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RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-
beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen
species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell
survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons
depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In
this review we highlight these aspects of RAGE signaling regulation in neuronal cells.

1. Introduction

The receptor for advanced glycation end-products (RAGE)
is a multiligand receptor able to bind not only the advanced
glycation end-products (AGEs) but also amphoterin, calgran-
ulins, and amyloid-beta peptides (Af) [1]. It is normally
expressed at low levels in many adult tissues but its acti-
vation induces a positive feedback favoring its expression
and enhancing cell responses [2]. Through the imbalance
of redox state, RAGE activation is involved in the onset
and progression of proinflammatory or proapoptotic cell
responses [3]. However, more recently the role of RAGE in
physiological processes such as cell differentiation has been
demonstrated [4]. In this review we focused our attention on
the role of RAGE and the associated reactive oxygen species
(ROS) production in neuronal differentiation or death.

2. RAGE: Structure and Functions

RAGE is a member of the immunoglobulin superfamily [5-
7]. In humans RAGE gene is localized on chromosome 6,
near the major histocompatibility complex III. The gene
encodes for a ~55kDa protein of 404 amino acids [8],

the full-length RAGE (fl-RAGE), composed of three struc-
tural regions: an extracellular region comprising a V-type
domain and two C-types domains, a short transmembrane
region, and a cytoplasmic tail [5-7]. The V-type and CI-
type domains are the binding sites for the ligands while
the 40-43 amino acid cytoplasmic tail is critical for the
intracellular signal transduction [2]. In addition, truncated
RAGE isoforms have been described. The N-truncated RAGE
variant is lacking the N-terminal V-type domain and is
localized on the membrane. On the contrary, other vari-
ants lacking C-terminal domain but containing all of the
immunoglobulin domains are soluble forms of RAGE and
secreted extracellularly. Among these soluble RAGE variants,
the endogenous secretory RAGE (esRAGE) results from
an alternative splicing of RAGE mRNA [9-11], while the
cleaved RAGE (cRAGE) derives from fl-RAGE proteolytic
cleavage by the metalloproteinase ADAMIO and MMP9 [12,
13] (Figure 1). Soluble forms of RAGE are known to prevent
RAGE binding to ligands, acting as a decoy [2].

RAGE expression is dependent on cell type and devel-
opmental stage. In general, RAGE is constitutively expressed
during embryonic development and downregulated in adult
life [14, 15]. Indeed, except for skin and lung where RAGE is
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FIGURE 1: Schematic representation of full-length RAGE and its variants. l-RAGE is composed of a V-type domain, two C-type domains, a
transmembrane domain, and an intracellular tail. The N-truncated form is lacking the N-terminal V-type domain. The soluble form of RAGE
is lacking the C-terminal domain but containing all of the immunoglobulin domains. Soluble RAGE may derive from alternative splicing of
RAGE mRNA (endogenous secretory esSRAGE) or from fl-RAGE proteolytic cleavage from the cell surface (cleaved cRAGE) [13].

highly expressed throughout life, in physiological conditions
RAGE is expressed at low levels in a wide range of adult
cells such as endothelial cells, cardiomyocytes, neutrophils,
monocytes/macrophages, lymphocytes, dendritic cells [15,
16], and, in the adult central nervous system (CNS), glia and
neurons [16-19]. However, it has been well shown that RAGE
is upregulated in presence of its ligands.

2.1. RAGE Ligands. As explained by its name, RAGE has
been firstly identified in consequence to its ability to bind
to advanced glycation end-products (AGEs) [5-7]. AGEs
are a heterogeneous group of compounds, characteristic of
aging process and diabetes, which are formed in prooxidant
environments, in a time-dependent way, through the nonen-
zymatic reaction between reducing sugars and free amino
residues of proteins [20-22]. The contribution of oxidation
is so important that all the process can be referred to as
glycoxidative reaction [23]. The glycoxidative damage is a
typical hallmark of diabetic sequelae such as nefropathy,
neuropathy, or micro- and macrovasculopathies in which the
high concentration of blood sugars obviously favors glycative
reactions [24]. However, glycative damage plays a key role
also in end-stage renal disease associated with uremia and
hemodialysis and in differentage-related pathologies, espe-
cially for the crucial contribution of chronic oxidative damage
[25-28]. Later on, several ligands have been found to be able
to interact with RAGE, highlighting its multiligand nature
[29, 30]. Indeed, HMGBI1 (amphoterin), S100/calgranulins,
and amyloid-$ peptides have been identified as ligands of
RAGE as well [31].

HMGB], a highly conserved ubiquitous protein normally
expressed in the nucleus is released by necrotic cells and is
known to act as a signal of cell damage [32-34]. However, it
has been demonstrated that HMGBI1 is also secreted by living
cells in the central nervous system where it is involved in
a number of neuronal functions such as differentiation, cell
survival, and neurite outgrowth [14, 17, 35, 36].

S100/calgranulins are a family of calcium-binding poly-
peptides involved in the regulation of protein phosphoryla-
tion, cell cycle, and enzyme activity that accumulate extracel-
lularly in sites of chronic inflammation and act as a proin-
flammatory stimulus [37, 38].

A peptides derive from amyloid precursor protein
(APP) processing and accumulate in Alzheimer’s disease,
forming the amyloid plaques [39].

Moreover, surface molecules on bacteria, prions, and
leukocytes have been demonstrated to be able to interact with
RAGE in immune response and chronic inflammation [40-
42].

Therefore, the accumulation of all the mentioned ligands
leads to the activation of RAGE which not only is involved
in the pathogenesis and complications of many aging-related
diseases such as diabetes, osteoarthritis, cardiovascular, and
Alzheimer’s diseases, but also regulates several cellular pro-
cesses of primary importance such as inflammation, apop-
tosis, autophagy, and proliferation, playing a crucial role in
tissue homeostasis and regeneration [2, 3, 16, 43, 44].

2.2. RAGE Signaling. RAGE interaction with its ligands
induces different pathways making the RAGE-mediated
cellular signaling extremely complex. The activation of a
wide array of signaling pathways has been demonstrated:
ERK1/2 (p44/p42), p38 and SAPK/JNK MAP kinases, rho-
GTPases, phosphoinositol-3-kinase, JAK/STAT, and different
PKC isoforms have been shown to play a role in RAGE-
mediated cellular responses [2, 45-47]. RAGE-dependent
signaling pathway activation directly induces ROS produc-
tion mainly through NADPH oxidase (NOX) activation, as
detailed below. Moreover, it is important to underline that
RAGE signaling leads to the activation of the transcription
factor NF-«B that in turn induces RAGE expression, making
a positive loop that enhances cell response [2]. However,
other transcription factors such as SP-1, AP-2, and NF-IL6
have been shown to regulate RAGE expression [2].
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2.2.1. RAGE and Oxidative Stress. It is well known that ROS
can modulate signal transduction pathways until they are
balanced by adequate antioxidant responses but are able to
severely damage cells and tissues when redox balance is lost
and oxidative stress is induced. In vitro studies with cultured
capillary endothelial cells and in vivo infusion studies have
shown that AGE interaction with RAGE leads to oxidative
stress, revealed by the appearance of malondialdehyde in the
vessel wall and thiobarbituric acid-reactive substances in the
tissue [48] and this has been well characterized as one of
the crucial mechanism of damage in endothelial cells during
diabetes [49].

It has been shown that AGE-RAGE-derived ROS gener-
ation is due, at least in part, to the activation of NOX that
is able to generate anion superoxide as the main product of
its reaction [50, 51]. NOX is a multimeric complex, identified
in phagocytes where ROS overproduction leads to bacteria
killing [52]. So far, different isoenzymes of NOX have been
identified in nonphagocytic cells, active in the generation of
ROS for signaling purpose [53, 54] and in neurons NOXI and
NOX2 have been identified [55, 56]. NOX activation leads
to NF-xB-mediated iNOS expression favoring the generation
of highly toxic peroxynitrite, as shown in vascular smooth
muscle cells (VSMC) [34, 57, 58]. However, the controlled
ROS production derived from NOX is able to modulate
signaling molecules such as p21 contributing to the activation
of NF-xB in rat pulmonary artery smooth muscle cells
exposed to AGEs [59]. These findings highlight a central role
of NOX in the molecular mechanisms involved in RAGE-
mediated cell responses.

In addition, the mitochondrial respiratory chain is impli-
cated in ROS generation induced by RAGE activation, as
shown with regard to VCAM-1 expression in endothelial cells
treated with AGEs [60].

3. RAGE and Neuronal Differentiation

RAGE expression in neurons was observed for the first time
in adult bovine nervous system mainly in motor and corti-
cal areas [15]. Its identification in normal, nonpathological
tissues led the authors to hypothesize a physiological, even
though not clear, role played by RAGE. Later on, several
studies demonstrated that HMGBI and S100B, identified as
RAGE ligands in the nervous system, are centrally involved
in neuronal differentiation and the implication of RAGE in
embryonic and adult neuronal differentiation, in peripheral
nerve regeneration, and in neurite outgrowth/elongation has
been demonstrated [14, 17, 35, 36, 61, 62].

In particular, experimental findings show a functional
role of the HMGBI-RAGE-NF-«B axis in the modulation of
adult neurogenesis. Indeed, RAGE has been found expressed
in vivo in the neural stem/progenitor cells (NS/PCs) in
the neurogenic Subventricular Zone region of the adult
mouse brain where it is coexpressed with Sox2 [63, 64].
However, RAGE expression in mature Tbrl positive neurons
has not been demonstrated, suggesting that RAGE is primar-
ily involved in the early events of adults neurogenesis. In
addition, it has been clearly shown that HMGB1 released from

reactive astrocytes promotes NS/PCs proliferation through
the activation of RAGE and the phosphorylation of JNK [65].
Other studies confirm the crucial importance of RAGE in
mediating brain repair and nerve regeneration favoring the
crosstalk with inflammatory pathways, as showed by using
transgenic mice [61] or in neuronal regeneration induced by
S100B [66].

Studies in adult sensory neurons exposed to HMGBI,
S100B, or human glycated albumin (HGA) demonstrate that
RAGE signaling mediates neurotrophin-dependent neurite
outgrowth through the activation of JAK-STAT, ERK, and
NF-«xB pathways [67]. The RAGE-driven activation of NF-
«B in neuronal differentiation and neurite outgrowth has
been demonstrated also in Retinoic Acid- (RA-) induced P19
neuronal cell differentiation [68] and in the survival of N18
neuroblastoma and in C6 glioma cells [17]. Furthermore,
RAGE, HMGBI, and S100B progressively increase during
neuronal differentiation of teratocarcinoma-derived NT2/D1
cells: RAGE is expressed only in cells committed to a neuronal
phenotype and directly involved in cellular morphological
changes, and S100B seems to be the principal ligand [4].
However, other studies on teratocarcinoma cells and primary
neurons show that, although RAGE ectopic overexpression,
in absence of RA, is not sufficient to drive neuronal differ-
entiation, cell exposure to RA promotes neurite outgrowth
through the activation of RAGE and Racl/Cdc42 [68]. More-
over, the functional inactivation of RAGE in neuroblastoma
cells demonstrates its crucial role in the elongation of neurites
rather than in neurite outgrowth [69]. In agreement, our
recent study underlines that RA-induced neuroblastoma
differentiation promotes RAGE-dependent neurite elonga-
tion [70]. In particular, during cell differentiation, Af3; 4,
production is increased and, through the binding to RAGE,
enhances the expression of the amphoterin-induced gene and
open reading frame-1 (AMIGO-1) suggesting its involvement
in neurite elongation [70], as also reported by other authors
[71-74]. Importantly, we showed that monomeric but no
oligomeric A, ,, is responsible for this effect, in line with
data in the literature sustaining that monomeric A, 4, can
exert physiological functions while the toxic properties of the
peptide are due to its aggregation in oligomers or fibrils [75].
However, the involvement of the oligomeric form of Af, 4,
in neuronal differentiation cannot be ruled out, as shown on
hippocampal neuronal progenitors [64] which has been also
demonstrated to be dependent on S100B-RAGE interaction
[76].

In addition, RAGE activation is able to induce prosur-
vival signals in neurons. Indeed, HMGBI and the two S100
family proteins, SI00B and SI00AI, increase the expression
of the antiapoptotic protein Bcl-2, in a RAGE-dependent
way, favoring neuroblastoma cell survival [17, 29]. In a
similar way, other authors observed that, during RA-induced
neurodifferentiation, HMGBI-RAGE interaction is involved
in Bcl-2 production [69].

Furthermore, the HMGBI-RAGE interaction induces
phosphorylation and nuclear localization of cyclic AMP
response element-binding protein (CREB) in ERK1/2 depen-
dent manner, increasing the expression of chromogranins
[77] and regulating neuronal differentiation and survival [78].



In addition, several studies clearly show that, in the
differentiation of neuroblastoma cells, RA-treatment induces
a prooxidative status and modifies gene expression leading to
changes in redox environment. In particular, cell exposure to
RA increases NOX activity and the mitochondrial membrane
potential and, at the same time, induces SOD gene expression,
Nrf2 protein synthesis, NF-xB gene expression, and glycolytic
pathway upregulation [79-83]. The involvement of ROS in
neurite outgrowth and differentiation has been found also in
other cell types as primary neurons and pheochromocytoma
PCI2 cells [84, 85]. Our unpublished results have demon-
strated that neuroblastoma cells treated with monomeric
AP, _4, are able to activate NOX favoring neurite elongation
(Nitti et al., unpublished).

4. RAGE and Neuronal Damage

In addition to its positive effects in neurite outgrowth and
neuronal differentiation, RAGE activation can be involved
in neuronal damage due to the overproduction of toxic
ROS, cytokines and pro-inflammatory molecules [86]. The
accumulation of RAGE ligands promotes oxidative stress,
progressive neuronal dysfunctions and neurodegeneration.
Thus, RAGE-mediated effects are observed in diabetic neu-
ropathy [87] and in the pathogenesis of Alzheimer’s [88],
Parkinson’s [89], Huntington’s diseases [90] and amyotrophic
lateral sclerosis [91].

Indeed, AGE accumulation and their RAGE-dependent
toxic effects on neurons are considered to play a role
of primary importance in the pathogenetic mechanism of
the diabetic neuropathy and therapeutic approaches against
AGE-RAGE have also been proposed [92]. AGEs have been
found to accumulate in senile plaques and in neurofibrillary
tangles [93] and their ability to activate RAGE contributes
to trigger neuronal death during Alzheimer’s disease. More
recent studies, have shown that genetic deficiency of neuronal
RAGE protects against the synaptic injury induced by AGEs
in transgenic mice [94]. The direct binding of RAGE to A3,
mainly to its aggregated forms, is considered important in
mediating amyloid toxicity [95] and RAGE activation by
HMGBI has recently been considered to have a crucial role in
favoring neurodegeneration contributing to the development
of amyotrophic lateral sclerosis [86].

Three main signaling pathways, activated by RAGE in
neurodegeneration have been identified: (i) NOX-dependent
signaling, leading to ROS production, activating NF-«xB and
increasing cytokine and chemokine expression; (i) RAS-
dependent signaling, activating MAP kinases (JUN, ERK1/2
or p38) and modulating NF-«B; (iii) JAK/STAT signaling,
leading to the induction of interleukin expression. In all
cases, RAGE activation favors the generation of ROS from
mitochondria, induces protein aggregation and increases the
release of pro-inflammatory molecules [86]. It is important to
note that RAGE is also expressed on microglial cells, where it
plays a crucial role enhancing cytokine production, oxidative
stress and neuroinflammation [96-98].

In addition, it has been demonstrated that RAGE medi-
ates Af transport via endocytosis and transcytosis across
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the blood-brain barrier (BBB), promoting Af pathologic
accumulation in brain parenchyma [99, 100]. Interestingly,
RAGE can act as a carrier for A3 also on neuronal cell
surface: RAGE-dependent p38 MAPK activation promotes
the internalization of the whole A-RAGE complex into the
cytosolic compartment, leading to mitochondrial dysfunc-
tions, oxidative stress, and neuronal damage [101].
Moreover, RAGE activation can induce neuronal loss
triggering the apoptotic process and, in some cases, inducing
ER-stress, or favoring autophagy. Indeed, it has been demon-
strated that HMGBI-RAGE interaction induces neuronal
apoptosis in mixed neuron-glia cultures via p38 MAPK and
ERK signaling activation [102]. Similarly, RAGE-dependent
apoptosis has been described also in neuroblastoma cells
exposed to S100B or AGEs [17,103]. Moreover, S100B produc-
tion and subsequent RAGE expression can lead to neuronal
apoptosis mediated by ER-stress in infantile neuronal ceroid
lipofuscinosis (INCL) and palmitoyl-protein thioesterase-
1- (PPT1-) KO mice [104-106]. Furthermore, AB-RAGE
interaction can increase intracellular Ca®', that, activat-
ing CaMKKB-AMPK, leads to autophagosome formation
in neuroblastoma cells, hypothesizing the involvement of
autophagy in Af3-dependent neurodegeneration [107].

5. Conclusions

In this review we have shown the double nature of RAGE
in neuronal cells: on the one hand, it is able to increase
cell survival and favor neuronal differentiation; on the other
hand, its activation induces neuronal death. These con-
tradictory effects seem not to be related to the ligand of
RAGE, as we provided evidence that the different ligands
are able to induce both kinds of cell response but probably
depend on the intensity and duration of RAGE activation and,
crucially, on specific features of RAGE-bearing cells. Indeed,
it has clearly shown that low-level of RAGE activation,
induced by low concentration of ligands, has prosurviving
differentiating effects, while, in the presence of high amounts
of ligands, RAGE induces neuronal death [17]. Interestingly,
it has been proved that neurons can be preconditioned by
low-level RAGE stimulation increasing their resistance to
the toxic effects of high concentrations of RAGE ligands.
Indeed, ROS derived by RAGE activation seem to play a
crucial role due to their ability to activate prosurviving NF-
kB-dependent pathways when they are generated in low
amounts [108, 109]. However, in order to balance ROS
production and counteract oxidative stress, the production
of molecules with antioxidant and detoxifying activities,
such as glutathione or heme oxygenase-1, becomes a key
point in neuronal response to RAGE activation. Therefore,
when RAGE-expressing cells are able to induce a balanced
antioxidant response (e.g., in undifferentiated cells) ROS
generation can be kept at low levels acting as molecular
mediators of cell growth and differentiation. On the contrary,
when cells are unable to properly adapt to ROS generation
(e.g., in fully differentiated cells or in aging neurons), RAGE
activation induces oxidative stress leading to neuronal death
(Figure 2). Our previous studies demonstrated that neurob-
lastoma cells, basically resistant to AGE exposure, become
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FIGURE 2: Schematic representation of RAGE signaling in neurons. Differences between prodifferentiating pathways and death signals are

highlighted.

sensitive to AGEs only after cell differentiation [110] and
also fully differentiated N'T2 neurons, unable to react to
RAGE-dependent ROS generation, are sensitive to glycated
serum [45]. It is conceivable that the transcription factor
Nrf2, master regulator of antioxidant and adaptive response,
plays a role in the neuron response (differentiation or death)
after RAGE activation. Indeed, it has recently shown that
Nrf2-dependent responses are necessary to complete the
differentiation program, whilst in terminally differentiated
neurons the impairment of Nrf2 signaling is involved in the
enhancement of neuronal sensitivity to oxidative stress [111].
This becomes particularly important in aging which is known
to further impair the function of Nrf2 [112] and seems to
be important in neuronal response to RAGE activation. It
has been recently clearly demonstrated that pharmacological
approaches able to inhibit RAGE activation and to stimulate
Nrf2 activity, reducing oxidative stress, improve learning and
memory in AD mice [113]. These findings underline that
the ability to adapt to ROS generation is a crucial point in
defining neuronal response to RAGE activation.
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