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Systemic inflammatory response and
neuromuscular involvement in
amyotrophic lateral sclerosis

ABSTRACT

Objective: To evaluate the combined blood expression of neuromuscular and inflammatory bio-
markers as predictors of disease progression and prognosis in amyotrophic lateral sclerosis
(ALS).

Methods: Logistic regression adjusted for markers of the systemic inflammatory state and princi-
pal component analysis were carried out on plasma levels of creatine kinase (CK), ferritin, and 11
cytokines measured in 95 patients with ALS and 88 healthy controls. Levels of circulating bio-
markers were used to study survival by Cox regression analysis and correlated with disease pro-
gression and neurofilament light chain (NfL) levels available from a previous study. Cytokines
expression was also tested in blood samples longitudinally collected for up to 4 years from 59
patients with ALS.

Results: Significantly higher levels of CK, ferritin, tumor necrosis factor (TNF)–a, and interleukin
(IL)–1b, IL-2, IL-8, IL-12p70, IL-4, IL-5, IL-10, and IL-13 and lower levels of interferon (IFN)–g
were found in plasma samples from patients with ALS compared to controls. IL-6, TNF-a, and
IFN-g were the most highly regulated markers when all explanatory variables were jointly analyzed.
High ferritin and IL-2 levels were predictors of poor survival. IL-5 levels were positively correlated
with CK, as was TNF-a with NfL. IL-6 was strongly associated with CRP levels and was the only
marker showing increasing expression towards end-stage disease in the longitudinal analysis.

Conclusions: Neuromuscular pathology in ALS involves the systemic regulation of inflammatory
markers mostly active on T-cell immune responses. Disease stratification based on the prognostic
value of circulating inflammatory markers could improve clinical trials design in ALS. Neurol
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GLOSSARY
ALS 5 amyotrophic lateral sclerosis; ALSFRS-R 5 ALS Functional Rating Scale–Revised; CI 5 confidence interval; CK 5
creatine kinase; CRP 5 C-reactive protein; CVD 5 cardiovascular disease; FTD 5 frontotemporal dementia; HR 5 hazard
ratio; IFN 5 interferon; IL 5 interleukin; IQR 5 interquartile range; LOD 5 limit of detection; MCP-1 5 monocyte chemo-
attractant protein–1; NfL 5 neurofilament light chain; NK 5 natural killer; OR 5 odds ratio; PCA 5 principal component
analysis; PRB 5 progression rate calculated at baseline; TNF 5 tumor necrosis factor; Treg 5 regulatory T cells.

Clinical heterogeneity in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder,
encompasses motor and cognitive symptoms and a variable prognostic outlook. The long diag-
nostic latency in most ALS cases narrows the therapeutic window for disease modification. Early
diagnosis and the ability to predict outcomes in ALS would address the unsatisfactory outcome
of most clinical trials with the design of more cost-effective studies.1 Current biomarkers-based
monitoring tools in ALS are not always suitable for research and routine clinical practice.
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The pathologic process in ALS develops in
distant anatomical regions either simulta-
neously or as a sequential process.2 Early
ALS pathology is sensed by the innate
immune system, with the activation of micro-
glia, T-cells, dendritic, and antigen-presenting
cells in corticospinal tracts and in the
motor cortex3 and the release of inflammatory
markers such as cytokines, C-reactive protein
(CRP), and ferritin.4–6

Circulating inflammatory markers and
immune cells express the body’s inflammatory
state, which depends on comorbidities and
environmental stressors. The immunologic
fingerprint of ALS at a systemic level may
not be easily distinguishable, considering the
reported strong association of ALS with auto-
immune comorbidities such as rheumatoid
arthritis.7 Nevertheless, ALS-specific systemic
inflammatory signals have already been re-
ported,4–6,8 including a reduced frequency of
regulatory T cells (Treg) in blood from indi-
viduals with a faster disease progression.9

By adjusting for potential contributors to
systemic inflammation,4 we tested to what
extent the expression of circulating markers
of inflammation and of neuromuscular pathol-
ogy changes in ALS with reference to control
individuals; we have used the same approach
for the prognostic stratification of ALS and to
test the systemic immune response to disease
progression.

METHODS Standard protocol approvals, registrations,
and patient consents. Ethical approval was obtained from

the East London and the City Research Ethics Committee 1

(09/H0703/27). All participants provided written consent (or

gave verbal permission for a carer to sign on their behalf).

Participants, sampling, and data collection. The study

included 95 patients with ALS and 88 neurologically healthy con-

trols recruited between 2009 and 2015. Diagnosis of ALS by

experienced ALS neurologists (A.M., R.H., R.O., K.S., P.F.,

N.S., M.F.) was based on consensus criteria.10 Those with a family

history of ALS or frontotemporal dementia (FTD), or known to

carry a genetic mutation linked to ALS or FTD, were excluded

to minimize any potential bias. Neurologically healthy controls

were typically spouses and friends of patients.

Serial plasma samples and clinical information were obtained,

on average, every 2–4 months from 59 of the 95 patients with

ALS, over a maximum follow-up period of 48 months. No selec-

tion criteria were applied to patients with ALS sampled longitu-

dinally, other than their willingness to donate further samples.

Symptoms onset was defined as first patient-reported weakness or

speech impairment. Progression rate was calculated at baseline

(PRB) as 48 minus the ALS Functional Rating Scale–Revised

(ALSFRS-R) score, divided by the disease duration from symp-

tom onset in months. A PRB of 0.5 was used as cutoff to define

slowly progressing (,0.5) and fast progressing ALS ($0.5). Pro-

gression between 2 consecutive visits was assessed using the

change in ALSFRS-R score (DALSFRS-R) with and without

the time interval (DALSFRS-R/duration between 2 visits in

months).11

Data including demographics, medical history, and treatment

were collected at each visit. The presence of hypertension, hyper-

lipidemia, diabetes, cancer, and cardiac and cerebrovascular acci-

dents as well as prothrombotic states were systematically

evaluated at each visit. QRISK2, a cerebrovascular disease risk

score, was included in the statistical analyses.12

Sample analysis. Cytokines. Plasma samples were processed

and aliquoted within 1 hour from collection and frozen at

280°C, following standard consensus procedures.13 A validated

multiplex electrochemiluminescence immunoassay was used for

the analysis of interferon (IFN)–g, tumor necrosis factor

(TNF)–a, interleukin (IL)–6, IL-1b, IL-2, IL-8, IL-12p70,

IL-4, IL-5, IL-10, and IL-13 from patients with ALS and con-

trols in duplicate (Meso Scale Discovery, Rockville, MD).

Readouts in the multiplex assay with poor intra-assay coefficient

of variation (.20%) were excluded from further analyses.

CRP, creatine kinase (CK), and ferritin. CRP, ferritin, and
CK were measured only at baseline and following the guidelines

from the International Federation of Clinical Chemistry. CRP

and CK were tested using an immunoturbidimetric assay on

a Roche/Cobas (Indianapolis, IN) 702 module. CRP readouts

below the laboratory dynamic range were given the lower

limit value of 2 mg/L. Ferritin was tested on a Roche/Cobas

e602 module, using the Roche ferritin electrochemiluminescence

immunoassay.

Statistical analysis. Continuous variables were summarized

using median (interquartile range [IQR]) and their distribution

tested using Mann-Whitney U test. Distribution of categorical

data was tested using the Fisher exact test.

Baseline analysis of the case-control study included (1) uni-

variate comparison using the Mann-Whitney U test, (2) principal

component analysis (PCA) to test combined cytokine effects

(log2 transformed data were analyzed using TIGR MeV, TM4,

version 4.9), and (3) multivariate logistic regression analysis. Ter-

tiles of distribution of continuous variables calculated on the

whole sample14 were introduced in logistic regression models

(table e-1 at Neurology.org/nn). Cytokine data with undetectable

levels were assigned the midpoint between zero and the limit of

detection (LOD; provided by the manufacturer).15 When more

than 33% of the samples had measurements below the LOD, all

undetectable samples were included in the lowest tertile, while the

median of the remaining samples defined the second cutoff point.

Logistic regressions included a basic model adjusted for age and

sex, a multivariate model adjusted for comorbidities,7,16 and

a mutually adjusted model where all the inflammatory markers

associated with the outcome with p , 0.2 were simultaneously

included (either in a basic or in a multivariate model). Comor-

bidities included in multivariate models are arthritis, autoim-

mune pathology, hypertension, diabetes, hyperlipidemia, the

use of statin, cardiovascular disease (CVD) risk, and CRP as proxy

for general inflammation. This latter mutually adjusted analysis

was undertaken excluding subjects with missing data and using

redefined tertile ranges (table e-1). Logistic regression was also

applied to compare progression rate groups among ALS cases at

baseline; tertile ranges were redefined within these ALS cases only

(table e-1).

2 Neurology: Neuroimmunology & Neuroinflammation

ª 2016 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://nn.neurology.org/lookup/doi/10.1212/NXI.0000000000000244


Survival analysis was conducted using Cox regression with

tertiles recalculated from ALS cases only. The basic and multivar-

iate statistical models (defined as above) were used to test to what

extent each plasma marker predicted survival individually. Basic

and multivariate mutually adjusted models were also run.

Correlation between continuous variables was assessed using

the Spearman coefficient (r), which measures the strength

of a monotonic relationship between paired data and varies

between21 (perfect monotonic negative correlation) and 1 (per-

fect monotonic positive correlation). We examined the associa-

tion between plasma cytokines and disease progression/stage as

well as biological markers of (1) muscle homeostasis (CK), (2)

neuroaxonal damage (neurofilament light chain [NfL]; baseline

data from 66 out of 95 of the patients with ALS were available

from a previous study17), and (3) other inflammatory markers

(ferritin and CRP).

Data collected from the 59 patients with ALS serially sampled

were used for the longitudinal analysis of the 11-cytokines panel.

A Kruskal-Wallis test was used to compare expression data

obtained at baseline (V1) and at follow-up visits (V2–V6). Inter-

visit progression (e.g., V1 and V2, V2, and V3), as described in

a previous study,11 was defined as (1) the change of ALSFRS-R

score between visits (DALSFRS-R) and (2) the slope of

ALSFRS-R (DALSFRS-R/time between 2 visits in months).

The cytokine levels at early visit (in each visit pair) were correlated

with the intervisit progression calculated from the same visit pair

(Spearman). Intervisit progression for CRP, CK, and ferritin was

calculated only between V1 and V2.

Statistical analysis was performed using SPSS (version 22;

IBM, Armonk, NY) and GraphPad Prism Software (GraphPad

Software, La Jolla, CA; version 6). Unless otherwise specified,

a p value less than 0.05 was considered statistically significant.

RESULTS Case-control analysis. Medical history,
demographic data, and levels of the plasma markers
are presented in tables 1 and 2. Patients with ALS
were older and predominantly male compared to con-
trols; hyperlipidemia was more prevalent in controls.
Patients with ALS had a higher CVD risk.

PCA showed a good separation between ALS and
control groups with regard to cytokine expression
profiles (component 1: 46.2%; component 2:
25.7%; figure 1A). A better separation was obtained
when the data were grouped by sex, particularly in the
female group (component 1: 58.3%; figure 1, B and
C). There was no meaningful separation between
ALS subgroups when categorized according to site
of disease onset, progression rate at baseline, and
disease stages.

Table 1 Demographic and clinical characteristics

Characteristics ALS (n 5 95) CTL (n 5 88) p Valuea

Age at sampling, y, median (IQR) 66.8 (58.6–72.4) 59.1 (53.5–66.6) 0.001

Male, n (%) 66 (66.3) 26 (29.5) ,0.001

HTN, n (%) 25 (26.3) 31 (35.2) 0.20

Diabetes, n (%) 6 (6.3) 7 (8.0) 0.78

Hyperlipidemia, n (%) 14 (14.7) 27 (30.7) 0.01

History of thrombosis, n (%) 1 (1.1) 3 (3.4) 0.35

History of cancer, n (%) 4 (4.2) 2 (2.3) 0.68

Use of statin, n (%) 24 (25.3) 30 (34.1) 0.20

Risk of CVD, median (IQR) 0.151 (0.095–0.246) 0.076 (0.039–0.173) 0.001

Arthritis, n (%) 7 (7.4) 2 (2.3) 0.17

Autoimmune pathology ongoing at baseline or
during follow-up,b n (%)

4 (4.2) 3 (3.4) 0.99

El Escorial criteria, definite/probable/possible/
laboratory-supported probable, n

19/43/23/10

Onset site, limb/bulbar/both, n 70/22/3

Age at onset, y, median (IQR) 64.5 (57.0–69.5)

Diagnostic latency, mo, median (IQR) 12.0 (7.0–19.2)

Disease duration from onset to baseline, mo, median (IQR) 22.4 (12.5–32.2)

ALSFRS-R score at baseline, median (IQR), points 39 (31–43)

Progression rate at baseline, points/mo, median (IQR) 0.489 (0.204–0.831)

Treated with riluzole, n (%) 73 (76.8)

Abbreviations: ALS 5 amyotrophic lateral sclerosis; ALSFRS-R 5 ALS Functional Rating Scale–Revised; CTL 5 controls;
CVD 5 cardiovascular disease; HTN 5 hypertension; IQR 5 interquartile range.
ap Values from Mann-Whitney U test for continuous variables and Fisher exact test for categorical variables.
bALS: 1 patient with raised antinuclear antibody, 2 cases of asthma, and 1 chronic lymphocytic anemia. CTL: 1 case of
rheumatoid arthritis, 1 case of asthma, and 1 of eczema.
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Regression analysis. Logistic regression analysis.Results for
each individual plasma marker are summarized in
table e-2A. CK, ferritin, TNF-a, IL-1b, IL-2, IL-8,
IL-12p70, IL-4, IL-5, IL-10, and IL-13 were all
found to be significantly increased, while IFN-g
was significantly decreased in plasma from patients
with ALS compared with controls in both basic and
multivariate models. IL-6 showed a similar pattern of
increase in the basic model, which was not main-
tained after adjustment for comorbidities, treatments,
and CRP levels.

Mutually adjusted multivariate regression analysis
identified only IFN-g, IL-6, TNF-a, IL-4, and IL-13
as significantly different between ALS cases and con-
trols (table e-2B). Point estimates and relative 95%
confidence intervals (CIs) from the mutually adjusted
multivariate logistic regression analysis are shown in
figure 2A. IFN-g levels were significantly lower
among ALS cases compared to controls (odds ratio
[OR] 0.09, 95%CI 0.01–0.62, p5 0.02), while IL-6
(OR 18.55, 95%CI 1.37–251.95, p5 0.03), TNF-a
(OR 35.78, 95% CI 1.86–689.20, p 5 0.02), IL-4
(OR 90.90, 95% CI 1.25–6,603.62, p 5 0.04), and
IL-13 (OR 20.69, 95% CI 0.65–656.10, p 5 0.086)

were higher in ALS cases compared to controls. There
were no significant differences in patients with ALS
subgrouped using progression rate at baseline (cutoff
at 0.5).

Cox regression analysis in patients with ALS. Examined
individually, higher levels of ferritin were found to be
associated with poorer survival in ALS in both basic
and multivariate models (multivariate hazard ratio
[HR] 1.71, 95% CI 1.20–2.44, p 5 0.003) (table
e-2C). Higher IL-2 levels in ALS were associated with
poorer survival only in the multivariate model (HR
1.43, 95% CI 1.04–1.98, p 5 0.03).

Four markers, including ferritin, IL-2, IL-1b, and
TNF-a, were further tested in the mutually adjusted
multivariate Cox regression analysis and the results are
summarized in figure 2B and table e-2D. Higher IL-2
(HR 1.77, 95% CI 1.10–2.84, p 5 0.02) and ferritin
(HR 1.38, 95% CI 0.95–1.99, p 5 0.09) levels were
associated with a shorter survival, while high levels of
IL-1b (HR 0.52, 95% CI 0.32–0.85, p5 0.009) and
the presence of diabetes (HR 0.09, 95%CI 0.02–0.49,
p 5 0.005) were associated with a longer survival.

Correlation analysis. We examined the correlation
between inflammatory markers and neuromuscular
markers as well as ALS disease stages/progression to
obtain insights into potential mechanisms underlying
ALS pathology and its tissue origin. Patients with
higher CK (used as a marker of muscular involve-
ment) levels were found to have higher IL-5
(Spearman r: 0.217, p 5 0.045), while those with
higher NfL levels (as a neuronal marker) also had
higher TNF-a levels (r: 0.264, p 5 0.033).
Patients with higher CRP levels (used as a proxy for
general and aspecific inflammatory response) also had
higher IL-6 levels (r: 0.518, p , 0.0001).
Conversely, ferritin was found not to be correlated
with any of the other markers under investigation.
Patients with higher progression rate at baseline had
borderline higher ferritin levels (r: 0.186, p5 0.081)
and lower CK levels (r:20.203, p5 0.058). Patients
with ALS at earlier disease stage (with higher
ALSFRS-R score) were reported to have higher CK
levels (r: 0.401, p 5 0.0001) and lower CRP
(r: 20.273, p 5 0.008), TNF-a (r: 20.269, p 5

0.009), and IL-6 (r: 20.217, p 5 0.001) levels.

Longitudinal analysis. Plasma cytokine levels obtained
from 59 patients with ALS at baseline (V1) and on
their follow-up visits (V2–6) are shown in a box-
and-whisker plot (figure e-1). All individual
cytokines had comparable median levels of
expression in all 6 visits, with the exception of IL-6,
which showed a small but significant (p 5 0.008,
Kruskal-Wallis test) increase at V6 (median [IQR]
levels: 0.81 [0.56, 1.03], n 5 21) compared to V1
(0.44 [0.30, 0.66], n 5 58; adjusted for multiple

Table 2 Plasma markers

Crude levels of plasma markers ALS (n 5 95) CTL (n 5 88) p Valuea

CRP, mg/Lb 2.0 (2.0–3.5) 2.0 (2.0–3.0) 0.70

CK, U/Lc 178 (103–355.8) 107.0 (79.5–150.0) ,0.001

Ferritin, mg/Ld 177 (101.5–272) 106.0 (52.0–150.0) ,0.001

IL-6, pg/mLe 0.48 (0.32–0.66) 0.36 (0.23–0.58) 0.007

IFN-g, pg/mLf 0.72 (0.20–1.69) 2.24 (1.25–3.11) ,0.001

TNF-a, pg/mLg 5.19 (2.44–7.54) 1.15 (0.89–1.66) ,0.001

IL-1b, pg/mLg 0.09 (0.09–0.09) 0.02 (0.02–0.09) ,0.001

IL-2, pg/mLg 0.63 (0.34–0.99) 0.09 (0.06–0.34) ,0.001

IL-8, pg/mLb 3.69 (2.50–5.68) 1.91 (1.22–3.08) ,0.001

IL-12p70, pg/mLh 1.44 (1.15–5.51) 0.06 (0.06–1.15) ,0.001

IL-4, pg/mLf 0.16 (0.16–0.28) 0.01 (0.01–0.16) ,0.001

IL-5, pg/mLb 0.58 (0.28–1.13) 0.21 (0.12–0.31) ,0.001

IL-10, pg/mLh 1.23 (0.33–2.14) 0.13 (0.08–0.26) ,0.001

IL-13, pg/mLi 3.10 (0.90–6.49) 0.46 (0.12–1.01) ,0.001

Abbreviations: ALS5 amyotrophic lateral sclerosis; CK5 creatine kinase; CRP5 C-reactive
protein; CTL 5 controls; IFN 5 interferon; IL 5 interleukin; TNF 5 tumor necrosis factor.
Values are median (interquartile range). Missing data were due to poor intra-assay
coefficient of variation (.20%) in the multiplex assay or exceeding ranges of interfering
factors (hemolysis, icterus, and lipemia).
ap Values from Mann-Whitney U test for continuous variables.
bMissing data for 2 ALS samples.
cMissing data for 7 ALS samples and 3 CTL samples.
dMissing data from 6 ALS samples and 3 CTL samples.
eMissing data from 6 ALS samples and 4 CTL samples.
fMissing data from 4 ALS samples.
gMissing data from 3 ALS samples.
hMissing data from 5 ALS samples.
iMissing data from 8 ALS samples.
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Figure 1 Principal component analysis (PCA) of patients with amyotrophic lateral sclerosis (ALS) vs controls

PCA analysis shows a good separation between ALS and controls of the expression levels of the 11 cytokines under inves-
tigation, more significant when sex-specific groups are considered. (A) ALS (green squares) and controls (yellow squares),
(B) male only ALS (green squares) and controls (yellow squares), and (C) female only ALS (green squares) and controls (yellow
squares).
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comparison, p 5 0.002). The median ALSFRS-R
scores (IQR) at V1 and V6 were 39 (34.5, 43.0)
and at 32.5 (21.5, 36.0), respectively. Data from
the baseline measurements in all ALS cases under
investigation (n 5 95) and in controls (n 5 88) are
also provided in figure e-1 as references.

Figure 3 displays the scatterplots of longitudinal
IL-6 levels in plasma from patients with ALS sub-
grouped according to progression rate at baseline,

sex, site of onset, ALSFRS-R score, and the use of
riluzole. A mild but significant increase of IL-6
plasma levels towards the end of follow-up (V6) is
demonstrated in slow progressors, male, limb onset,
less functional impairment at V1, and ALS cases trea-
ted with riluzole. In the longitudinal cohort, patients
treated with riluzole and those not on treatment (n5

42/17) had comparable features such as age at onset,
sex, age/progression rate/ALSFRS-R score at baseline,

Figure 2 Odds ratios (ORs) from the multivariate logistic regression analysis and hazard ratios (HRs) from the
Cox regression analysis

(A) OR (filled circle) and relative 95% confidence interval (CI) (whiskers) of plasma markers in amyotrophic lateral sclerosis
(ALS) and controls frommutually adjustedmultivariate logistic regressionmodels; dashed line represents null hypothesis (no
difference between ALS and controls). (B) HR (filled circles) and relative 95% CI (whiskers) of plasma markers estimating
risk of death among patients with ALS from mutually adjusted multivariate Cox regression analysis. The dashed line repre-
sents null hypothesis (no association with survival). p , 0.5, 0.5 , p , 0.1, and p . 0.1 are shown in blue, mulberry, and
black, respectively. CRP5C-reactive protein; CVD5 cardiovascular disease; IFN5 interferon; IL5 interleukin; TNF5 tumor
necrosis factor.
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Figure 3 Longitudinal expression levels of interleukin (IL)–6 for patients with amyotrophic lateral sclerosis
(ALS)

The scatterplots show IL-6 plasma levels (black dots) obtained at each follow-up time point from the 59 patients with ALS
included in the longitudinal cohort.Median andquartile ranges at each visit are presentedwith red bars. Patientswere subgrouped
according to (A.a, A.b) progression rate calculated at baseline (with a cutoff value of 0.5); (B.a, B.b) sex; (C.a, C.b) site of disease
onset; (D.a, D.b) ALS Functional Rating Scale–Revised (ALSFRS-R) score at V1 (cutoff value of 40); and (E.a, E.b) whether they
were on riluzole or not. *p Value for Kruskal-Wallis test examining difference between all visits; **p value adjusted for multiple
comparison between V1 and V6; ***p value adjusted for multiple comparison between V2 (D only) and V6.
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disease duration between onset and diagnosis, and
disease duration between diagnosis and baseline.

We examined the correlation between cytokines
and the progression of disease in patients with ALS
during the follow-up period (intervisit progression:
DALSFRS-R and the slope of ALSFRS-R); no mean-
ingful associations were found between the intervisit
progression and the plasma cytokine levels at the ear-
lier visit in 212 consecutive visit pairs obtained from
our longitudinal cohort of 59 patients with ALS. No
association was observed between CRP, CK, and fer-
ritin and the V1–V2 intervisit progression.

DISCUSSION The results of our study show a dichot-
omy in the pattern of cytokine regulation in blood
from patients with ALS, with a broad but not uniform
upregulation of TNF-a, IL-1b, IL-2, IL-8, IL-12p70,
IL-4, IL-5, IL-10, and IL-13, in line with previous
studies,18,19 and the downregulation of IFN-g. When
the combined effects of all markers are accounted for,
IL-6, TNF-a, and IFN-g emerge as strong and
coherent disease signals, as already shown in a range
of other pathologic conditions.20

All cytokines under investigation in this study
show stable levels of expression throughout the
follow-up period, except for IL-6, which undergoes
a late-stage upregulation. This preliminary observa-
tion needs to be further validated, considering that
IL-6 has recently been established as a therapeutic tar-
get in ALS and a phase II clinical trial is planned.21

The strong proinflammatory effect of TNF-a has pre-
viously been associated with late-stage ALS, when
neuroinflammation is most detrimental to motor
neurons.20 Strong evidence supports TNF-a-induced
oxidative damage to actin, resulting in the collapse of
growth cones and neurite retraction.22 In line with
these observations, the positive correlation between
TNF-a and plasma NfL observed in this study sup-
ports a role for TNF-a in neuroaxonal destruction,
with downstream NfL release in biological fluids. Our
finding of a significant reduction of IFN-g compared
to controls after adjustment for comorbidities and
treatments is intriguing and in contrast with previous
data from smaller case-control studies showing
elevated IFN-g levels in postmortem spinal cord,
CSF, and serum from patients with ALS.18,23 Our
observation may be explained by the relocation of
IFN-g-secreting Th1 cells into the CNS24 or by the
upregulation of IFN-g receptor in the CNS in
response to the high levels of TNF-a and IL-1.25,26

Of the activated inflammatory markers in our
study, IL-6, IL-8, TNF-a, IL-10, IL-4, and IL-13
can be produced physiologically by contracting mus-
cle fibers and can be overexpressed during strength
training.27 It is possible that hyperexcitable muscles
prone to fasciculation and atrophy in ALS may also

cause overexpression of these markers. In rodent
models of ALS, neuromuscular junction destruction
and distal axonopathy precede motor neuron loss28;
the early accumulation of macrophages expressing
CD11b and CD68 in axons29 and of other immuno-
logic factors originating from the muscle may play an
active role in motor neuron degeneration by inhibi-
tion of neurite outgrowth.

IL-6 promotes glucose uptake and fatty acid oxida-
tion–induced lipolysis and regulates muscle–adipose
tissue crosstalk.30 The systemic immune response we
observe in ALS may be linked to the state of hyperme-
tabolism and of lipid dysregulation now widely recog-
nized in ALS.31 Hence, the observed late IL-6
regulation may reflect the increasing metabolic imbal-
ance associated with the disease process in ALS. We
also report how the expression of CK, a known marker
for muscular damage, and of IL-5, which is central to
B-cell immunity and eosinophil activation, change syn-
ergistically. IL-5 and other cytokines driving the more
benign form of inflammation defined as Th2 have not
been reported to change in plasma expression after
exercise.27 Since high CK plasma levels are also associ-
ated with better neurologic function (higher ALSFRS-R
score) and slower progression rate in our patients with
ALS, the correlation between CK and IL-5 expression
may be indicative of neurorestorative mechanisms rather
than being a measure of neuromuscular dysfunction.
The speculative nature of these observations will need
further studies to improve our understanding of the
pathologic processes linked to ALS.

Our panel of inflammatory markers and NfL have
both been reported as differentially regulated in blood
from patients with ALS and to have a prognostic
value with regard to the rate of disease progression.
However, the reported changes of circulating inflam-
matory markers throughout the disease course may be
a more representative measure of the disease burden
in a neuromuscular disorder like ALS, which engen-
ders destruction of motor areas in the CNS and mus-
cle functional derangement by denervation.
Neurofilaments release in biological fluids relates only
to neuroaxonal damage and not to the wider neuro-
muscular pathology observed in ALS. Hence, NfL
and the reported inflammatory markers should be
considered as complementary signals within an
improved panel of disease biomarkers for ALS.

Among the activated markers in our study, IL-2
and ferritin are risk factors for survival. IL-2 has not
been directly linked to ALS as a biomarker, nor has
it been found to have a direct pathogenic role in
the disease. IL-2 may modulate the disease process
by induction of Treg or by activation of natural killer
(NK) cells known to be cytotoxic for a wide range of
neurons. The reported increase of NK and CD81 T
cells in the blood of patients with ALS supports not
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only the important contribution of the innate
immune system in the development of ALS, but also
a potential role for IL-2.9,32 The interplay among
IL-2, Treg, NK, and cytotoxic T cells is at the center
of intense research into potential immunomodulatory
therapeutic strategies in ALS.

Our data on ferritin upregulation in blood, its
prognostic significance, and positive correlation with
PRB in patients with ALS supports previous find-
ings,5,33 even though a protective effect was reported
in a small sample–sized predictive model.34 Ferritin is
able to sequester iron and reduce the amount of iron
available for reactive oxygen species, thus acting as
a defense mechanism against oxidative stress.35 It
has been shown that TNF-a and IL-1a can regulate
ferritin transcriptionally,36 while TNF-a, IL-1b, and
IL-6 exert the same function post-transcription-
ally.37,38 These observations corroborate the marked
systemic upregulation of these cytokines and the
prognostic effect of ferritin observed in our study.
With regard to changes that may be associated with
a better prognostic outlook, we have also observed
a protective effect of diabetes for the survival of our
patients with ALS (figure 2B), which is in line with
a recent population study from Danish cohorts.39

It has previously been shown that CSF hosts rele-
vant components of ALS immunoreactivity,19 includ-
ing the regulation of the proinflammatory and
neutrophil activator IL-8 linked to shorter disease dura-
tion and of the monocyte chemoattractant protein-1
(MCP-1) associated with prolonged survival.34 CSF is
unanimously considered the most reliable source of
biological signals of neurodegeneration for its anatom-
ical contiguity to affected nervous tissues; it is naturally
enriched of by-products of neuronal destruction or
remodeling. Recently, combined CSF and plasma
inflammatory markers have been proposed as an
orthogonal biomarker to model prognosis in ALS,
including plasma IFN-g-induced protein 10, IL-5,
and L-ferritin, as well as CSF IL-8, MCP-1, and
IFN-g plasma/CSF ratio.34 However, immunologic
signals and other tissue-specific signals arising from
the neuromuscular pathology seen in ALS may be
underrepresented in CSF. Lumbar punctures are also
impractical when serial CSF sampling is needed for
longitudinal biomarker studies, particularly in patients
with advanced ALS. Peripheral blood represents a com-
plex but more accessible alternative to CSF for long-
term immune monitoring of ALS40 and the most
appropriate matrix to measure systemic changes linked
to the development of neurodegeneration.

The composite inflammatory response we report
in this article, with the variable regulation of TNF-a,
IL-6, and IFN-g, the rising levels of IL-6 with disease
progression, and the prognostic values of IL-2/ferritin
with regard to survival is an additional tool for better

comprehensive disease stratification in ALS. This pre-
liminary observation requires further validation in
larger and independent ALS cohorts. A better under-
standing of the regulation of circulating immunologic
factors in patients with ALS has several advantages
and could be used (1) to increase the diagnostic
potency of existing panels of neurochemical bio-
markers, (2) for the prognostic stratification of the
disease, and (3) to assess treatment response in clinical
trials, particularly if immunomodulatory strategies are
involved. The adjustment for factors involved in the
systemic inflammatory response in our analyses adds
to the specificity of the ALS immune response. The
proinflammatory or neuroprotective effect of cyto-
kines is likely to depend on the disease stage and
the biological microenvironment they are embedded
in. Only the combined monitoring of the expression
of these immunologic markers and of other clinical
and biological measures of disease progression and
of treatment response can establish inflammatory
markers as useful disease monitoring tools in ALS.
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