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Abstract

Purpose—Microbial communities in or on the body (i.e., the microbiome) are highly 

physiologically active and influence human health. Although environmental scientists are 

increasingly aware of the gut microbiome, the respiratory microbiome's role in the human 

response to inhaled pollutants is largely unknown.

Methods—We reviewed the literature and present mechanisms by which the microbiome might 

mediate or modify human responses to inhaled pollutants.

Results—The respiratory microbiome has been shown to influence chronic lung disease 

exacerbations, and increasing evidence indicates a role in disease development. Research also 

suggests that the respiratory microbiome could plausibly metabolize inhaled pollutants or 

modulate host inflammatory responses to exposure. Because these responses depend on the 

microbes present, defining the composition of the resident microbiome and how microbial 

communities shift with exposure may help to explain variations in susceptibility to inhaled 

pollutants. More research is needed but significant measurement challenges remain for large 

epidemiological studies of the respiratory microbiome.

Conclusions—The respiratory microbiome is likely an underexplored intermediate and potential 

cause of individual susceptibility to inhaled irritants/toxicants. Characterizing the microbiome's 

role in the human response to inhaled exposures could improve our understanding of the casual 

agents of exposure and suggest novel public health interventions.

Inhaled irritants and toxicants represent an important environmental exposure that are linked 

to death and disease. Health effects associated with these exposures include increased risks 

of lung cancer, heart and respiratory diseases, as well as metabolic disorders.
1
 Given 

Corresponding Author: Sara D. Adar, 1420 Washington Heights, Ann Arbor, MI 48104, Ph: 734-369-4676, ; Email: 
sadar@umich.edu 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosures: None

HHS Public Access
Author manuscript
Ann Epidemiol. Author manuscript; available in PMC 2017 May 01.

Published in final edited form as:
Ann Epidemiol. 2016 May ; 26(5): 355–359. doi:10.1016/j.annepidem.2016.03.010.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



continuous exposures across the lifetimes of all people, it is estimated that 3.1 million deaths 

and 3.1% of disability-adjusted life years are lost globally per year due to exposures to 

outdoor particulate pollution. Exposures to air pollution from household combustion of solid 

fuels account for an additional 3.5 million deaths and 4.5% of disability-adjusted life years 

lost. Active and passive exposures to tobacco smoke further contribute 6.3 million deaths 

and 6.3% of disability adjusted life years lost. Collectively, these impacts place the 

inhalation of air pollutants within the top 10 risk factors for the Global Burden of Disease.
2

Governmental regulations have successfully reduced outdoor air pollution concentrations 

and limited tobacco smoke exposures in the United States, with corresponding 

improvements in health.
3-6 Excess risk remains, however, even at levels of pollution below 

existing standards. In addition, not all individuals bear the same burden of disease from 

inhaled pollution exposures. Enhanced susceptibility has been reported among children, 

seniors, and persons with obesity, diabetes, coronary artery disease, and asthma.
7,8 Although 

these factors may be associated with a several-fold larger risk in any individual investigation, 

the characteristics conferring risk are not always consistent across studies. This observation 

suggests that traditional risk factors alone may be insufficient to identify those at enhanced 

risk.

In this article we hypothesize that microbial communities, especially those within the 

respiratory tract, may have an important, yet under-recognized, role in the human response 

to inhaled irritants/toxicants. Microbes, including bacteria, fungi, and viruses, reside on all 

human tissues exposed to the external environment and outnumber human cells by 

approximately ten to one. Collectively referred to as the microbiome, microbial communities 

in or on the body are highly physiologically active and known to influence the well-being of 

their host.
9
 While most research is focused on relationships between the microbiome and 

health, environmental scientists have begun to pay increasing attention to the gut 

microbiome since microbes of the gut have been shown to metabolize environmental 

toxicants,
10-12

 stimulate host inflammatory response, and affect risk of host infection.
9
 In 

spite of the clear physiological parallels, however, very little thought has been given to the 

role of the respiratory microbiome in the human response to inhaled irritants/toxicants. Here, 

we describe what is known about the respiratory microbiome, discuss how it and the gut 

microbiome might influence the human response to inhalation exposures, and encourage 

researchers to consider the respiratory microbiome as a mechanistic intermediate and 

potential cause of individual susceptibility to inhaled irritants/toxicants.

What Do We Know About the Respiratory Microbiome?

For over 100 years, traditional wisdom was that in those without lung diseases, microbial 

communities resided only in the upper (i.e., mouth and nose) but not the lower (i.e., lungs) 

airways. More recently, however, the use of culture-independent, sequence-based techniques 

has clearly shown that the lungs are not sterile.
13,14 The current state of the science can be 

found summarized by several excellent review papers
15-18

 with brief highlights below.

The origins of the microbial communities in the lungs include inspired air, which contains 

around 100 bacteria/m3,
19

 as well as those microaspirated and/or dispersed from the 
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oropharynx.
18,20 With no physical barrier blocking bidirectional movement, the lungs also 

actively eliminate microbes via mucociliary clearance, cough, and innate and adaptive host 

immune responses. In health, alveolar macrophages, antibacterial surfactant, and other 

environmental conditions (e.g., temperature, pH, and nutrients) inhibit extensive bacterial 

growth, resulting in low colonization of the lungs in comparison to other compartments. For 

example, it is estimated that there are approximately 1,000 times fewer microbes in the lungs 

than the mouth and 1 million to 1,000 million times fewer microbes than in the gut.
21,22 In 

spite of their low abundances, there are diverse and dynamic communities present. Bacterial 

species common to healthy lungs include Streptococcus, Prevotella, and Veillonella.
19,23

In diseased lungs, conditions often become more favorable for bacterial reproduction. 

Evidence of this growth is provided by a small, but growing, literature documenting different 

bacterial communities between healthy individuals and those with chronic respiratory 

diseases such as cystic fibrosis, chronic obstructive pulmonary disease (COPD), and 

asthma.
14,24-28

 For example, individuals with asthma or COPD have been reported to have 

higher abundances of Proteobacteria than healthy individuals.
13,28 This finding is important 

because this phylum includes known respiratory pathogens.

Interestingly, it appears as though the respiratory microbiome community structure may not 

just reflect the presence of a disease but may also correlate with disease severity. For 

example, differences in bacterial communities in the lungs have been associated with asthma 

severity
29-32

 and with the frequency of exacerbations in patients with bronchiectasis.
33 

There is also evidence that bacterial communities in the lungs are related to responsiveness 

to therapeutic interventions
27

 and administration of probiotics has been shown to reduce the 

frequency of cystic fibrosis exacerbations.
33,34 Collectively, these findings suggest an 

important role for resident bacteria not only in disease development, as proposed by the 

hygiene hypothesis,
35

 but also for the initiation of exacerbations and potentially for 

treatments.

How Might the Respiratory Microbiome Influence the Human Response to 

Inhaled Irritants/Toxicants?

There is a growing understanding that our microbiota play a critical role in the development 

and mediation of many human processes. As some of the first cells in the body encountering 

inhaled environmental toxicants, it is likely that the respiratory microbiome is both affected 

by these exposures and affects these exposures (Figure 1). In the ideal world, the 

microbiome would serve as a protective shield for human host. However, it is also likely that 

the human host gets caught in the cross-hairs of the microbial response to inhaled pollutants 

and experience collateral damage from those interactions.

One possible mechanism underlying the hypothesis that the microbiome blunts the impacts 

of human exposure, or that it amplifies it, is that members of the respiratory microbiome can 

be selectively injured or killed by inhaled toxicants. Inhaled irritants/toxicants can deposit 

throughout the respiratory tract, with larger particles depositing more prominently in the 

upper airways (i.e., nose) and the smallest particles and gases reaching deep into the lower 

airways.
36

 If these inhaled exposures induce direct oxidative stress or changes to growing 
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conditions such as local alterations in pH, a likely result could be a shift in which microbes 

are present (i.e., the microbiome community structure). Disrupting the community structure 

of the microbiome could then result in changes in the functions it performs, with 

downstream consequences for human health. Specifically, we hypothesize that changes to 

microbial function will include alterations to the balance of anti-oxidant and pro-

inflammatory conditions. We propose such a mechanism based on the known modulation of 

the host immune response by the microbiome
16,24. Additionally, there is strong evidence 

from controlled and observational studies implicating oxidative stress and inflammation as 

key mechanisms in the pathogenesis of inhaled pollutants.
37

 This conjecture is consistent 

with findings that chronic inflammatory conditions such as asthma and diabetes
8,38-43

, 

which themselves have been linked to the microbiome, are associated with differential 

susceptibility to inhaled pollution.

Although there is little known about the impacts of inhaled environmental exposures on the 

respiratory microbiome, research from the gut has demonstrated selective shifts in microbial 

community structure and function following the ingestion of environmental pollutants. For 

example, arsenic-treated mice experienced reductions in Firmicutes but not Bacteroidetes in 

the gut.
44

 These same exposed mice also exhibited bidirectional changes in key metabolites, 

including those related to bile acids, lipids, amino acids, and isoflavones. Given that many of 

the observed changes are related to altered absorption of nutrients from the gut, it is 

plausible that alterations to the microbiome may underlie observed associations between 

metals and metabolic diseases such as obesity and insulin resistance.
45-47

 New evidence also 

points to changes in the gut microbial community structure following chemical exposures, 

including polychlorinated biphenyls, that reduced bacterial abundance following ingestion 

by mice.
48

With or without shifts in the microbial communities following exposure, a second plausible 

mechanism by which the microbiome might influence the human response inhaled 

exposures is based on its well-known ability to transform chemicals into forms that are more 

or less bioaccessible to humans. Bacteria have been known for decades to contribute to the 

biotransformation of environmental metals such as arsenic.
49

 Only recently, however, have 

scientists begun to characterize such biotransformations by the internal microbiome. One 

seminal study demonstrated that human intestinal bacteria were able in vitro to metabolize 

inorganic arsenic in contaminated soil into methylated arsenic compounds and 

thioarsenicals.
50,51 More recently, evidence of these transformations has been extended to 

other pollutants such as polycyclic aromatic hydrocarbons. These typically non-estrogenic 

by-products of combustion can be converted to compounds with estrogenic-like activity by 

bacteria from the human colon.
52

 Assuming that similar reactions occur within the microbial 

communities of the respiratory tract, is likely that the toxicity of inhaled pollutants, which 

include metals and polycyclic aromatic hydrocarbons, is influenced by microbiome-

mediated chemical conversions. In fact, a very recent study demonstrated that administration 

of antibiotics to mice altered their airway hyper-responsiveness following inhalation of the 

reactive gas, ozone.
53

Ultimately, because transformations of inhaled pollutants will depend on the specific 

microbes present and microbial communities differ between individuals,
9
 it is likely that the 
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microbiome contributes to variations in disease susceptibility. Interestingly, both early 

lifetime and recent ecological and social settings influence an individual's microbiome, 
54 

suggesting a novel mechanism for adaptation or exaggeration of human responsiveness to 

long-term exposures.

What Evidence is There of a Respiratory Microbiome Response to 

Environmental Pollutants?

An extremely small literature on smoking supports the hypothesis that inhaled air irritants/

toxicants may impact the respiratory microbiome. Most such research, however, is short-

term and from the subgingival environment. In this environment, lower abundances of 

health-promoting microbes and higher abundances of pathogens have been reported with 

smoking exposures.
55

 Interestingly, smoking appears to have a rapid impact on the oral 

microbiome with changes in bacterial colonization reported within 24-hours. 
56

 Smoking 

cessation has similarly been shown to shift the community composition of both dental and 

intestinal microbes within weeks.
57,58

Chronic differences in the microbiome of smokers has also been suggested in the 

oropharynx and, to a lesser extent, the nasopharynx.
59,60 By contrast, active smoking has not 

been shown to alter the community structure of the lower respiratory tract microbiome, at 

least in individuals with normal lung function defined spirometrically.
14,59 We consider it 

highly unlikely that the same is true in those with established COPD or asthma of even mild 

severity but this is a crucial topic for further investigation. Finally, epidemiological studies 

have shown both cigarette smoke and indoor biomass burning exposures are associated with 

higher respiratory infection rates from pneumococcal pneumonia, Legionnaire's disease, 

influenza, and tuberculosis.
61-63

 Smoking also clearly depresses the ability to fend off 

respiratory viral infections.
64-68

 Hence, smoking and potentially other air pollutants may 

foster outgrowth of opportunistic respiratory bacterial species that can exploit the niche 

created by transient epithelial damage induced by respiratory viral infection and the 

immunosuppression that follows viral clearance.
69-71

What Challenges Do We Face in Studying the Role of the Respiratory 

Microbiome?

One of the key challenges to clinical and epidemiological research on environmental 

exposures and the respiratory microbiome relates to existing measurement techniques. 

Approaches to study microbial communities of the lungs have traditionally used 

bronchoalveolar lavage and induced sputum.
31

 Although previous concerns about the 

potential for contamination during the bronchoscopic process have been allayed based on 

results of protected specimen brushing,
20

 both of these methods are high-burden techniques 

for healthy individuals. This burden limits the ability of researchers to pursue the large scale 

studies likely required to understand the complex interactions that may be at play. For this 

reason, we and others are actively working to identify a less invasive media that can reliably 

quantify the respiratory microbiome.
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Another important issue for respiratory microbiome research is that of low microbial 

biomass. Given that microbial communities are present in low abundances in the lungs, extra 

care must be taken to prevent confusion between the true signal and that from other sources 

(i.e., “background”). Distortion of the microbial community structure can occur due to the 

technical aspects of high-throughput sequencing including the presence of nucleic acids 

from human cells or bacteria in the sampling reagents, differences in extraction protocols, as 

well as PCR efficiency.
72-75

 Although careful accounting of these sources of noise will 

produce meaningful results, this is not always the default procedure. Thus researchers must 

be diligent in adopting adequate quality assurance protocols for their own research and 

acknowledging the limitations of findings from laboratories that have not used such 

procedures.

Finally, we have focused this review on the respiratory microbiome but would be remiss not 

to acknowledge the potential role of the gut microbiome in the human response to inhaled 

exposures. First, the theory of a “common mucosal response” implies that lymphoid cells 

can travel between the gut and lungs to create a widespread inflammatory response.
76

 In 

fact, there is a rich evidence to support the importance of the gut microbiome to the airways 

with reports of modulation of the immune response to respiratory infection by the gut and 

associations between the gut microbiome and airway inflammation following allergen or 

viral challenges.
77-80

 There are also direct exposures of the gut to airborne irritants/toxicants 

as the body clears particles deposited in the lungs to the intestine by way of mucociliary 

transport.
36

 Moreover, air pollutants can deposit on our food and water supplies
81

 with 

recent evidence that the ingestion of food contaminated by air pollution shifts of the gut 

microbiome towards increased Firmicutes and Verrucomicrobia and decreased 

Bacteroidetes.
82,83 Thus, the respiratory microbiome may be only part of the story regarding 

the role of the microbiome on inhaled pollutants.

Summary and Implications

There is a growing understanding that the human responsiveness to external assaults can be 

shaped by our microbiome. In this article, we presented evidence that the respiratory 

microbiome is an active player in human health and proposed mechanisms by which the 

microbiome might plausibly mediate or modify the human health response to inhaled 

irritants/toxicants. Such a role would have several important implications for our 

understanding of how inhaled irritants/toxicants impact health and who is most susceptible. 

First, it would imply new avenues for exploring toxicity as well as shine a new light on old 

ones. Characterizing which microbial communities and functions are influenced by or 

influence exposures may lead to new insights as to which pollutants pose the greatest risk to 

humans but may cause new considerations in the applicability of in vitro and in vivo animal 

testing in the absence of realistic human microbial communities. Second, this line of 

evidence could provide new insight as to who may be at greatest risk from exposures and 

suggest novel public health interventions to protect these individuals. For example, the 

importance of the microbiome to differentiate who is at elevated risk from exposures could 

open the door for the use of probiotics (live bacteria), prebiotics (to target the growth of 

certain beneficial bacteria), or targeted antibiotics to shift individuals at heightened 

susceptibility towards a more protective microbiome. For all of these reasons, we encourage 
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investigators to consider the microbiome in future studies of the human response to inhaled 

irritants/toxicants.
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Figure 1. 
Hypothesized interplay of inhaled irritants, the respiratory microbiome, and health
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