k
, , 1

2

ϕ. . = + + = …s t y w x b e k l( ) ( 1, 2, , ) (4)k
T
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where w is the weight vector, C is the regularization parameter, ek is the error between the predicted and actual 
values of the system and ϕ .( ): →R Rn f  is a function used to map the input space to a higher dimensional space. 
Using the Lagrangian function, the LSSVM model is written as follows:

∑α= = +
=

ŷ f x K x x b( ) ( , )
(5)k

l

k k
1

where K x x( , )k  is the kernel function. In this study, the RBF was selected as the kernel function because the RBF 
ably handles nonlinear relationships and its overall performance is excellent. This method maps the sample to a 
high dimensional space in a nonlinear fashion and it has few required parameters; therefore, it is the most popular 
option for kernel function. The kernel function is shown in Eq. (6):
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The model can be written as follows:
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Improved particle swarm optimization.  The algorithm for particle swarm optimization (PSO) is an evo-
lutionary optimization algorithm. It is initialized with a group of Nrandom particles and simulates social behav-
iour among individuals44,45. The position of particlei is represented as = ... ...X x x x x( , , , , )i i i ij iR1 2 . The velocity of 
particle i is represented as = ... ...V v v v v( , , , , )i i i ij iR1 2 , where = ...i N1, 2,  and = ...j R1, 2, , . The best previous 
position of particle i is represented as = ... ...pbest pbest pbest pbest pbest( , , , , )i i i ij iR1 2  and the best particle among 
all particles is represented as = ... ...pgbest pgbest pgbest pgbest pgbest( , , , , )i i i ij iR1 2 . pbestij is the local best position 
of the particle i in the j th dimension, and the pgbestij is the global best position of the swarm in the j th dimen-
sion. During the search process, the direction of each particle is adjusted by dynamically altering its velocity 

Figure 6.  Process of multi-sensor data fusion by the K-cluster RBF method. 
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according to both its own movement and that of neighbouring particles46,47. The particle position and velocity are 
updated according to the following equation:

+ = ⋅ + − + −v k u v c r pbest t x t c r pgbest t x t( 1) ( ( ) ( )) ( ( ) ( )) (8)ij ij ij ij ij ij1 1 2 2

+ = + +x t x t v t( 1) ( ) ( 1) (9)ij ij ij

where i is the iteration counter, u is the inertia weight, which is used to control the impact of the previous history 
of the current particle, c1 is the cognition learning factor, c2 denotes the social learning factor, and r1 and r2 are 
uniformly distributed random variables within the range [0,1].

The original particle swarm optimization has a slow convergence and may only find the traditional local opti-
mum. In the study, an improved particle swarm optimization is presented to find a suitable inertia weight to bal-
ance the local and global search abilities. The dynamic adjustment method of the inertia weight u is written as 
Eq. (10):

=






⋅ − ≤

⋅ + < ≤
u

u p fitness x fitness pgbest
u p fitness pgbest fitness x fitness pbest

(1 ), ( ) ( )
(1 ), ( ) ( ) ( ) (10)

m ij j

m j ij ij

The pm is introduced in this study as a mutation probability used to change the inertia weightu. When 
≤fitness x fitness pgbest( ) ( )ij j , the particles have a status which is close to the global optimum, so they are given a 

smaller inertia weight than the current one. The smaller inertia weight can help the particles to reach optimum 
status more quickly. When < ≤fitness pgbest fitness x fitness pbest( ) ( ) ( )j ij ij , the particles are not close to the global 
optimum, and therefore, a bigger inertia weight is needed to change their position and velocity. The improved 
particle swarm optimization increases the convergence rate and also improves the accuracy of the solution.

Parameter selection.  For least squares support vector regression, the kernel parameter σ and the regulari-
zation parameter C in the LSSVM training procedure have significant influence on forecasting accuracy. The 
improved particle swarm optimization is devoted to optimizing the kernel parameter σ and the regularization 
parameter C. Each particle represents a potential solution of the vector σ=d C( , ). The fitness function represents 
the performance of each particle and the fitness function is defined in the model as follows:

∑= −ˆfitness
N

y y1 ( )
(11)i

N

i i

where the ŷi represent the predicted values, the yi represent the actual values, and N  represents the size of the 
predicted value subset. The particle with a minimal fitness value is the global extreme point. The process of opti-
mizing the LSSVM parameters with IPSO can be described as follows:

Step 1: Particle initialization and IPSO parameter setting: generate a population of initial particles that consists 
of parameter C and kernel parameter σ. Set the maximum number of iterations kmax, the particle population 
number N , and the minimum fitness value for error limitation.

Step 2: Set the iteration variable = + .k k 1
Step 3: Calculate the fitness function value of each particle using Eq. (11): use the current particle as the indi-

vidual extreme point of every particle and the particle with the minimal fitness value as the global extreme point.
Step 4: Calculate the weight uusing Eq. (9), then update the velocity and position of the particles according to 

Eqs (8)–(9).
Step 5: Stop the algorithm if the termination criterion is satisfied and the best LSSVM model is produced. 

Otherwise, return to Step 2.
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