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Correlation detection as a general mechanism
for multisensory integration
Cesare V. Parise1,2 & Marc O. Ernst1,2,3

The brain efficiently processes multisensory information by selectively combining related

signals across the continuous stream of multisensory inputs. To do so, it needs to detect

correlation, lag and synchrony across the senses; optimally integrate related information; and

dynamically adapt to spatiotemporal conflicts across the senses. Here we show that all these

aspects of multisensory perception can be jointly explained by postulating an elementary

processing unit akin to the Hassenstein–Reichardt detector—a model originally developed for

visual motion perception. This unit, termed the multisensory correlation detector (MCD),

integrates related multisensory signals through a set of temporal filters followed by linear

combination. Our model can tightly replicate human perception as measured in a series of

empirical studies, both novel and previously published. MCDs provide a unified general

theory of multisensory processing, which simultaneously explains a wide spectrum of

phenomena with a simple, yet physiologically plausible model.
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O
ne of the most fundamental aspects of the brain is to
effectively process multisensory information. All
animals—even the simplest ones–are equipped with

multiple sensory organs to perceive and interact with their
surroundings. To successfully combine signals from different
sensory modalities, the brain needs to detect which signals
contain related information, that is, solve the correspondence
problem, integrate this information and dynamically adapt to
spatial or temporal conflicts across the senses as they arise1,2.
Spatiotemporal correlation has often been advocated as the main
common factor underlying the sensory signals to be integrated3–8:
when signals from different modalities originate from the same
physical event, and hence contain related information that should
be integrated, they usually cross-correlate in time and space.
Sensory neuroscience has already acknowledged the fundamental
role of correlation detection in multisensory processing5,6, and
recent studies have demonstrated that multisensory cue
integration is statistically optimal only when signals are
temporally correlated3,4, although this effect seems to disappear
at high temporal frequencies9. To date, there is no single model
that can provide a unified explanation for the manifold aspects of
early multisensory processing: how does the brain process
multisensory signals to detect correlation and temporal lags
across the senses? How does it solve the multisensory
correspondence problem? And how does it eventually achieve
optimal cue integration of redundant signals?

Correlation detection is at the core of any computational
principle for combining different sensory signals, and it is widely
exploited throughout the animal kingdom. This is the case for
binaural hearing10, binocular vision11 and visual motion
perception12, to name just a few. In motion perception, for
example, within the continuous stream of visual inputs, the brain
needs to compare the luminance of two neighbouring receptive
fields over time to detect speed and direction of motion. On the
basis of the insect oculomotor reflex, Hassenstein and Reichardt12

proposed a biologically plausible cross-correlation model for
motion perception. This model, known as the Hassenstein–
Reichardt detector (or elementary motion detector), posits the
existence of two mirror-symmetric subunits. In its simplest
version, each subunit multiplies inputs from two neighbouring
visual receptive fields after applying a delay (or low-pass temporal
filtering) to one of those signals. The difference between the
outputs of these subunits eventually determines the perception of

motion and its direction. Over more than five decades, this model
has been successfully applied to explain motion perception also in
vertebrates and humans13, and neurophysiological studies
support the existence of such a mechanism in the insect visual
system, such as the fly optic lobe14. To date, the Hassenstein–
Reichardt detector is possibly the neural model whose biological
substrates are best understood, and whose computational steps
have been recently identified even at the level of individual
cells15,16.

The basic architecture of the Hassenstein–Reichardt detector
displays a number of important properties that would also be
useful for multisensory processing. For example, if a multisensory
processing unit akin to the Hassenstein–Reichardt detector would
receive inputs from different modalities, it could compute the
cross-correlation across the senses, and hence solve the
correspondence problem3,4. Moreover, Hassenstein–Reichardt
detectors are naturally suited to detect the relative time of
arrival of two separate signals: the very same mechanism that in
visual perception detects the direction of motion could also be
used crossmodally to detect temporal lags across the senses. Here
we show that a neural mechanism similar to an elementary
motion detector can concurrently explain several aspects of
multisensory processing, including the detection of simultaneity,
correlation and lag across the senses, and Bayesian-optimal
multisensory integration.

Results
Model and psychophysical experiment. The structure of the
multisensory correlation detector (MCD, see Methods) proposed
here closely resembles the Hassenstein–Reichardt detector that
was originally developed to explain visual motion perception.
However, instead of receiving visual information from neigh-
bouring receptive fields, the MCD receives inputs from spatially
aligned receptive fields of different senses. In a first processing
stage, multisensory input signals undergo separate low-pass
temporal filtering (Fig. 1a, magenta and green filters). This
accounts for the impulse response characteristics of each indivi-
dual sense during transduction, transmission and early
unisensory processing6. These filtered signals are then fed into
two mirror-symmetric subunits, which multiply the signals after
introducing a temporal shift to one of them through another
low-pass filter (Fig. 1a, centre, black filters). As a consequence of
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Figure 1 | MCD model. (a) Schematic representation of the model. The MCD integrates multisensory signals (SV(t), SA(t)) through a set of low-pass

temporal filters followed by linear operations. The MCD model yields two outputs, MCDCorr(t) (equation 4) and MCDLag(t) (equation 5), representing,

respectively, the temporal correlation and lag across the input signals. (b) Time-averaged impulse response function of the MCD. The y axis represents the

response of the model to visual and auditory impulses as a function of the lag across the senses (see inset). Blue line and axis represent the time-averaged

response of the correlation detector (MCDCorr, equation 6), red line and axis represent the time-averaged response of the lag detector (MCDLag,

equation 7). Note how the correlation detector output (blue) peaks at low lags, whereas the output of the lag detector (red) changes sign depending on

which modality comes first.
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this additional filtering stage, each subunit is selectively tuned to
different temporal order of the signals (that is, vision vs. audition
lead). The outputs of the two subunits are then combined in
different ways to detect correlation and lag of multisensory
signals, respectively (Fig. 1a, right). Specifically, correlation is
calculated by multiplying the outputs of the subunits (Fig. 1a,
top-right; equations 4–6; Supplementary Video 1; and Supplementary
Fig. 1A), hence producing an output (MCDCorr) whose magnitude
represents the correlation between the signals (Fig. 1b, blue lines).
Temporal lag is instead detected by subtracting the outputs of the
subunits, like in the classic Hassenstein–Reichardt detector (equations
5–7, Supplementary Video 1 and Supplementary Fig. 1B). This yields
an output (MCDLag) with a sign that represents the temporal order of
the signals (Fig. 1b, red lines).

Without losing generality, we here focus on the integration of
time-varying signals from vision and audition. To probe multi-
sensory correlation detection in humans, and hence to test the
MCD model, five human observers performed a psychophysical

forced-choice task (Methods). On each trial we presented a
complex sequence of five auditory and five visual impulses (that
is, sequences of clicks and flashes) with random temporal
structures (Fig. 2a,b and Supplementary Video 2). Participants
had to report both whether the visual and auditory sequences
appeared to share a common cause (causality judgment), and
which of the two sequences—vision or audition—came first
(temporal order judgments). The temporal structures of the visual
and auditory signals were generated independently, and varied
randomly across trials (n¼ 1890). Such stimuli were selected
because they emphasize the role of cross-correlation for solving
the correspondence problem, while the experimental tasks were
selected because they directly probe the detection of multisensory
correlation (causality judgment) and lag (order judgment). The
stochastic nature of the signals implies the lack of a ground truth
on which to devise an optimal classifier. Specifically, given that
there were five randomly placed impulses per modality on each
trial, there was no univocal way to decide about the relative
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Figure 2 | Stimuli, reverse-correlation analyses and results of the psychophysical experiment. (a) Experimental setup. Participants sat in front of a white

fabric disc covering an LED and a speaker. (b) Examples of stimuli used in the experiment (left side), and their cross-correlation (right). Magenta and green

lines represent visual (SV(t)) and auditory stimuli (SA(t)), respectively. The top row shows an audiovisual stimulus eliciting high MCDCorr responses; the

lower two elicit low and high MCDLag responses, respectively. Cross-correlation of the first stimulus is high at short lags; in the other two it is higher at

negative and positive lags, respectively. (c) Reverse-correlation analyses. Stimuli were classified according to participants’ responses, that is, ‘light’ vs.

‘sound first’ in the temporal order judgment task (or ‘same’ vs. ‘different causes’ in the causality judgment task, not shown). Classification images were

calculated by subtracting the average cross-correlation of trials classified as ‘sound first’ from the average cross-correlation of trials classified as ‘light first’,

and smoothing the results using a Gaussian kernel (s¼ 20 ms, red line, see also f). (d,f) Classification images (solid lines represent data, dashed lines the

model). Positive values on the y axis represent positive association to ‘same cause’ or ‘sound-first’ responses. Predicted classification images are vertically

scaled. (e,g) Model output (equations 6–7) plotted against human responses. Each dot corresponds to 315 responses, 63 per participant. See

Supplementary Fig. 2 for plots of individual observers’ data. LED, light-emitting diode.
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temporal order or about the common causal structure of the
signals, hence rendering the task fundamentally subjective.

Human responses were analysed using psychophysical reverse-
correlation techniques (Methods). By measuring how random
variations in the visual and auditory stimuli correlate with
participants’ responses, this technique allows discriminating
which properties of the audiovisual signals (for example,
correlation, lag, temporal filtering and so on) selectively
determine human perception (that is judging order or causality).
Compared with classical psychophysical techniques, reverse-
correlation analyses offer a more stringent test for the MCD
model, as they allow assessing—without explicit experimental
manipulations—whether humans and MCD base their responses
on the same stimulus dimensions.

Given that both causality and temporal order judgments rely
on the joint temporal properties of visual and auditory stimuli,
reverse-correlation analyses were performed on the cross-
correlation profile of the signals. Cross-correlation provides a
measure of similarity of the signals as a function of lag, and it
highlights common features across complex signals. The
classification image for causality judgments demonstrates—as
might be intuitively predicted—that signals with high correlation
at short lags are more likely perceived as sharing a common
cause3,4,17 (Fig. 2d). Notably though, it displays a negative lobe on
the sound-first side, indicating that the brain has a tendency not
to integrate audiovisual information when sound arrives first, a
tendency that mirrors natural signal statistics given that light
travels faster than sound. Conversely, as expected, the responses
in the temporal order judgments were driven by the sign of the
lag at maximum cross-correlation (that is, light vs. sound
lead; Fig. 2f). More generally, these results demonstrate that
the underlying neural processes are sensitive to the correlation of
the signals; otherwise no clear pattern would have emerged in the
classification images calculated from the cross-correlation.

Having determined the precise shape of the empirical
classification images, we can now assess how closely the MCD
matches human performance. To do so, we feed the same signals
used in the experiment into the model, and perform reverse-
correlation analyses on the model responses just as we did with
human responses (see Methods). This way, we can determine the
temporal constants of the model’s low-pass filters by fitting them
to maximize the similarity between empirical and predicted
classification images (three free parameters, see Methods). As can
be seen in Fig. 2d,f, this produces an excellent agreement between
human data and model responses, which demonstrates that the
MCD accurately captures some fundamental aspects of the neural
computation underlying human perception. The model can near-
perfectly reproduce the shapes of both empirical classification
images (Fig. 2d,f): Pearson’s correlation between empirical and
predicted classification images is r¼ 0.97 for the causality
judgment, and r¼ 0.99 for the temporal order judgment,
respectively (see Supplementary Fig. 2A,C for individual
participants’ results). Because of the different temporal constants
of vision and audition, the model could also reproduce the same
negative lobe in the classification image of the causality judgment
on the sound-first side. Note that due to additional noise in the
neural processing, the empirical classification images were
shallower than those predicted by the model. This additional
noise was taken into account by scaling the classification images
produced by the MCD, thereby highlighting the similarity
between the simulation and the empirical findings.

To further test the predictive power of the MCD—besides
reverse-correlation analyses—we investigated whether, using the
same fitted parameters determined from the classification images,
the model (equations 6 and 7) could predict human responses
when given the same stimuli as input (Methods). For both tasks

we found a strong monotonic mapping between predicted and
empirical responses (Fig. 2e,g; Spearman’s rank correlation
between model output and human responses: r¼ 0.96 for
causality judgments; r¼ 0.99 for temporal order judgments; see
Supplementary Fig. 2B–D for individual participants results).

Previous attempts to model multisensory temporal perception
lack the flexibility to concurrently deal with the tasks and the
complex signal streams used here. For example, both Sternberg
and Knoll18 and Cai et al.19 proposed models that describe
human performance in temporal order judgment tasks given the
delay between two signals as input. However, it has never been
explained how such delays are detected in the first place,
particularly in the presence of complex time-varying signal
streams (as they occur in the natural world).

Burr et al.6 proposed a model for audiovisual duration
discrimination. Although this model can also be used to
process the current stimuli, it cannot account for the current
results (see Supplementary Note 1). Regarding correlation (but
not lag) detection, Fujisaki and Nishida5 proposed a rudimentary
descriptive scheme, that hold some similarities to the MCD
model, in form of a correlator between the visual and auditory
signals (see Supplementary Note 2). However, the working
principle of this correlation detector has not been formally
specified. In contrast, the MCD model makes all such key
computational steps explicit, is flexible enough to provide
quantitative predictions for both causality and temporal order
judgments, and can meaningfully process stimuli of any
complexity, a property that is inevitable for handling real-world
situations.

Validation of the MCD through simulation of previous results.
Given that there is an extensive literature on multisensory
perception of correlation, simultaneity, and lag5,17,20, we can
validate the MCD and assess its generalizability by comparing its
responses against human performance as determined in earlier
experiments. To this end, we selected a series of studies that
employed parametric manipulations of the temporal structure of
the signals, we simulated the stimuli, and we used the MCD
model (with fixed filter parameters) to predict human
performance. That is, it is important to stress that in the
following predictions we used the temporal constants of the MCD
that we determined in the previous experiment, such that now
there are no free parameters of the MCD to fit. The output of the
model was related to a response probability by assuming that the
model response is corrupted by late noise, and that perceptual
judgments are based on a decision criterion. As standard practice
in psychophysics, we modelled this stage using a general linear
model (GLM) with two free parameters (that is, noise and
criterion). If the MCD is the basic computational unit for
multisensory temporal processing, we should be able to reproduce
all of the earlier findings on the perception of multisensory
temporal attributes with this constrained MCD.

Audiovisual correspondence detection. To measure the deter-
minants of multisensory correspondence detection, Denison
et al.17 presented streams of audiovisual events with random
temporal structures that were sometimes correlated, and they
systematically varied lag, rhythmicity and rate. In a forced-choice
task, participants had to detect audiovisual correspondence
(Methods). That is, participants had to report which of two
visual stimuli had the same temporal structure as the auditory
stimulus. Their results demonstrate that correspondence
detection systematically depended on the temporal properties of
the signals and their complexity: performance decreased with lag,
rhythmicity and rate (Fig. 3a,b, dots, see ref. 17, Experiments 1
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and 3). Feeding these stimuli to the model demonstrates that, in
line with human behaviour, MCDCorr (equation 6) responses also
decrease with lag, rhythmicity and rate, effectively replicating all
the patterns in the original data set without the need to adjust any
of the time constants (Fig. 3a,b, lines; see Methods and
Supplementary Table 1 for details).

This result may also explain the previously reported null effects
of correlation on multisensory integration of audiovisual stimuli
at high temporal rates (between 7 and 15 Hz, see ref. 9). The
reason may be that due to its low temporal resolution as a result
of the low-pass filtering, the human perceptual system might
simply become insensitive to the amount of correlation with
increasing temporal rate.

Synchrony detection. Like correspondence detection, multi-
sensory perception of synchrony is also systematically modulated

by the temporal structure of the signals. To investigate the
determinants of synchrony detection, Fujisaki and Nishida5,20

presented periodic sequences of visual and auditory stimuli while
parametrically manipulating temporal frequency and phase
shifts of the signals5 (Experiment 1, Fig. 3c), or their lag and
complexity20 (Experiment 1, Fig. 3d). The model output MCDCorr
again tightly replicates all empirically determined trends
(Fig. 3c,d; see Methods and Supplementary Table 1).

Temporal order judgment. The temporal order judgment is a
classic paradigm to study temporal aspects of multisensory
perception. When participants report on the temporal order of
simple visual and auditory signals, response probabilities as a
function of physical lag usually follow a sigmoidal distribution
(often modelled for simplicity as cumulative Gaussian or logistic
functions, see, for example, Spence et al.21, Experiment 2).
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MCDLag (equation 7) accurately reproduces the same distribution
in the commonly measured range around physical synchrony
(0ms lag), and displays the distinctive sigmoidal shape of
temporal order judgments responses (Fig. 3e and
Supplementary Table 1). However, for longer lags beyond the
integration window of the MCD, MCDLag output would drop to 0
as the filtered input signals are not overlapping and thus no order
assignment would be possible. Conversely, human performance
clearly becomes easier with longer lags. We would argue though
that responses at longer lags are based on other cognitive
detection mechanisms and not on the MCD, which models
temporal processing in the perceptual range22.

Synchrony judgment. Another popular procedure to investigate
temporal aspects of multisensory perception is the synchrony
judgment task. Participants are typically presented with one
visual and one auditory stimulus, and have to report whether
such signals appear to be subjectively synchronous or not. When
plotted against lag, synchrony judgments usually display asym-
metric bell-shaped response distributions, with the perception of
synchrony peaking at short lags (for example, see ref. 23). Once
again, MCDCorr (equation 6) faithfully replicates human perfor-
mance23 (Experiment 1, see Fig. 3f, and Supplementary Table 1),
and it displays, due to differences in the filtering of the two input
signals, the characteristic asymmetry often found in synchrony
judgments. That is, the MCD model can explain the standard
shape of synchrony judgments solely based on the response of a
simple correlation detector (for example, without the need to
assume multiple decision criteria; see ref. 24).

All in all, these simulations show that the MCD can reproduce
human multisensory temporal processing under a broad range of
experimental manipulations.

MCD and optimal cue integration. Over the past decade, mul-
tisensory integration has been predominantly modelled in terms
of Bayesian Decision Theory25. The main finding is that humans
integrate redundant multisensory information in a statistically
optimal fashion, thereby maximizing accuracy and precision of
combined sensory estimates26. Being based on multiplicative
interactions, the correlation detector of the MCD is naturally
suited to implement Bayes-optimal multisensory integration.

To illustrate this in the case of spatial localization of visual and
auditory stimuli27, we simulated a population of MCDs, each
receiving inputs from spatially tuned visual and auditory units
(Fig. 4a). Each input unit has a receptive field that is Gaussian in

shape and with a width that is inversely proportional to the reliability
of the input (Supplementary Fig. 6, see refs 26,28). Thus the reliability
of a signal’s estimate is the emergent property of neuronal tuning to a
particular stimulus, which changes with the type of stimuli used, and
neural noise. The output of each MCD unit (MCDCorr, equation 6) is
then normalized by dividing it by the sum of the responses of all
units. This divisive normalization, which is biologically plausible29,30,
eventually provides an estimate of the probability distribution of
stimulus location (see, Fig. 4b).

To better highlight the weighting behaviour resulting from
optimal multisensory integration, we introduced a small offset
between the spatial locations of the visual and auditory stimuli,
and rendered the auditory input less reliable than vision (wider
receptive fields). Stimuli consisted of impulses lasting for one
sample (sampling frequency 1 kHz), which were embedded into
temporal sequences of samples with constant, near-zero values.
The model output was time-averaged over a 2 s window. Figure 4c
shows the output of the model for unimodal and bimodal signals
(continuous lines), and the prediction of optimal cue integration
(that is, the normalized product of the unimodal distributions,
represented by the dots25). The combined response predicted by
the MCD matches the joint probability distribution on which the
optimal percept is based (see Supplementary Note 3, for a
description of how this population model can be extended to
include weaker forms of coupling across the signals, represent
priors, and implement spatial recalibration).

Despite the success of Bayesian models in predicting multisensory
integration, it is still unclear how they can account for the breakdown
of optimal integration in the presence of temporal conflicts, that is
when the signals are not synchronous. Given that MCDCorr responds
maximally to synchronous and correlated stimuli, this population
model can naturally account for the temporal constraints of optimal
integration, as with longer lags the filtered input signals are
non-overlapping, and thus no integration would be possible. Hence,
going beyond earlier neural models of multisensory integration31,32,
this model directly deals with time-varying signals, and it can jointly
account for both optimal cue integration and for its breakdown when
temporal conflicts occur3.

Discussion
Overall, these results strongly suggest that the MCD may
represent the elementary unit for multisensory processing:
individual units solve the correspondence problem, by detecting
correlation, lags and synchrony across the senses, and integrate
only those signals that are likely causally related; larger
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populations of MCDs perform optimal multisensory integration.
So far, these diverse phenomena have only been partially
explained with separate ad hoc models5,24–26,28,29,33, or have
never been explained at all (like the detection of temporal order
across the senses). The MCD parsimoniously captures all such
perceptual challenges, and provides a common explanation to
both the spatial and the temporal aspects of multisensory
integration with a simple neural architecture whose biological
plausibility is supported by a vast literature on the physiology of
motion perception14 and stereoscopic vision11. What is more, the
MCD might help bridging the gap between physiology and
behaviour, as it can also be used to model the responses of
multimodal neurons, just like the Hassenstein–Reichardt detector
has been used as a model for motion-sensitive neurons14.

Although correlation detection provides obvious behavioural
benefits such as solving the correspondence problem and
integrating related signals, it is not equally clear why the nervous
system should have a dedicated detector to constantly monitor
lags across the senses. Multisensory signals, however, often reach
our senses with some relative lags (e.g., due to differences in the
generation process of the signals in each modality, the speed of
propagation, which is slower for sound, or the neural latencies
during transduction and transmission). Hence, the nervous
system must quickly detect and actively compensate for such
delays (i.e., temporal recalibration, see refs 34,35). In this context,
a lag detector would provide the necessary information to drive
temporal recalibration and restore perceptual synchrony. Given
the analogies between motion perception and multisensory
temporal processing, it would be reasonable to hypothesize that
the same mechanisms underlying visual motion adaptation36

might also serve multisensory temporal recalibration19,34

(Supplementary Fig. 8).
Correlation detection has often been advocated as a universal

computational mechanism, which simultaneously operates in
multiple sensory systems (for example, visual motion, binocular
disparity and binaural hearing) throughout the animal kingdom37,
including mammals, avians and even invertebrates. The present
study suggests that the brain parsimoniously implements analogous
principles of sensory processing also to combine signals across the
senses, not just within. Because of its biologically inspired nature and
its effectiveness in predicting psychophysical results, the MCD
provides a unified general theory of multisensory processing—one
that is capable of generating quantitative predictions at many
different levels, from neurons14,38 to behaviour32.

Methods
Model. The MCD model consists of a first filtering stage, where time-varying
visual and auditory signals (SV(t), SA(t)) are independently low-pass filtered, and a
subsequent integration stage, where the two signals are combined through linear
operations (multiplication or subtraction). Low-pass filters (f) were modelled as
exponential functions of the form (cf. Burr et al.6):

fmod tð Þ ¼ t expð� t=tmodÞ ð1Þ
tmod is the modality-dependent temporal constant of the filter. On the basis of the
empirical results, we estimated these constants to be tV¼ 87 ms and tA¼ 68 ms for
the visual and auditory filters, respectively. The second filter, which for simplicity
we assumed to be identical in both subunits of the detector, was estimated as
tAV¼ 786ms (cf. fitting details below).

Each subunit (u1, u2) of the detector independently combines multisensory
information by multiplying the filtered visual and auditory signals as follows:

u1 tð Þ ¼ SA tð Þ�fA tð Þ½ ��fAV tð Þf g � SV tð Þ�fV tð Þ½ � ð2Þ

u2 tð Þ ¼ SAðtÞ�fA tð Þ½ � � SVðtÞ�fV tð Þ½ ��fAV tð Þf g ð3Þ
To this end, the signals are convolved (*) with the low-pass temporal filters. The
response of the subunits are eventually multiplied or subtracted.

MCDCorr tð Þ ¼ u1 tð Þ � u2 tð Þ ð4Þ

MCDLag tð Þ ¼ � u1 tð Þþ u2 tð Þ ð5Þ

The resulting time-varying responses represent the local temporal correlation
(MCDCorr) and lag (MCDLag) across the signals (Supplementary Fig. 1). To reduce
such time-varying responses into a single summary variable representing the
amount of evidence from each trial, we simply averaged the output of the detectors
over a window of 3 s—three times the duration of each trial:

MCDCorr ¼ mean MCDCorr tð Þ½ � ð6Þ

MCDLag ¼ mean MCDLag tð Þ
� �

ð7Þ

A Matlab implementation of the MCD model is provided in Supplementary
Software 1. Given that we were especially interested in how close the model could
reproduce the shape of the empirical classification images, the temporal constants
of the model (that is, tV, tA and tVA) were free parameters that we fitted to
maximize the correlation between predicted and empirical classification images of
the averaged observer (see reverse-correlation analyses). The fitting was based on
an optimization algorithm (fminsearch, Matlab) that maximizes the similarity
(Pearson’s correlation) between empirical and predicted classification images. To
calculate the classification images from MCD responses, we ranked the responses
of the model across trials, and divided them into two classes (one for each response
category) with the same relative frequency that we determined empirically. For
example, if participants classified 40% of the trials as ‘common cause’, the 40% of
trials with highest MCDCorr outputs were classified as ‘common cause’—the
remaining trials as ‘different causes’.

The main difference between empirical and predicted classification images is
that overall the predicted ones have higher amplitudes. This is an expected finding,
given that in the model we did not consider the detrimental effects of noise, which
would naturally arise at any stages of the detector, including late noise occurring at
the decision stage, and which would be additive to the detector’s outputs MCDCorr

and MCDLag. Since noise is unlikely to be correlated across the senses, it would only
reduce the cross-correlation between the streams of sensory information, and
corrupt perceptual decision-making, hence reducing the overall amplitude of the
empirical classification images. Note that the predicted classification images in
Fig. 2d–f and Supplementary Fig. 2A–C are vertically scaled for graphical clarity in
order to better highlight the similarity in shape of the predicted and empirical
results.

To demonstrate how model output can systematically predict human responses,
we partitioned all trials into 30 bins (315 responses for each bin, 63 per participant)
based on the output of the model (MCDCorr for the causality judgment, and
MCDLag for the temporal order judgment task). For each bin, we calculated the
average response of the model and plotted it against the mean response of our
participants in these same trials (Fig. 2e,g and Supplementary Fig. 2b–d), while the
monotonicity of the relationship between model and human responses was
assessed using Spearman correlation.

Psychophysical task. The experiment consisted of a force-choice dual task,
whereby on each trial a train of five impulses was presented to the visual and
auditory modalities. The stimuli consisted of sequences of five visual and five
auditory impulses randomly presented over an interval of 1 s (average temporal
rate 5 Hz, Fig. 2b). Each impulse consisted of a single sample with a value of 1 in an
array of samples with a value of 0 (sampling frequency 44.1 kHz). Participants (four
naive and C.V.P., age range 22–35 years, one female) observed the stimuli and had
to report (1) whether or not the visual and auditory sequences appeared to be
causally related and formed perceptual unity (causality judgment, also known as
‘relatedness’ task17), and (2) the relative temporal order of the two sequences
(temporal order judgment). To instruct participants on what we meant by ‘causally
related’, we told them to imagine that clicks and flashes were all little explosions,
and their task was to tell whether the same underlying sequence of blasts caused the
clicks and the flashes, or whether light and sound were generated by independent
generative processes. Given that we collected a large number of trials (overall
n¼ 9,450), and that we performed the analyses both at the group level and at the
level of the individual participants, a pool of five participants is large enough to
provide reliable estimates of the effects under study. To assess whether the dual-
task paradigm could qualitatively alter observers’ responses, we also performed an
additional control experiment in which the causality judgment and temporal order
judgment tasks were performed in separate sessions (see Supplementary Note 4
and Supplementary Fig. 9). Overall the results from both experiments were in good
agreement with those of the dual-task paradigm.

The experiment was performed in a dark anechoic chamber. Visual stimuli
consisted of a white disk (rad¼ 6.5�) of sound-transparent fabric backlit by a
white-light-emitting diode. Auditory stimuli were presented from the same
location as the visual stimuli by means of a small loudspeaker hidden behind the
sound-transparent screen. Both the light-emitting diode and the loudspeaker were
operated via a computer soundcard to ensure near-perfect timing of the
multisensory signals. The experiment was controlled by custom-built software
based on the Psychtoolbox39.

The experiment was self-paced, and participants had to press a key to initiate
each trial. The temporal structures of the signals were identical across participants.
After stimulus presentation, participants responded by pressing one of four keys
arranged in a 2� 2 matrix. The vertical axis of this arrangement represented the
response to the causality judgment (top¼ single cause, bottom¼ different causes),
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while the horizontal axis represented the response to the temporal order judgment
(left¼ vision first and right¼ audition first). Participants were instructed to give an
answer even if unsure, taking their time and guessing if necessary. The experiment
took place in four sessions of B2 h each (including breaks). Every 45 trials, there
was a break and a dim table-light was smoothly turned on. Participants were
allowed to rest for as long as they wanted, and to minimize boredom they were
entertained with a booklet of short jokes. Participants had to press a key to restart
the experiment, after which the table-light smoothly turned off. Throughout the
experiment, participants’ head was constrained with a chin- and a head-rest. The
experiment was conducted in accordance to the Declatation of Helsinki and was
approved by the Ethics committee of the University of Bielefeld. Participants
received 6 Euro per hour, and they provided written informed consent before
participating to the experiment.

Reverse-correlation analyses. To calculate visual classification images, we first
sorted the stimuli presented in the experiment according to participants’ (or
model’s, c.f. Modelling) classification responses (single cause vs. multiple causes in
the causality judgment, CJ; light vs. sound lead in the temporal order judgment,
Fig. 2c; see ref. 40). For each class we calculated the mean cross-correlation across
the visual and auditory signals (SV(t)�SA(t)) and combined them to obtain the
classification images for audiovisual correlation (KCorr) and lag (KLag, Fig. 2c)
according to:

KCorr ¼ mean respðCJÞ¼1½ �ðSA tð Þ�SV tð ÞÞ�mean respðCJÞ¼0½ �ðSA tð Þ�SV tð ÞÞ ð8Þ

KLag ¼ mean respðTOJÞ¼1½ �ðSA tð Þ�SV tð ÞÞ�mean respðTOJÞ¼0½ �ðSA tð Þ�SV tð ÞÞ ð9Þ

Classification images (KCorr and KLag) were temporally smoothed by convolution
with a temporal low-pass Gaussian filter (s¼ 20 ms). Reverse-correlation analyses
were performed individually for each participant (Supplementary Fig. 2), and on
the averaged observer (Fig. 2d,f). Given that the stimuli were identical across
participants, the response of the averaged observer on each trial was calculated as
the mode of the individual responses (that is, if the three out of five participants
responded ‘vision first’ on a given trial, then the response of the average observer
was also ‘vision first’).

Simulation of audiovisual correspondence detection. We simulated visual
and auditory signals with statistically the same temporal structures described in
Denison et al.17 (Experiments 1 and 3), and fed them into the MCD (equation 4).
Both visual and auditory events consisted of 1ms luminance and loudness
impulses.

The MCD response to such signals was transformed into categorical responses
in the following way: Given that the behavioural task consisted of a two-alternative
forced-choice (that is, participants had to report which of two visual stimuli
temporally matched the auditory stimulus17), we assumed the underlying decision
variable to be the ratio between the MCDCorr (equation 6) response to the two
visual stimuli (match/non-match). That is, we divided the MCDCorr response to the
matching stimulus by the response of the model to the non-matching stimulus.
Such a variable was then transformed into the proportion of correct responses via a
general linear model with a probit link function (assuming additive Gaussian
noise). Linear coefficients were fitted over the whole data set (proportion of correct
responses, which we computed from the original d’ measures) included in Fig. 3a,b.

Given that Denison et al.17 used random temporal structures that changed
across trials, we could not faithfully reproduce the exact stimuli used in the original
experiment. Therefore for each data-point, we simulated 500,000 random temporal
structures for the auditory stimuli, other 500,000 for the matching visual stimuli,
and the same amount for non-matching visual stimuli. The decision variable was
eventually calculated as the ratio of the median MCD response to the two visual
stimuli (that is, median MCDCorr response to the matching visual stimuli divided
by the median response to the non-matching visual stimuli).

Simulation of synchrony detection. The experimental task used by Fujisaki and
Nishida5,20 consisted of a two-alternative forced-choice task, whereby participants
reported on the perceived synchrony of auditory and visual stimuli. Assuming
synchrony detection to rely on the same mechanisms of correspondence detection,
we used MCD to simulate the results of Fujisaki and Nishida5 (Experiment 1, see
Fig. 3c) and Fujisaki and Nishida20 (Experiment 1, see Fig. 3d). This was done by
generating stimuli as described in Fujisaki and Nishida5 (Experiment 1) and
Fujisaki and Nishida20 (Experiment 1), and calculating MCDCorr (equation 6). As
in the previous simulation, we carefully replicated the temporal structures of the
stimuli. However, for simplicity the exact visual and auditory events were replaced
by impulses. We used standard procedures to transform the responses of the model
into binary responses. This was done by assuming that the response on each trial
depended on the ratio between the model’s responses for the asynchronous signal,
to the model’s response for the synchronous signal. Such a variable was then
transformed into the proportion of correct responses via a general linear model
with a probit link function (assuming additive Gaussian noise). Linear coefficients
were fitted over the whole data set included in Fig. 3c,d.

Simulation of temporal order judgment. To investigate whether MCDLag

(Equation 7) could reproduce the typical shape of the response distribution of
audiovisual temporal order judgments, we fed a pair of visual and auditory
impulses with the same lags as in Spence et al.21 (Experiment 2) into the model.
Again, MCDLag was related to response probabilities using a general linear model
with a probit link function (Fig. 2e). Linear coefficients were fitted over the
empirical data from Spence et al.21 (Experiment 2).

Simulation of synchrony judgment. To see whether MCDCorr could replicate the
response distribution of synchrony judgment tasks, we generated stimuli as in
Slutsky and Recanzone23 and calculated model responses (Fig. 3f). The exact
stimuli were replaced by impulses, but the temporal structures in our simulations
were the same as in the original study. MCDCorr output (equation 6) was related to
response probabilities using a general linear model with a probit link function.
Linear coefficients were fitted over the empirical data in Fig. 3f (ref. 23)
(Experiment 1, 1 kHz condition).

To assess how well the MCD model could predict previous results, we calculated
the Pearson correlation and the coefficient of determination between the empirical
and the predicted responses (Supplementary Table 1). To test the statistical
significance of a linear regression relationship between empirical and predicted
responses, we used the F-test (Supplementary Table 1). The F-test requires the
residuals of the linear regression to be normally distributed: the validity of this
assumption was corroborated for all tests using a Lilliefors test for normality.
Regression analyses were performed separately for each simulated study.
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