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Fusion genes are potent driver mutations in cancer. In this study, we delineate the fusion gene

landscape in a consecutive series of 195 paediatric B-cell precursor acute lymphoblastic

leukaemia (BCP ALL). Using RNA sequencing, we find in-frame fusion genes in 127 (65%)

cases, including 27 novel fusions. We describe a subtype characterized by recurrent

IGH-DUX4 or ERG-DUX4 fusions, representing 4% of cases, leading to overexpression

of DUX4 and frequently co-occurring with intragenic ERG deletions. Furthermore, we identify

a subtype characterized by an ETV6-RUNX1-like gene-expression profile and coexisting

ETV6 and IKZF1 alterations. Thus, this study provides a detailed overview of fusion genes in

paediatric BCP ALL and adds new pathogenetic insights, which may improve risk stratification

and provide therapeutic options for this disease.
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P
aediatric B-cell precursor acute lymphoblastic leukaemia
(BCP ALL), the most common childhood malignancy, is
stratified into prognostically relevant genetic subgroups

based on the presence of certain gene fusions and aneuploidies1.
However, 25% of cases do not have any characteristic genetic
aberrations at diagnosis, and the underlying driver events are
unknown. For these cases, here denoted as ‘B-other’, the
identification of pathogenetic changes will not only increase
our understanding of the leukemogenic process, but may also
be important in a clinical context, because such alterations can be
used for improved risk classification and for targeted treatment.
Recent genome-wide studies have provided critical pathogenetic
insights into paediatric BCP ALL, including the identification of a
dismal prognosis for cases with IKZF1 deletions2–5 and for cases
with a ‘Ph-like’4–8 gene-expression signature similar to that of
Philadelphia (Ph)-positive ALL. In addition, the mutational
landscapes of BCP ALL subtypes defined by ETV6-RUNX1,
TCF3-PBX1, TCF3-HLF, high hyperdiploidy (51–67 chromo-
somes), hypodiploidy (o45 chromosomes) or MLL (also known
as KMT2A) rearrangements have been delineated using
high-resolution sequencing techniques9–13. These studies have
almost exclusively been performed at the DNA level and no
large-scale characterization of the gene-fusion landscape in
paediatric BCP ALL has been reported to date. To gain a better
understanding of the gene-fusion landscape of BCP ALL, we
performed RNA sequencing (RNA-seq) in a population-based
series of 195 paediatric (o18 years of age) BCP ALL cases.
We report that gene fusions are present in 65% of BCP ALL,
and identify several new fusions and two novel subtypes; one
characterized by recurrent IGH-DUX4 or ERG-DUX4 fusions and
one characterized by an ETV6-RUNX1-like gene-expression
profile, and coexisting ETV6 and IKZF1 alterations.

Results
Identified subtypes enable classification of 98% of cases. All 195
cases subjected to RNA-seq had previously been analysed
by G-banding, fluorescent in situ hybridization (FISH) and
molecular analyses for the detection of established genetic
BCP ALL alterations as part of routine clinical diagnostics
(Supplementary Fig. 1 and Supplementary Data 1). Using
RNA-seq, we identified an in-frame fusion gene in 127/195 (65%)
BCP ALL cases and out-of-frame fusions in 20/195 (10%) cases
(Fig. 1 and Supplementary Data 2–4). Notably, of the 68 cases
lacking an in-frame fusion gene, the majority (64/68, 94%) were
high-hyperdiploid (n¼ 56), hypodiploid (n¼ 2), Ph-like (n¼ 3),
harboured a dic(9;20) (n¼ 1) or belonged to novel subtypes
further described below (n¼ 2) (Fig. 1e and Supplementary
Data 3). One subgroup, comprising 16% of B-other cases
(4% of the entire BCP ALL cohort), harboured rearrangements
of the double homeobox 4 (DUX4) gene and overlapped with
a previously described group of patients with a homogenous
gene-expression profile and frequent ERG deletions6,14,15.
In addition, a new subtype, harbouring co-existing rearrangements
of ETV6 and IKZF1 and associated with ETV6-RUNX1-like
gene-expression pattern (3% of the cohort; 14% of B-other cases),
was identified. Taken altogether, 98% of the BCP ALL cases
could be classified into distinct genetic subtypes with a known
underlying driver mutation or, less commonly, with a rare
in-frame gene fusion (Figs 1f, 2, Supplementary Data 3),
providing new insights and pathogenetic markers in BCP ALL.

DUX4-rearranged cases constitute a distinct BCP ALL subtype.
Recurrent DUX4 rearrangements were identified in 8/195 (4%)
BCP ALL cases and were confined to B-other cases (8/50
cases, 16%; Figs 1a–c and 2, Supplementary Data 3). The

rearrangements were either a fusion between IGH and DUX4
(7/8 cases) or between ERG and DUX4 (1 case). To confirm this
and other findings within the B-other group, we performed
RNA-seq of an independent validation cohort of 49 paediatric
B-other cases that were negative for BCR-ABL1, ETV6-RUNX1,
TCF3-PBX1, MLL rearrangements and high hyperdiploidy
(Supplementary Data 5). This analysis revealed an additional 20
cases with DUX4 rearrangements, resulting in a total of 26 cases
with IGH-DUX4 and 2 with ERG-DUX4 across the 2 cohorts.

DUX4 encodes a homeobox-containing protein and is located
within a subtelomeric D4Z4 repeat region on 4q and 10q. It is
present in 11–100 copies on each allele, and is epigenetically
silenced in somatic tissues. Loss of epigenetic silencing
through shortening of the D4Z4 repeats leads to the degradation
of muscle cells, and causes facioscapulohumeral muscular
dystrophy16,17.

To confirm the DUX4 rearrangements at the genomic level, we
performed mate-pair whole-genome sequencing (MP-WGS) in all
eight cases in the discovery cohort, enabling powerful mapping
of structural genomic rearrangements (Supplementary Data 6).
These analyses confirmed the DUX4 rearrangements at the DNA
level in all cases, and revealed that the IGH-DUX4 fusions
resulted from insertions of a partial copy of DUX4 into the IGH
locus, including between 90–1,200 bp upstream of DUX4 and
between 939 and 1,272 bp of coding sequence from DUX4 (Fig. 3
and Supplementary Fig. 2). Similarly, ERG-DUX4 in case 75 was
the result of an insertion of a partial copy of DUX4 into intron 3
of ERG, containing 936 bp of coding sequence of DUX4 (Fig. 3j).
Neither IGH-DUX4 nor ERG-DUX4 would give rise to a chimeric
protein; instead, the rearrangements and expression pattern
suggest that the relocation of DUX4 induces its expression from
regulatory regions of the partner gene (Fig. 3 and Supplementary
Fig. 3). The full-length DUX4 protein consists of 424 amino acids,
but 7 of the 8 genomically characterized cases expressed truncated
DUX4 transcripts encoding between 312 and 420 amino acids
(Fig. 3). Only case 47 expressed the full coding length of DUX4.
All variants, however, retained both homeobox domains of
DUX4, thus preserving its DNA-binding capacity.

All DUX4-rearranged cases displayed a distinct overexpression
of DUX4 as determined by RNA-seq; in contrast, expression
of this gene was significantly lower or absent in the other
investigated 216 BCP ALL cases across the discovery and
validation cohorts (Supplementary Fig. 3). Notably, all cases with
DUX4 rearrangements displayed a global gene-expression pattern
matching that of a subgroup of BCP ALL cases previously
reported to be associated with ERG deletions in 38–55% of cases
(Supplementary Fig. 4)6. Conversely, all cases with this gene-
expression profile had DUX4 rearrangements and overexpression
of DUX4, indicating that the DUX4 rearrangement is the founder
event for this group (Supplementary Fig. 4). We determined
the frequency of ERG deletions in DUX4-rearranged cases by
MP-WGS in the discovery cohort and indirectly by ascertaining
truncated transcripts by RT–PCR14 in the validation cohort. This
revealed ERG deletions in 5/8 (63%) cases in the discovery cohort
and in 10/20 (50%) cases in the validation cohort (Supplementary
Fig. 5), supporting that the DUX4-rearranged subtype reported
here is identical to the previously described subtype with a
distinct gene-expression profile and frequent ERG deletions6.
This group has consistently been associated with a favourable
prognosis, both when defined by the distinct gene-expression
profile6, and when defined by the characteristic ERG
deletions14,15. In the discovery cohort, we observed no relapses
among the 8 DUX4-rearranged cases, while 4 of 20 cases (20%)
experienced relapse in the validation cohort. With the
identification of DUX4 rearrangement as a new marker in BCP
ALL, it will be interesting to ascertain its prognostic impact in
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larger, uniformly treated, cohorts. To characterize further the
mutational landscape of DUX4-rearranged BCP ALL, whole-
exome sequencing (WES) was performed in five DUX4-
rearranged cases with matched constitutional samples available
(Supplementary Data 6). These were found to harbour between 4
and 10 non-silent exome mutations each (Supplementary Data 7).

The only recurrently mutated gene was the transcription factor
ZEB2, with mutations in two cases (#75 and #174).

A borderline significance for cases with DUX4 rearrangements
being older than cases lacking such fusions (Mann–Whitney’s
two-sided test, P¼ 0.051; median age 6.5 versus 4 years) was seen
in the discovery cohort. The median age at diagnosis of patients
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with DUX4-rearranged ALL in the combined cohorts was 8.5
years (range 2–15 years). Considering the pronounced age peak at
3–5 years for childhood BCP ALL in general18, this indicates that
DUX4-rearrangments are associated with older age, although
this needs to be confirmed in larger cohorts. Interestingly,
an association with older age has previously been described for
cases with ERG deletions14,15.

The complexity of the genomic region where DUX4 is located
is most likely the reason that DUX4 fusions have not been
previously discovered in BCP ALL. Our standard RNA-seq
bioinformatics pipeline could only detect the rearrangement in 7
of 28 cases, whereas a guided analysis that identified RNA-seq
reads that linked any region within 2 kb of DUX4 to the reads
within the IGH locus identified the IGH-DUX4 in an additional
19 cases (Supplementary Data 8). In the remaining two cases with
DUX4 overexpression, a fusion between ERG and DUX4 was
discovered by surveying the RNA-seq reads for regions similarly
linked to the region surrounding DUX4. The aberrations were
also not expected to be detectable on the chromosomal level
by either G-banding or FISH, due to the small sizes of the
insertions. In line with this, G-banding results from the eight
DUX4-rearranged cases in the discovery cohort showed normal
karyotypes in four cases and unspecific changes in two cases; in
two cases, G-banding analyses had failed (Supplementary Data 1).

Taken altogether, RNA-seq followed by guided searches for
DUX4 chimeric transcripts is a reliable way to identify DUX4
rearrangements, although both WES and MP-WGS allows
the detection of the rearrangement at the genomic level
(Supplementary Fig. 2).

ETV6-RUNX1-like gene expression in cases lacking the fusion.
Gene-expression profiling based on the RNA-seq data showed
that 6/50 (12%) B-other cases in the discovery cohort clustered
with the ETV6-RUNX1-positive cases, despite lacking molecular
evidence of this fusion by FISH, RT–PCR and RNA-seq
(Fig. 4a–c, and Supplementary Table 1). The gene-expression
similarities were further supported by gene set enrichment
analysis (GSEA)19 (Supplementary Figs 6–8). These six cases were
thus denoted ‘ETV6-RUNX1-like ALL’. Interestingly, RNA-seq
together with single-nucleotide polymorphism (SNP) array
profiling revealed that five of the six ETV6-RUNX1-like cases
harboured co-existing ETV6 and IKZF1 aberrations (Figs 2, 5;
Supplementary Data 3 and Supplementary Table 1).

Specifically, case 64 contained an in-frame fusion between
ETV6 (at 12p13) and PMEL (at 12q13) together with an
out-of-frame fusion between IKZF1 (at 7p12) and CDK2
(at 12q13) that lacked functional domains from IKZF1 (Fig. 5a
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Figure 2 | Genetic alterations present in 195 BCP ALL cases in the discovery cohort. The cases are arranged according to genetic subtypes defined

by gene-expression profile and gene fusions detected by RNA-seq, and were further characterized by SNP array, WGS, WES and MP-WGS. Genes

recurrently altered in BCP ALL are arranged according to functional categories (kinase signalling, haematopoietic differentiation, histone modifiers and

others). Events comprise induction failure and relapse.

Figure 1 | Overview of the gene fusions present in 195 paediatric BCP ALL cases in the discovery cohort. (a) In-frame gene fusions (green) and

out-of-frame gene fusions (orange) are illustrated using Circos59. Each ribbon has one end attached to the circle, indicating the 50-partner gene of the

fusion. The width of the ribbon is proportional to the number of detected fusions. Genes are arranged according to their genomic position (from

chromosome 1–22 followed by X and Y) and chromosomes are marked in different colours. The gene symbol is denoted for genes involved in more than

two unique fusions or in recurrent fusions. (b) In-frame gene fusions and out-of-frame gene fusions present in 50 B-other cases. The gene symbol for genes

involved in more than two unique fusions or in recurrent fusions is indicated in bold. (c) The frequency of in-frame gene fusions by genetic subtype

(indicated in the right column with the number of affected cases in parenthesis). Novel gene fusions are indicated in red (n¼ 27, reciprocal gene-fusion

pairs counted as a single fusion) and previously described fusions are indicated in black (n¼ 22). (d) The frequency of out-of-frame gene fusions by genetic

subtype (indicated in the right column with the number of affected cases in parenthesis). (e) Total number of gene fusions per case by genetic subtype

(including both in-frame and out-of-frame fusions; reciprocal gene-fusion pairs counted as a single fusion). (f) Distribution of 195 BCP ALL cases within

genetic subtypes defined by gene-expression profile and gene fusions detected by RNA-seq.
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and Supplementary Table 1). Case 68 contained an in-frame
fusion between ETV6 and BORCS5 (12p13) caused by a small
deletion in 12p13, together with a deletion spanning the first
exons of IKZF1 (Fig. 5b and Supplementary Table 1). Case 85
contained an intragenic ETV6 deletion and a t(3;7)(p25;p12)
giving rise to in-frame reciprocal SETD5-IKZF1 and
IKZF1-SETD5 fusions (Fig. 5c and Supplementary Table 1). Case
111 had interstitial deletions on both 7p and 12p, resulting in
whole-gene deletions of IKZF1 and ETV6 (Fig. 5d and
Supplementary Table 1). Case 176 carried a deletion of the entire
7p, including IKZF1, together with an in-frame fusion between
ETV6 and NID1 (at 1q42) and an interstitial deletion on 12p
removing the second ETV6 allele (Fig. 5e and Supplementary
Table 1). Finally, one case (#105) had no lesions affecting ETV6
or IKZF1 as detected by RNA-seq (analysis by SNP array was
precluded due to lack of DNA). Thus, in total, genetic lesions
affecting both ETV6 and IKZF1 were identified in all five cases
where both RNA-seq and SNP array profiling could be performed
(Fig. 5 and Supplementary Table 1). Combined lesions of ETV6
and IKZF1 were otherwise exceedingly rare outside of this group
(3/152 (2%) cases with available SNP array data; Po0.001,
Fisher’s exact test; Fig. 2). To characterize further ETV6-RUNX1-
like ALL, we performed WES on four ETV6-RUNX1-like cases
with available matched constitutional samples (cases 68, 85, 111

and 176; Supplementary Data 6 and 7). These cases carried
between 3 and 29 non-silent exome mutations (with an allele
frequency above 10%), but no gene was recurrently mutated.

RNA-seq of the independent validation cohort identified four
additional cases with ETV6-RUNX1-like gene-expression profiles.
Three of these harboured out-of-frame ETV6 fusions (with
CREBBP at 16p13, BCL2L14 at 12p13 and MSH6 at 2p16); in the
fourth case, no fusion was detected (Supplementary Data 5).
Unfortunately, no DNA was available for SNP array analyses,
precluding a complete evaluation of deletions affecting ETV6 or
IKZF1 in these cases.

We conclude that alterations of ETV6, either by the generation
of alternative gene fusions, or, more rarely, ETV6 deletions,
in combination with IKZF1 lesions, represent an alternative
mechanism to elicit the same transcriptional perturbation as seen
in classical ETV6-RUNX1 fusion-positive cases. Interestingly,
both IKZF1 and RUNX1 encode transcription factors important
for B-cell maturation20,21, and it is tempting to speculate that loss
of IKZF1 may substitute for the altered function of RUNX1 in the
ETV6-RUNX1 fusion protein. In line with this, we note that
IKZF1 deletions are rare in the ETV6-RUNX1-positive cases
(B3%) in this and other cohorts22,23.

While the small number of ETV6-RUNX1-like cases prohibited
meaningful survival analyses, only two relapses were recorded
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among the ten ETV6-RUNX1-like cases in the combined
discovery and validation cohort, indicating that the frequent
IKZF1 aberrations did not confer a dismal prognosis, as otherwise
described for IKZF1 deletions in BCP ALL7,8. However, further
studies are warranted to evaluate the clinical impact of IKZF1
deletions in ETV6-RUNX1-like BCP ALL.

In-frame gene fusions are present in most B-other cases. An
in-frame fusion gene could be detected in 41/50 B-other cases
(82%) in the population-based discovery cohort (Supplementary

Data 3). The B-other cases could be subdivided into five non-
overlapping groups: those with Ph-like (n¼ 15; Supplementary
Fig. 9a) or ETV6-RUNX1-like (n¼ 6) gene-expression profiles,
those with DUX4 rearrangements (n¼ 8), and remaining cases
with (n¼ 17) or without (n¼ 4) in-frame gene fusions (‘B-other,
with fusion’ and ‘B-other, without fusion’, respectively, Fig. 2).

In agreement with previous descriptions of Ph-like BCP ALL,
most cases (11/15, 73%) harboured gene fusions that deregulate
the cytokine receptor CRLF2 (P2RY8-CRLF2, n¼ 6; and IGH-
CRLF2, n¼ 3) or activate therapeutically targetable kinases
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(ZC3HAV1-ABL2 in #62 and PAX5-JAK2 in #45) (refs 7,8;
Supplementary Data 3). In addition, RNA-seq data revealed
mutations in the JAK-STAT pathway genes in 2/15 cases, 13%
(Fig. 2 and Supplementary Data 3)7,8.

Among the 17 cases in the ‘B-other, with fusion’ group,
11 cases (65%) harboured in-frame gene fusions previously
described in BCP ALL24: P2RY8-CRLF2 (n¼ 4), PAX5-ZNF521
(n¼ 2), EP300-ZNF384 (ref. 25) (n¼ 1), IGH-CEBPE (n¼ 1),
IGH-CRLF2 (n¼ 1), PAX5-ESRRB (n¼ 1) and TAF15-ZNF384
(n¼ 1); in addition, a NONO-TFE3 fusion gene, until now only
reported in renal cell carcinoma26,27, was found in a single case
(#172; Fig. 1c and Supplementary Data 3). These fusions are
likely genetic driver events in BCP ALL leukemogenesis. The
importance of the novel in-frame gene fusions in the remaining
five cases remains to be determined, but it is noteworthy
that three had fusions (DENND1B-ZCCHC7, MEF2D-FOXJ2,
IKZF1-NUTM1) involving genes recurrently rearranged in BCP
ALL, namely ZCCHC7, MEF2D, IKZF1 and NUTM1 (ref. 24).

A high frequency of B-other cases from the validation cohort
(36/49, 73%) also expressed an in-frame gene fusion. Using the
same criteria as in the discovery cohort, the B-other cases in the
validation cohort could be subdivided into DUX4-rearranged
BCP ALL (n¼ 20), ‘B-other, with fusion’ (n¼ 14), ‘B-other,
without fusion’ (n¼ 7), Ph-like (n¼ 4; Supplementary Fig. 9b) or
ETV6-RUNX1-like (n¼ 4; Supplementary Fig. 10). Within the
‘B-other, with fusion’ group, ten cases harboured in-frame fusions
previously described in BCP ALL: EP300-ZNF384 (n¼ 3),
PAX5-FOXP1 (n¼ 2), P2RY8-CRLF2 (n¼ 2, one of these
cases also harboured PAX5-FOXP1), PAX5-DACH1 (n¼ 1),
PAX5-ETV6 (n¼ 1), TCF3-HLF (n¼ 1) and TCF3-ZNF384
(n¼ 1). Three of the remaining cases had a novel in-frame
MEF2D-HNRNPUL1 gene fusion and one case expressed a novel
MED12-HOXA9. Hence, the majority of cases in the ‘B-other,
with fusion’ group express recurrent gene fusions. Further studies
are required to establish if these can be further stratified into
biologically and clinically meaningful subtypes. However, we note
that cases with fusions affecting each of the genes ZNF384, and
MEF2D formed distinct but separate expression clusters by
unsupervised hierarchical clustering, thus outlining possible
subtypes characterized by similar gene fusions (Supplementary
Figs 4, 10).

Gene fusions in established genetic subgroups. Most of the
established genetic BCP ALL subgroups are based on recurrent
gene fusions such as BCR-ABL1, ETV6-RUNX1, TCF3-PBX1, and
MLL fusions. In the discovery cohort, the presence of these
fusions had been ascertained by routine diagnostic analyses. By
RNA-seq we could confirm these known gene fusions or their
reciprocal variants in 77/81 (95%) cases (Supplementary Fig. 11).
This implies that the RNA-seq analysis provided a relatively
complete overview of the entire fusion-gene landscape, including
also the novel identified fusions. The four instances of known
gene fusions that could not be confirmed by RNA-seq were
presumably caused by low expression of the fusion or rearran-
gements too complex for the analysis pipeline to elucidate.

High-hyperdiploid cases showed a notable lack of fusion genes,
with only 2/58 cases in the discovery cohort harbouring in-frame
fusion genes (3%, Po0.001, Fisher’s exact test; an additional three
cases carried out-of-frame fusions), in accordance with our recent
findings from WGS11 (Figs 1c,d and 2). It was also uncommon
for cases with BCR-ABL1 (n¼ 6), TCF3-PBX1 (n¼ 13) and MLL
fusions (n¼ 14) to have additional in-frame or out-of-frame gene
fusions, the only examples being the in-frame fusions IGH-CRLF2
(in case 79 with BCR-ABL1) and ZCCHC7-PAX5 (in case 102
with MLL-GAS7; Fig. 1c and Supplementary Data 3). In contrast,
among the ETV6-RUNX1-positive cases, 6/48 cases (13%)

harboured in-frame fusions besides ETV6-RUNX1 and its
reciprocal variant, and 11/48 cases (23%) had out-of-frame
fusions (Fig. 1c–e); the most commonly affected genes were ETV6
(n¼ 3) and RUNX1 (n¼ 10). Two of the ETV6 fusions (with
CDKN1B at 12p13 in #6 and PTPRO at 12p12 in #131;
Supplementary Data 9) were formed by deletions affecting the
ETV6 allele not taking part in in the ETV6-RUNX1 fusion.
All ten RUNX1 fusions had RUNX1 as the 5’-partner gene
and occurred in ETV6-RUNX1-positive cases lacking the
reciprocal RUNX1-ETV6 transcript (Supplementary Fig. 11),
suggesting that they arose together with the ETV6-RUNX1
fusion through a three-way translocation.

To characterize further the RUNX1 fusions at the genomic
level, 5/10 ETV6-RUNX1-positive cases containing additional
RUNX1 fusions were analysed by MP-WGS. These analyses
confirmed the RUNX1 fusions at the DNA level (Supplementary
Data 6, 9 and 10) and revealed that the genomic breakpoints
were in close proximity to the RUNX1 breakpoints in the
ETV6-RUNX1 fusion, consistent with the presence of complex
translocations. Such complex translocations have previously
been detected in the ETV6-RUNX1-positive cases by FISH and
targeted sequencing28,29. Only one RUNX1 fusion contained
an undisrupted active domain from the partner gene; thus, the
fusions typically resulted in disruption of the 3’-partner gene
(Supplementary Fig. 12).

Fusion-gene network analysis. To ascertain the pattern of gene
fusions in BCP ALL, we performed a fusion-gene network
analysis30 of the 58 unique in-frame gene fusions identified across
the discovery and validation cohorts (Supplementary Fig. 13a).
This analysis revealed that 15 genes (BCR, CRLF2, DUX4, ETV6,
IGH, IKZF1, JAK2, LDLRAD4, MEF2D, MLL, PAX5, RUNX1,
TCF3, ZCCHC7 and ZNF384) were recurrently involved in
chimeras (Supplementary Fig. 13a). A comparison with literature
data24 highlighted that the high frequencies of fusions involving
RUNX1, DUX4, IKZF1 and LDLRAD4 were novel findings
(Supplementary Fig. 13a,b). The RUNX1 fusions were typically
found in ETV6-RUNX1-positive cases, most likely arising through
complex translocations as described above, and the DUX4 fusions
were identified in the novel BCP ALL subgroup described in this
study.

IKZF1, encoding IKAROS, is known to be perturbed by
deletions (15% of BCP ALL cases) and occasionally sequence
mutations (2–6%; refs 5,31,32), but has previously never been
described to fuse with other genes in BCP ALL. In the discovery
cohort, the two in-frame fusions SETD5-IKZF1 (#85 with
ETV6-RUNX1-like gene expression) and IKZF1-NUTM1 (#151,
‘‘B-other, with fusion’’) retained functional domains from IKZF1
(Supplementary Fig. 12e,f). IKZF1-NUTM1 also contained
essentially the entire coding region of NUTM1, akin to other
NUTM1 fusions in midline carcinoma33 and in MLL-negative
infant ALL13. The two out-of-frame fusions (IKZF1-CDK2, #64;
and IKZF1-TRPV2, #9) contained no functional domains from
IKZF1 and, hence likely abolished the function of IKAROS. Thus,
IKZF1 fusions represent a novel mechanism for disrupting IKZF1
in BCP ALL.

Aberrations in LDLRAD4, encoding a negative regulator of
transforming growth factor-b signalling, have previously not been
described in leukaemia. We identified two in-frame fusions
involving this gene: LDLRAD4-PHACTR3 (#70 with Ph-like gene
expression) and RUNX1-LDLRAD4 (#187 with ETV6-RUNX1).
Both fusions retained the LDL-receptor class-A domain in the
N-terminal region of the LDLRAD4 protein, whereas the SMAD
interaction motif required for the regulation of transforming
growth factor-b signalling was only retained in RUNX1-
LDLRAD4 (Supplementary Fig. 12a,d).
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Intragenic splice variants and subtype classification. Somatic
intragenic deletions are frequent in BCP ALL and result in the
expression of truncated transcripts predicted to encode internally
deleted proteins34. To investigate if we could identify truncated
transcripts associated with the most common intragenic deletions
in BCP ALL (CDNK2A, PAX5, ETV6 and IKZF1)34, we developed
a novel relative splice junction quantification algorithm. This
algorithm identified five truncated transcript variants affecting
ETV6, PAX5 and IKZF1, with a total of 25 (13%) BCP ALL cases
in the discovery cohort harbouring at least one truncated
transcript (Supplementary Fig. 14). Focal deletions concordant
with the truncating transcripts were present in 15/20 cases (75%)
with available SNP array data. In five cases, the truncated
transcript occurred without evidence of a focal deletion,

indicating either the presence of subclonal deletions below the
detection level of the SNP array analysis or aberrant splicing
caused by other mutational mechanisms.

Our detailed RNA-seq data also allowed analyses of splicing
events occurring over the fusion breakpoints of the clinically
important gene fusions BCR-ABL1, ETV6-RUNX1, TCF3-PBX1
and MLL fusions, revealing a substantial heterogeneity in
exon usage around the fusion breakpoints (Fig. 6a–d and
Supplementary Figs 15–18); particularly for ETV6-RUNX1 where
the main variant joined exon 5 of ETV6 with exon 2 of RUNX1,
whereas alternative forms fused with exon 3 of RUNX1 or a
cryptic exon within intron 1 (Fig. 6b and Supplementary Fig. 16).
These were either observed together as splice variants or as single
forms in individual cases; the alternative variants did not affect
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the runt domain of RUNX1. An alternative breakpoint joining
exon 4 of ETV6 with exon 2 of RUNX1, as has previously been
described35, was identified in 2/48 (4%) ETV6-RUNX1-positive
cases (Supplementary Fig. 16).

Global gene-expression profiling by microarrays can discern
between the genetic subtypes of BCP ALL, although with less
than perfect accuracy36–39. We therefore constructed a classifier
utilizing both gene-fusion and gene-expression data from
RNA-seq. This classifier showed improved sensitivity (correctly
classifying 180/195 cases, 92%) compared with a classifier based
on the gene-expression data alone (correctly classifying 174/195
cases, 89%; Supplementary Fig. 19).

Mutational analysis. The mutational landscape of single-
nucleotide variants in a larger number of genes has not been
studied in an unselected series of BCP ALL. Because RNA-seq
allows for the identification of expressed mutant alleles, we
examined hotspot regions of 16 recurrently mutated genes in
BCP ALL (representing 70% of all genes described to be mutated
in more than 2 BCP ALL cases), ascertained in previous
studies9,11–13 or COSMIC40 (Supplementary Data 11). This
analysis revealed 56 mutations in 47 BCP ALLs, with genes in
the RTK-RAS signalling pathway being the most commonly
mutated: NRAS (23/195, 12%), FLT3 (7/195, 4%), PTPN11 (6/195,
3%) and KRAS (3/195, 2%; Supplementary Data 11). We also had
genomic mutation data from 61 of the cases from WES (n¼ 22),
WGS (n¼ 12), both WES and WGS (n¼ 1), or Sanger
sequencing (n¼ 26; refs 11,41). We observed good concordance
between hotspot mutations identified by RNA-seq and the
genomic data, although some mutations in KRAS (n¼ 5) and
FLT3 (n¼ 4) observed at the DNA level escaped detection at the
transcriptional level. The mutational spectra differed between
subtypes, with NRAS and KRAS mutations being enriched in
high-hyperdiploid cases42, and CRLF2, JAK2 and IL7R mutations
in Ph-like ALL cases7,8 (Fig. 2).

Discussion
Gene fusions are strong driver mutations in neoplasia, and have
provided fundamental insights into the disease mechanisms
involved in tumourigenesis. In addition, they are increasingly
used for diagnostic purposes, risk stratification and disease
follow-up, and several chimeric proteins encoded by gene fusions
serve as specific targets for treatment30.

We here describe the gene-fusion landscape of paediatric BCP
ALL, and show that the majority of cases (65%) express in-frame
gene fusions, including most B-other cases (82%) previously
described to lack specific genetic changes. The notable exception
was high-hyperdiploid cases where only 3% of cases harboured an
in-frame fusion gene. The low number of in-frame fusions in
this group, however, highlights that the background level of
gene-fusion generation in BCP ALL is low. Indeed, the median
number of fusion genes per case in this study was 1 for all major
subtypes (43 cases) apart from high-hyperdiploid cases, showing
that additional fusion genes are rarely needed for leukemogenesis.
In ETV6-RUNX1-positive cases, however, additional fusions of
unclear pathogenetic importance were present in 35% of cases.
These typically involved ETV6 or RUNX1. For the latter gene the
fusions were generated through three-way translocations also
creating the ETV6-RUNX1 fusion.

We demonstrate, for the first time, that 16% of B-other cases
(4% of BCP ALL) harboured rearrangements involving the DUX4
gene. The frequency of such rearrangements differed between the
discovery and validation cohorts; something that could possibly
be explained by the higher mean age of the latter (7.1 versus 6.1
years). However, the true incidence of DUX4 rearrangements in
childhood BCP ALL needs to be further assessed in larger patient

cohorts. The rearrangements resulted in fusions between IGH and
DUX4, or less commonly, ERG and DUX4, causing aberrant
DUX4 expression. DUX4 has previously only been reported
to be rearranged in round-cell sarcomas, forming a recurrent
CIC-DUX4 fusion gene. That fusion, however, only includes a
small C-terminal part of DUX4, not including the two homeobox
domains43, and is therefore likely to be functionally different
from the fusions described here. Notably, all cases with DUX4
rearrangements described herein displayed a gene-expression
signature matching that of a subgroup of BCP ALL reported to be
associated with frequent ERG deletions6. DUX4 encodes a
transcription factor normally expressed in germ cells that
regulates the expression of genes involved in germline and early
stem cell development17,44. Hence, it is tempting to speculate that
the aberrant expression of DUX4 in the rearranged cases cause
activation of transcriptional programmes that normally are
expressed during early stem cell development. In contrast to the
ERG deletions, DUX4 rearrangements were present in all cases
with the characteristic gene-expression pattern, implying that
DUX4 rearrangements constitute the founder event of this
subtype and that ERG deletions are secondary cooperating events.

Global gene-expression profiling is a powerful tool to identify
leukaemias with similar mutational backgrounds, as exemplified
by the Ph-like subtype: such cases were initially identified as
having gene-expression patterns similar to those of Ph-positive
BCP ALL cases4–6 and were only later identified as being
characterized by genetic alterations that activate kinase or
cytokine receptor signalling7,8. Within the B-other group we
identified a second novel subtype, consisting of cases with a gene-
expression profile similar to that of ETV6-RUNX1-positive cases
but lacking this fusion gene. Instead, they harboured lesions
affecting both ETV6 and IKZF1 in all cases with ascertainable
data. We termed this subtype ETV6-RUNX1-like ALL. In contrast
to cases with ETV6-RUNX1-like gene expression that have been
reported in literature, but where cryptic ETV6-RUNX1 were not
excluded45, we performed extensive genetic analyses to rule out a
cryptic ETV6-RUNX1 rearrangement. Thus, we propose that
combined ETV6 and IKZF1 lesions together may activate similar
transcriptional programmes as the ETV6-RUNX1 fusion protein.

The DUX4-rearranged and ETV6-RUNX1-like subtypes
together with the well-established subgroup of Ph-like BCP
ALL4–8 accounted for 59 and 71% of B-other cases in the
discovery and validation cohorts, respectively. Of the remaining
B-other cases in the two cohorts, 74% expressed rare previously
reported, or novel in-frame gene fusions, many of which
contained genes with recurrent alterations in BCP ALL24,40.
Again, these findings illustrate that paediatric BCP ALL, with the
exception of the high-hyperdiploid, near-haploid and low-
hypodiploid subgroups11,12, is characterized by the presence of
fusion genes. Because many gene fusions will be rare or even
private, our study reinforces that RNA-seq may be a powerful tool
for unbiased screening of fusion genes in a clinical setting with an
unmatched power to detect novel but targetable gene fusions in
BCP ALL8,46.

In conclusion, this study provides a detailed view of the fusion
gene landscape in paediatric BCP ALL, identifying several new
gene fusions as well as distinct subgroups of BCP ALL. Apart
from increasing our understanding of the pathogenesis of
paediatric BCP ALL, this may help improve risk stratification
and eventually increase the therapeutic options for this most
common form of childhood malignancy.

Methods
Patients. Between January 1992 and January 2013, 283 paediatric (o18 years)
BCP ALL cases were analysed as part of clinical routine diagnostics at the
Department of Clinical Genetics, University and Regional Laboratories Region
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Skåne, Lund, Sweden. Of these, RNA or material suitable for RNA extraction from
bone marrow (n¼ 171) or peripheral blood (n¼ 24) taken at diagnosis was
available from 195 (69%) cases, comprising the discovery cohort. The vast majority
was treated according to the Nordic Society of Paediatric Haematology and
Oncology (NOPHO) ALL 1992, 2000 or 2008 protocols47. There were no
significant differences in gender or age distribution between cases where RNA-seq
could or could not be performed; however, cases analysed by RNA-seq had higher
white blood cell counts (median 9.85� 109 l� 1, range 0.9–802� 109 l� 1

versus median 5.5� 109 l� 1, range 0.8–121� 109 l� 1; P¼ 0.003; two-sided
Mann–Whitney’s U-test). The validation cohort consisted of 49 paediatric BCP
ALL cases treated according to the Berlin–Frankfurt–Münster (BFM) 2000
protocol48. All cases in the validation cohort were tested for BCR-ABL1,
ETV6-RUNX1, TCF3-PBX1, MLL rearrangements, and high hyperdiploidy in
accordance with the treatment protocol, and were found negative for these
aberrations. Informed consent was obtained according to the Declaration of
Helsinki and the study was approved by the Ethics Committee of Lund University.

RNA sequencing. The cDNA sequencing libraries were prepared from poly-A
selected RNA using the Truseq RNA library preparation kit v2 (Illumina)
according to the manufacturer’s instructions, but with a modified RNA
fragmentation step lowering the incubation time at 94 �C from 8 min to 10 s to
allow for longer RNA fragments. The cDNA libraries were sequenced using a
HiScanSQ (Illumina) or NextSeq 500 (Illumina).

Gene-fusion detection. Gene fusions were detected by combining three methods.
Novel fusions were detected by Chimerascan49 (0.4.5) and TopHat-Fusion-post50

(2.0.7), followed by a custom filter strategy and validation by RT–PCR. Known
fusion transcripts of BCR-ABL1, ETV6-RUNX1, TCF3-PBX1 and MLL fusions were
detected by aligning all reads to a reference consisting of the known fusion
transcripts and normal transcript variants of the genes, and counting reads
uniquely aligned to the fusion transcripts. IGH-CRLF2 fusions were detected by
identifying cases that had 450 reads within a 65-kb region surrounding CRLF2
paired to a read within the IGH locus; these fusions were then validated using
FISH. The following filter strategy was used for selection of validation candidates
from Chimerascan and TopHat-Fusion-post results: all fusions reported by
Chimerascan to be supported by ten or more reads over the fusion junction or 450
total reads, all fusions reported by TopHat-Fusion-post to be supported by 415
reads covering the fusion junction, and remaining interchromosomal fusions
detected by Chimerascan that were also detected by TopHat-Fusion-post were
included for validation, unless: (1) Chimerascan annotated the event as ‘Read
through’; (2) the affected exons had 475% of reads mapped with a quality score
below five; (3) reads supporting the same fusion were detected (by either TopHat or
Chimerascan) in one of 20 sorted normal bone marrow samples; (4) the fusion
indicated rearrangement within an IG or TCR locus or involved two HLA genes
(the latter were presumed to represent normal constitutional HLA variants);
(5) the fusion involved two non-coding genes; or (6) the constituent genes
were located less than 10 kb apart.

In addition, remaining fusions detected by either Chimerascan or TopHat-
Fusion-post were included if the fusion (1) was reciprocal to a fusion passing the
above filters or a previously reported fusion in BCP ALL; or (2) contained one of
the recurrently altered genes ETV6, RUNX1, MLL, PAX5 or IKZF1.

Gene-expression analysis. The raw unfiltered RNA-seq reads were aligned to
human reference genome hg19 using TopHat 2.0.7, with the parameters --fusion-
search and --bowtie1 to enable fusion detection. Gene-expression values were
calculated as fragments per kilobase of transcript per million reads (fpkm) using
Cufflinks 2.2.0 (ref. 51). Hierarchical clustering and principal component analyses
were performed using Qlucore Omics Explorer (v3.1; Qlucore, Lund, Sweden).
In brief, the data were normalized to a mean of 0 and a variance of 1. Hierarchical
clustering of both samples and variables was performed using Euclidean distance
and average linkage.

Genomic sequencing analyses. For 11 cases in the discovery cohort, whole-
exome libraries were prepared from diagnostic and follow-up samples using the
Nextera Rapid Capture Exome Kit (Illumina) according to the manufacturer’s
instructions. Paired 2� 151 bp reads were produced from the exome libraries using
a NextSeq 500 (Illumina). The reads were aligned to human reference genome hg19
using BWA 0.7.9a (ref. 52) and PCR duplicate reads were filtered out using
SAMBLASTER53. Somatic variant calling was performed using Strelka54. For
15 cases in the discovery cohort, MP-WGS libraries were prepared using the
Nextera Mate Pair Library Preparation Kit (Illumina). Paired 2� 76 bp reads were
produced from the mate-pair libraries using a NextSeq 500 (Illumina). The reads
were aligned to human reference genome hg19 using BWA 0.7.9a (ref. 52) and PCR
duplicate reads were filtered out using SAMBLASTER53. For 24 high-hyperdiploid
cases in the discovery cohort, extensive characterization using WES (n¼ 11), WGS
(n¼ 12) or both (n¼ 1) has been previously described11.

Identification of leukaemia-specific splice variants. Splicing differences
between samples were characterized by ascertaining the relative frequencies of
splice junction usage across all observed splice donor and acceptor sites, from reads
aligned by TopHat. All intragenic splice junctions that were supported by at least
10 reads in at least one sample and that involved at least one annotated exon were
included. For each splice donor or acceptor site, alternative splicing was quantified
by measuring the fraction of reads supporting each observed splice junction
containing that site. If a splice acceptor or donor site was not covered by any reads
within a sample, the corresponding variables were treated as missing values and
reconstructed as the average value of samples that had data for the site. From these
data, all splice variants in CDKN2A, PAX5, ETV6 and IKZF1 that were not present
in a reference transcript and not detected in one of 20 normal bone marrow
populations (sorted from four donors) were included in the analysis.

Gene set enrichment analysis. GSEA was performed on gene-expression
data obtained from the RNA-seq analysis, using Qlucore Omics Explorer (v3.1).
Signal-to-noise ratio was used as ranking metrics for analysing curated
gene-ontology gene sets (C5) acquired from the Molecular Signatures Database
(MSigDB). Gene sets with o15 or 4500 genes were excluded. Enriched gene sets
after 1,000 permutations at an false-discovery rate of o0.25 and a nominal Po0.05
were considered as significant.

Support vector machine classification. A classifier based on the gene-expression
and gene-fusion data was created to categorize the samples into the subtypes
BCR-ABL1, ETV6-RUNX1, high hyperdiploidy, MLL, TCF3-PBX1, and
‘B-otherþ rare subgroups’. The subtypes were considered to be mutually exclusive.
First, one-versus-all support vector machine classifiers55 with linear kernels were
created for all subtypes. They were based on the log2 transformed gene-expression
data after variable selection by removal of variables with low variance across
the samples. The threshold was set to a standard deviation of 0.29, resulting in
583/23,285 variables (2.5%) being used. Next, the classifiers were augmented by the
detected gene fusions. If a gene fusion corresponding to one of the subgroups was
found in a sample, it was classified as belonging to that subgroup regardless of the
expression profile. These samples were treated as having ±N distance to the
support vector machine classification hyperplane. Finally, a multiclass classifier was
created from all the one-versus-all classifiers, by selecting the class that had the
lowest signed distance between the sample and the classification hyperplane. The
performance of the multiclass and all binary subgroup classifiers was evaluated by
leave-one-out cross-validation.

RNA-Seq mutation calling. The raw unfiltered reads were aligned to human
reference genome hg19 using STAR 2.4.0j (ref. 56). Putative mutations within
hotspot regions of 16 genes were identified using VarScan 2.3.7 (ref. 57). The
variants were annotated using Annovar58 and known constitutional variants
were excluded from the list.

RT–PCR and Sanger sequencing. For gene-fusion validation, primer3 was used
to design primers for amplifying a region larger than 200 bp covering the fusion
breakpoint. Reverse transcription was performed using M-MLV (Thermo
Fischer Scientific) and PCR was performed using Platinum Taq (Thermo Fischer
Scientific). The PCR products were purified using Exosap-it (Affymetrix) or
Qiaquick gel extraction kit (Qiagen) and then Sanger sequenced by a commercial
sequencing service provider. RT–PCR for detection of truncated ERG transcripts
was performed using primers previously described14. Sanger sequencing of FLT3,
NRAS, KRAS and PTPN11 in 26 high-hyperdiploid cases in the discovery cohort
was performed using primers described in Supplementary Table 2. This data has
been published previously41.

SNP array analysis. SNP array analysis was performed on DNA extracted from
bone marrow or peripheral blood at diagnosis for 156 BCP ALL cases. The analysis
was performed using HumanOmni1-Quad and Human1M- Duo array systems
(Illumina) with data analysis using Genomestudio 2011.1 (Illumina). The SNP
array data has been previously published3.

Statistical methods. Two-sided P values were calculated using Fisher’s exact test
or Mann–Whitney’s U-test. P-values of o0.05 were considered statistically
significant.

Data availability. RNA-seq and MP-WGS data have been deposited at the
European Genome-phenome Archive (EGA), under the accession code
EGAS00001001795. WES and WGS data are available for academic purposes by
contacting the corresponding author, as the patient consent does not cover
depositing data that can be used for large-scale determination of germline variants.
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