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Abstract

Objective—It is unclear whether physiologic and metabolic biomarkers are associated with 

chronic stressors evidenced during early childhood.

Methods—Cross-sectional data were obtained from a cohort of healthy, prepubertal (Tanner 

stage <2) children (n = 96; age: 8.06 [7.8] years; M = 51 [53%]; F = 45 [47%]; African-American 

= 26 [27%]; Caucasian = 70 [73%]; with obesity = 21 [22%]; without obesity = 75 [78%]) from 

the MET study. Body mass index z-score (z_BMI), total body fat (BF), visceral adipose tissue 

(VAT), intrahepatic and intramyocellular lipids, and insulin resistance (HOMA-IR) were 

measured. Chronic stress was assessed using neighborhood concentrated disadvantage index (CDI) 

for the U.S. Census tracts in which participants resided. Spearman’s rank correlations were used to 

examine relationships, accounting for sex and race.

Results—CDI was not positively associated with inflammatory and metabolic markers of 

dysfunction. However, z_BMI (−0.234, P = 0.023), BF (−0.228, P = 0.028, n = 95), and VAT 

(−0.241, P = 0.042, n = 74) were significantly negatively associated with CDI. When stratifying by 

race, these relationships remained significant in Caucasian children only.
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Conclusions—These findings suggest chronic stress during early childhood is not associated 

with inflammatory and metabolic biomarkers, typically observed in adults. Therefore, exposure to 

stress during this critical developmental period may remain latent and emerge during a later 

developmental stage.

Introduction

Understanding the complex interactions of how the environment “gets under the skin” to 

predispose the states of metabolic dysfunction associated with obesity, diabetes, 

cardiovascular disease, and cancer requires a developmental perspective. Research that 

acknowledges the role of the environment during critical stages in the life course is limited 

(1-3). The developmental origins perspective proposes that there are critical developmental 

periods characterized by plasticity in genomic expression that can be affected by 

environmental conditions that ultimately define an adult phenotype associated with a variety 

of chronic diseases (4-8). The prenatal and perinatal periods as well as childhood and early 

adolescence have all been recognized as critical developmental periods in the life course. It 

has been shown that during critical periods of development, environmental conditions act 

through epigenetic mechanisms to affect the expression of genes involved in physiologic 

pathways that attempt to maintain biologic homeostasis given the environmental conditions 

an organism finds itself in (9-11).

There are two physiologic pathways where variability in the expression of particular genes 

could lead to physiologic and metabolic dysfunction associated with several adult chronic 

disease states. These pathways are the hypothalamic pituitary adrenal (HPA) pathway and 

the sympathetic adrenal medullary (SAM) pathway (2). There is growing recognition that 

social or nutritive stress represent the environmental exposures that initiate the 

developmental changes in these inflammatory pathways (8,12,13). It has been shown in both 

animal and human studies that social and nutritive stress affect the expression of critical 

genes involved in the HPA and SAM pathways (e.g., gluccocorticoid receptor) (8). The 

result is a pro-inflammatory adult phenotype evidenced by physiologic (e.g., visceral 

adiposity) and metabolic dysfunction (e.g., impaired insulin sensitivity) as well as elevated 

levels of a number of inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis 

factor (TNF)-α. Sustained metabolic and physiologic dysfunction (e.g., metabolic 

syndrome) is associated with a variety of negative health outcomes including cardiovascular 

disease, type 2 diabetes, and certain cancers (14). However, identifying the time period when 

exposures occur, as well as the temporal sequencing of exposure to the emergence of 

elevated inflammation and metabolic dysfunction, is a critical component of the 

developmental origins perspective that has not been clearly elucidated.

While there have been a number of literature reviews documenting the relationship between 

early life stress and adult disease, few studies have attempted to characterize the timing of 

exposure to stress throughout the life course and the emergence of the metabolic and 

physiologic changes associated with the metabolic syndrome (1,3,8,12,15). Some studies 

have suggested exposure to stressors during the critical developmental stages is evidenced 

by physiologic and or metabolic changes in childhood. For example, Gillman et al. (2008) 

found that prenatal and perinatal stressors (e.g., smoking, breast feeding duration) were 
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associated with obesity at 3 years old (16). However, they did not distinguish between 

visceral and subcutaneous obesity or assess any markers of metabolic dysfunction that might 

indicate alterations in gene expression. Another study of prepubertal, Hispanic children 

(Tanner stage < 3) had mixed results (17). Only school stress was associated with increased 

visceral adiposity and cortisol awakening response while total stress and other measured 

stressors were not (17). However, several studies have implied childhood and early 

adolescence may be a protected period where the effects of early stressors on gene 

expression are dormant. For example, Hankin et al. (2010) followed depressed and normal 

children through adolescence (preschool to ninth grade) and found that compared with 

normal children depressed children had hyporeactive cortisol responses as children but not 

during adolescence (18). Neurobiologists believe that childhood is a protected stage with 

regard to metabolic and physiologic responses to stress, a stage that ends with the onset of 

puberty (12). Consequently, the physiologic and metabolic changes associated with chronic 

exposure to social and nutritive stress in adults may not be evidenced in children exposed to 

the same stressors until after puberty.

Identifying the stage of maturation in which the physiologic mechanisms are reset and then 

sustained to adapt to a stressful environment will be essential to understanding the 

developmental origins of health outcomes, particularly metabolic and inflammatory profiles 

(10). The purpose of this study is to begin to characterize the emergence of the pro-

inflammatory phenotype associated with the social stress of living in an environment 

characterized by concentrated disadvantage. This exploratory, cross-sectional study assesses 

the metabolic and inflammatory biomarkers in prepubertal children (Tanner stage <2) and 

determines whether there is an association between neighborhood disadvantage concentrated 

disadvantage index, CDI and these biomarkers. This is one of the first articles to document 

these relationships in an exclusively prepubertal, white and black cohort of healthy children 

with and without obesity using state-of-the-art measures of adiposity and metabolic health.

Methods

Study population

Children in the MET (Mechanisms for the Metabolic Syndrome in Pre-pubertal Youth) study 

were accessed to assess this effect. The characteristics of the children have been described 

previously (19,20). In short, exclusively prepubertal, healthy children with and without 

obesity ages 7–9 years were enrolled from October 2005 through December 2010. The 

original study included black, white, Asian, Pacific Islander, and Hispanic youth; however, 

only black and white children were included for this analysis as only one Pacific Islander 

and one Hispanic child were enrolled. Phone interviews with the parent/guardians pre-

enrolled participants before final eligibility was determined by a complete medical 

examination by a pediatrician and screening blood test that included a comprehensive 

metabolic panel, a complete blood count, and a Tanner staging examination to confirm 

prepubertal status (21). Exclusion criteria included Tanner >2, cardiovascular disease or liver 

disease, being born from a mother with gestational diabetes, and/or immediate family 

history of type 1 or type 2 diabetes. Parent/guardians provided informed consent and the 

participants gave written assent prior to enrollment. The study was approved by the 
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institutional review boards at the Louisiana State University Health Sciences Center and 

Children’s Hospital in New Orleans, LA and Woman’s Hospital and the Pennington 

Biomedical Research Center in Baton Rouge, LA.

Anthropometrics and metabolic parameters

Anthropometric measurements were determined as previously described (19,20). Briefly, 

body mass index (BMI) was determined by the ratio weight (kg)/height (m2), and this was 

used to obtain the BMI z-score (z_BMI), based on age, gender, and race along with other 

criteria (22). Insulin resistance (HOMA-IR) was estimated by the homeostasis model 

assessment based on previously published methods (23); visceral adipose tissue (VAT) and 

subcutaneous adipose tissue (SAT) were determined by magnetic resonance imaging (MRI) 

in the fourth through fifth lumbar vertebrae area. A trained technician acquired spinecho T1 

weighted (TR ¼ 500; TE ¼ 20) images. The manual trackball technique was used to define 

adipose tissue. The MRI fat signal between the skin and abdominal muscle walls and intra-

abdominal adipose tissue area, along with signals from intraperitoneal, mesenteric, and 

omental depots, was used to calculate SAT as suggested previously (23-25). Total body fat 

(BF) was measured by dual-energy X-ray absorptiometry. Intrahepatic lipids (IHL) and 

intramyocellular lipids (IMCL) were assessed by proton magnetic resonance spectroscopy as 

detailed previously (20).

Circulating levels of pro- and anti-inflammatory molecules

Fasting serum levels (pg ml−1) of IL-1b, IL-6, IL-8, TNF-α, and MCP-1 and adiponectin 

were measured using Milliplex Map Kit (Millipore Corporation, Billerica, MA), as 

recommended by the manufacturer. Briefly, 25 ml of a 1:100 dilution of serum was mixed 

with immunobeads (supplied in the kit) and incubated overnight at 4°C, washed twice with a 

buffer to remove unbound products, and incubated with a detection antibody for 1 h at room 

temperature (20–25°C) with agitation. Finally, streptavidin-phycoerythrin was added and the 

samples were incubated 30 min at room temperature and washed twice and the fluorescence 

was detected on a BioPlex system (Bio-Rad, Hercules, CA). The unknown samples (sera) 

were analyzed in duplicate using a standard curve of known concentrations of each one of 

the tested molecules. The run included negative and control samples. To visualize the 

correlations, scatterplots of pairs of markers with significant Spearman’s correlation were 

constructed using the logarithmic values of the TNF-α, IHL, and IL-8 measurements. Owing 

to limits in the availability of these pediatric participant samples obtained from an ancillary 

study (26), we were unable to confirm the results by enzyme-linked immunosorbent assay, 

but our experience shows a strong correlation between the two techniques (Milliplex and 

enzyme-linked immunosorbent assay) (27).

Concentrated disadvantage index

Concentrated disadvantage is a widely used, area based index of social deprivation (28). The 

method for generating CDI is described in detail in the PhenX Toolkit, a collaboration 

between the Research Triangle Institute and the National Human Genome Research Institute 

to develop consensus measures for phenotypes and exposures (29). CDI is one of the most 

important indicators for a host of individual outcome measures that are incorporated at the 

neighborhood (i.e., census tract) level (30). The index is generated from a factor analysis of 
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the following census tract data extracted from the 2000 U.S. Census (during the study 

participants’ prepubertal years): percent of individuals below the poverty line, percent of 

individuals on public assistance, percent female-headed households, percent unemployed, 

percent less than age 18, and percent black. Study participants were geo-coded and linked to 

their census tract data. The factor analysis (principal component analysis using varimax 

rotation methods) confirmed the emergence of a single factor of concentrated disadvantage 

thereby undermining the likelihood of unique effects for any of the component variables.

Statistical analysis

Statistical analyses were carried out in SAS 9.3 (SAS Institute, Cary, NC). Tests were 

conducted at 0.05 significance level. For each analysis, effective sample sizes are reported as 

data are not available for all patients on all measured variables, as previously explained 

(19,20). Although the nature of the data set is multilevel, no multilevel analysis was 

implemented because 79.2% of census tracts included only one participant. Therefore, 

Spearman’s rank correlations accounting for sex and race were used to examine the overall 

relationships between CDI and the following metabolic and inflammatory markers: z_BMI, 

BF, VAT, SAT, HOMA-IR, IMCL, IHL, IL-6, IL-8, and TNF-α. Furthermore, Spearman’s 

rank correlations accounting for sex were used across and within races to examine the 

relationships between each individual CDI factor (percent of individuals below the poverty 

line, percent of individuals on public assistance, percent female-headed households, percent 

unemployed, percent less than age 18 years, and percent black) and each inflammatory and 

metabolic marker.

Results

Demographic, anthropometric, and CDI data were available for 96 black and white children 

in the original MET study; inflammatory and metabolic markers were available in a 

subgroup of 40 of these children. Analyses were carried out on the most complete data 

(Tables 1-3). The study participants were 53% male and had a mean (SD) age of 8.06 (0.78) 

years (Table 1). As reported previously, there were no significant differences in 

inflammatory and metabolic markers between white and black children, except for HOMA-

IR (31). Black children in the study had higher levels of insulin resistance than the white 

children (Table 1).

Several associations between neighborhood CDI and the inflammatory and metabolic 

markers were noted. With regard to the metabolic markers, we observed a negative 

association between CDI and three metabolic parameters: z_BMI (P = 0.023), BF (P = 

0.028), and VAT (P = 0.042) (Table 2). When stratified by race, these relationships only 

remained significant in white children (respectively, P = 0.025, P = 0.015, and P = 0.035). 

No significant relationships were found between CDI and inflammatory markers (e.g., IL-6, 

IL-8, TNF-α). However, a negative relationship between IL8 and CDI (P = 0.201), 

particularly in black children (P = 0.124), approached significance. Further investigation of 

this potential relationship is warranted in a larger population.

We next examined the correlation between each inflammatory and metabolic marker and 

each CDI factor (i.e., percent of individuals below the poverty line, percent of individuals on 
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public assistance, percent female-headed households, percent unemployed, percent less than 

age 18 years, and percent black) in order to determine whether the inclusion of percent black 

in the index represented a potential bias to the observed associations between CDI and 

inflammatory and metabolic markers. As can be observed in Table 3, individually, percent 

female-headed household was negatively related to z_BMI (P=0.011), BF (P = 0.008), VAT 

(P = 0.003), and SAT (P = 0.005). Additionally, percent unemployed was negatively related 

to BF (P =0.047) and percent less than age 18 years positively related to VAT (P = 0.038). 

When stratified by race and partialed for sex, percent female-headed household only 

remained inversely related to z_BMI (P = 0.008), BF (P = 0.003), VAT (P = 0.002), and SAT 

(P = 0.002), in white children.

Discussion

The results indicate that, in contrast to adults, neighborhood disadvantage was not positively 

associated with markers of inflammation and metabolic dysfunction in prepubertal children 

in this sample. Conversely, there was an unexpected negative relationship between 

neighborhood disadvantage and obesity and early markers of metabolic disease in these 

prepubertal children. Assuming the levels of concentrated disadvantage were sufficient to 

stimulate a stress response in these children, the findings support the neurobiological 

argument that early childhood represents a protected period when the effects of social and or 

nutritive stress are not evidenced by a pro-inflammatory state or metabolic dysregulation as 

seen in adults. Although the results of this exploratory, cross-sectional study are 

observational, it may be that the effects of concentrated disadvantage during early stages of 

development are not evidenced until children have transitioned to the pubertal or 

postpubertal period of development. This finding is consistent with a latent trajectory with 

regard to the life course perspective and consistent with the physiologic changes related to 

puberty (i.e., maturation of the HPA axis) (2,32).

The latent trajectory is one of two trajectories (latent and cumulative) which may explain, in 

part, the relationship between an environmental exposure to the expression of a phenotype 

(2,32). A latent effect indicates that the effect of an environmental exposure at one stage is 

not immediately evidenced but emerges at a later stage. For example, Gunnar and Quevedo 

(12) suggest childhood is a protected life stage with regard to stressful effects of 

environment possibly due to an immature HPA axis whereby the altered gene expression 

will only emerge once the HPA axis matures (e.g., adrenarche) (12). In contrast, a 

cumulative effect indicates that the effect of the environmental exposure gradually impacts 

emergence of the phenotype. For example, Cole (13) states that some gene expression is 

recursively stimulated by its own products and therefore may self-propagate once initiated 

by external environmental stimuli. Few studies have attempted to explicitly test these effects 

among the appropriate sample (e.g., prepubertal youth) and using the appropriate measures.

The observation that percent black is one of the components of CDI prompted a 

deconstructed analysis of the various components of the index. Interestingly, percent female-

headed households tended to be the strongest factor inversely associated with the various 

inflammatory and metabolic markers. This sensitivity analysis provides some assurance that 

the inclusion of percent black in the CDI did not bias the results.
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There are a number of limitations in this study, one of which is the small sample of 

participants due to the challenges of implementing the study in young children (ages 7–9 

years). Our study used accurate, state-of-the-art methods (VAT and SAT by MRI; BF by 

dual-energy X-ray absorptiometry, etc.) to assess obesity and metabolic biomarkers which, 

due to their intensive nature, resulted in missing data. As expected, missing data occurred 

more frequently in intensive tests that were more difficult for children in this age group to 

successfully complete, compared to simpler measurements. Yet the inclusion of such 

advanced measures and methods is a strength, as the use of these measures in a cohort of 

otherwise healthy, exclusively prepubertal (<2 Tanner) black and white children with and 

without obesity, age 7–9 years, has only previously been reported in a few studies 

(19,20,31). Despite the small sample, statistically significant correlations that warrant further 

investigation were observed. Another limitation is the use of 2000, rather than 2010 U.S. 

Census data, to calculate the CDI. Prepubertal study participants, 7–9 years of age, were 

enrolled in the study between 2005 and 2010. At this time, all would have been exposed to 

environments characterized by 2000 census data during early prepubertal development. 

Conversely, by the year 2010 some of the participants who enrolled in the study during the 

first few years would have already transitioned into the pubertal and postpubertal stage of 

development. Our participants were classified as exclusively prepubertal using standard 

physician examination (Tanner staging); thus, the time of exposure should align with this 

period of development to accurately examine potential health outcomes. In addition, the 

level of exposure, that is, the number of years the participant resided in the neighborhood 

(i.e., census tract) from which census data were extracted to calculate concentrated 

disadvantage is unknown. Lastly, because this was a cross-sectional, observational study, it 

is not possible to demonstrate a causal relationship between CDI and inflammatory and 

metabolic biomarkers. Therefore, prospective studies are imperative to unraveling the 

complex sequence by which stressors during early childhood impact inflammatory and 

metabolic health outcomes later in life.

Conclusion

Chronic stress during early childhood is not associated with an impaired metabolic and 

inflammatory profile. Thus, children may be protected from negative health outcomes 

promoted by neighborhood environmental stressors prior to puberty. There are racial 

differences in the extent, but not the direction, of these relationships. Childhood and early 

adolescence marks a critical period in the life course characterized by plasticity in genomic 

expression that can be affected by environmental conditions. This may ultimately result in an 

adult phenotype associated with a variety of chronic diseases. Longitudinal studies in 

developing youth are needed to determine the effect of timing of exposure to stress 

throughout the life course on the emergence of the inflammatory and metabolic changes 

associated with cardio-metabolic disorders.
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TABLE 2
Spearman correlation (ρ) between CDI and inflammatory and metabolic markers overall 
and by race

Total
a

White
b

Black
b

N ρ P-value N ρ P-value N ρ P-value

z_BMI 96 −0.234 0.023
c 70 −0.269 0.025

c 26 −0.095 0.652

Body fat 95 −0.228 0.028
c 69 −0.293 0.015

c 26 −0.041 0.848

VAT 74 −0.241 0.042
c 58 −0.280 0.035

c 16 −0.103 0.715

SAT 74 −0.227 0.055 58 −0.294 0.026 16 0.014 0.962

HOMA-IR 68 0.050 0.691 48 0.022 0.885 20 0.233 0.338

IMCL 90 −0.139 0.196 67 −0.161 0.195 23 −0.071 0.752

IHL 84 0.058 0.606 62 −0.012 0.924 22 0.252 0.271

IL-6 37 −0.117 0.503 27 −0.010 0.962 10 −0.357 0.345

IL-8 37 −0.221 0.201 27 −0.120 0.560 10 −0.551 0.124

TNF-α 37 0.054 0.757 27 −0.036 0.860 10 0.175 0.652

a
CDI is partialed for race and sex.

b
CDI is partialed for sex.

c
P-value <0.05.
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TABLE 3
Spearman correlation between concentrated disadvantage individual variables and 
inflammatory and metabolic markers overall and by race

n
% Unemployment,

ρ
% Black,

ρ

% Female head of
house,

ρ
% Poverty,

ρ

% Receive public
assistance

ρ

% Under
18 years,

ρ

z_BMI 96 −0.195 −0.084 −0.263
a −0.099 −0.084 0.068

Body fat 95 −0.207 −0.025
a

−0.275
a −0.103 −0.049 0.128

VAT 74 −0.140 −0.023 −0.345
a −0.030 0.005 0.245

a

SAT 74 −0.129 −0.001 −0.330
a −0.067 −0.023 0.218

HOMA-IR 68 0.104 0.162 −0.082 0.214 0.182 0.025

IMCL 90 −0.147 −0.013 −0.177 −0.060 −0.009 0.112

IHL 84 0.013 0.048 0.039 0.047 0.030 −0.030

IL-6 37 −0.096 0.010 −0.124 −0.132 −0.258 0.167

IL-8 37 −0.180 −0.165 −0.211 −0.156 −0.298 −0.039

TNF-α 37 0.098 0.0230 0.038 0.030 0.084 0.089

a
P-value <0.05.
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