Skip to main content
. 2016 Jun 8;4:5. doi: 10.1186/s13755-016-0018-1

Table 1.

Some example machine learning (ML) algorithms, ordinary parameters and hyper-parameters

ML algorithm Example ordinary parameters Example hyper-parameters
Random forest Input variable and threshold value selected at every internal node of a decision tree Number of decision trees, number of input variables to evaluate at every internal node of a decision tree
Support vector machine Support vectors, lagrange multiplier for every support vector Kernel to use, degree of a polynomial kernel, ε for round-off error, regularization constant C, tolerance parameter