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ABSTRACT

In many parts of the world forest disturbance regimes have intensified recently, and future climatic changes are
expected to amplify this development further in the coming decades. These changes are increasingly challenging
the main objectives of forest ecosystem management, which are to provide ecosystem services sustainably to society
and maintain the biological diversity of forests. Yet a comprehensive understanding of how disturbances affect these
primary goals of ecosystem management is still lacking. We conducted a global literature review on the impact of three
of the most important disturbance agents (fire, wind, and bark beetles) on 13 different ecosystem services and three
indicators of biodiversity in forests of the boreal, cool- and warm-temperate biomes. Our objectives were to (i) synthesize
the effect of natural disturbances on a wide range of possible objectives of forest management, and (ii) investigate
standardized effect sizes of disturbance for selected indicators via a quantitative meta-analysis. We screened a total
of 1958 disturbance studies published between 1981 and 2013, and reviewed 478 in detail. We first investigated the
overall effect of disturbances on individual ecosystem services and indicators of biodiversity by means of independence
tests, and subsequently examined the effect size of disturbances on indicators of carbon storage and biodiversity by
means of regression analysis. Additionally, we investigated the effect of commonly used approaches of disturbance
management, i.e. salvage logging and prescribed burning. We found that disturbance impacts on ecosystem services are
generally negative, an effect that was supported for all categories of ecosystem services, i.e. supporting, provisioning,
regulating, and cultural services (P < 0.001). Indicators of biodiversity, i.e. species richness, habitat quality and diversity
indices, on the other hand were found to be influenced positively by disturbance (P < 0.001). Our analyses thus reveal a
‘disturbance paradox’, documenting that disturbances can put ecosystem services at risk while simultaneously facilitating
biodiversity. A detailed investigation of disturbance effect sizes on carbon storage and biodiversity further underlined
these divergent effects of disturbance. While a disturbance event on average causes a decrease in total ecosystem carbon
by 38.5% (standardized coefficient for stand-replacing disturbance), it on average increases overall species richness
by 35.6%. Disturbance-management approaches such as salvage logging and prescribed burning were neither found
significantly to mitigate negative effects on ecosystem services nor to enhance positive effects on biodiversity, and thus
were not found to alleviate the disturbance paradox. Considering that climate change is expected to intensify natural
disturbance regimes, our results indicate that biodiversity will generally benefit from such changes while a sustainable
provisioning of ecosystem services might come increasingly under pressure. This underlines that disturbance risk and
resilience require increased attention in ecosystem management in the future, and that new approaches to addressing
the disturbance paradox in management are needed.
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I. INTRODUCTION

In recent decades, forest disturbance regimes have intensified
in many parts of the world (Chapin et al., 2000; Schelhaas,
Nabuurs & Schuck, 2003; Balshi et al., 2007; Gardiner
et al., 2010). The frequency of large wildfires in western
North America has, for instance, increased by nearly four
times in the period 1987–2003 compared to the average
for 1970–1986 (Westerling et al., 2006), while at the same
time bark beetle damage has reached unprecedented levels
(Meddens, Hicke & Ferguson, 2012). A similar trend is
evident for wildfire, windthrow, and bark beetles in Europe
(Schelhaas et al., 2003; Seidl et al., 2014). This trend is
likely to continue in the future as a result of the climatic
changes expected for the coming decades (Seidl, Schelhaas
& Lexer, 2011b; Li et al., 2013; Reichstein et al., 2013;
Temperli, Bugmann & Elkin, 2013; Seidl et al., 2014). In
many areas, changes in the disturbance regime (i.e. in the
distinctive type, size, severity, and frequency of disturbance
over extended spatio-temporal scales) are expected to be
among the most severe climate change impacts on forest
ecosystems (Lindner et al., 2010; Turner, 2010). Disturbances
are important natural drivers of forest ecosystem dynamics
(Franklin et al., 2002; Kuuluvainen & Aakala, 2011), and
strongly modulate the structure and functioning of forest
ecosystems (Weber & Flannigan, 1997; Turner, 2010).
Changing disturbance regimes might thus considerably alter
forest ecosystems, with potentially far-reaching impacts on
their biological diversity and capacity to provide ecosystem
services to society.

With the aim to provide ecosystem services to society
while fostering biodiversity, ecosystem management requires
a comprehensive understanding of the impacts of natural
disturbances. Notwithstanding this high relevance, natural
disturbances have hitherto been discussed inconclusively
in the context of ecosystem management, with views
and recommendations ranging from strict avoidance of

disturbance (due to negative effects on selected ecosystem
services) to emulating disturbance in management (to
utilize their beneficial effects on biodiversity). On the one
hand, substantial efforts are undertaken in research and
management to quantify disturbance risk, with the aim
to minimize their negative impacts through increasing the
resistance of forests to disturbances (e.g. Jactel et al., 2009;
Overbeck & Schmidt, 2012). Measures such as fostering
individual-tree stability through thinning (Schelhaas, 2008),
adapting landscape-scale harvesting patterns to disturbance
risk [e.g. stand edges versus the main wind direction (Byrne
& Mitchell, 2013)], and choosing a rotation period that
balances disturbance risk with economic considerations
(Loisel, 2014) have long been practiced in forestry in order
to avoid disturbance-related losses particularly with regard
to timber production. On the other hand, with the advent
of science-based ecosystem management and a growing
understanding of the integral role of disturbances in natural
forest ecosystem dynamics, mimicking natural disturbance
regimes to foster elemental processes of ecosystem dynamics
is increasingly advocated (e.g. Toivanen & Kotiaho, 2007;
Newton et al., 2011). Hypothesizing a positive effect of
disturbances on biodiversity and acknowledging their role
in creating keystone habitats within forested landscapes,
these ideas view disturbances as inherently positive. In
human-altered boreal forest ecosystems, for instance, where
fire is the major natural disturbance agent, there are
suggestions for the application of prescribed burning as
a measure to restore natural forest conditions (Bergeron
et al., 2002; Toivanen & Kotiaho, 2007; Olsson & Jonsson,
2010). In wind- and bark beetle-dominated disturbance
regimes the creation of gaps of various sizes and shapes
is recommended to mimic natural disturbance regimes and
stimulate biodiversity (Franklin et al., 2002; Seymour, White
& DeMaynadier, 2002; Kern et al., 2014).

The valuation of disturbances and their role in
management thus seems to vary strongly with the particular
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objective considered (e.g. biodiversity conservation versus
timber production). However, only a small proportion of
forests serve a sole objective: only about 5% of the world’s
forests are strict reserves for the conservation of biodiversity
(Hoekstra et al., 2005), while a similar fraction are designated
plantations for the production of wood and biomass (Carnus
et al., 2006). The large majority of forest landscapes need to
fulfill a multitude of functions and services simultaneously,
including but not limited to serving as habitat, protecting
the soil from erosion, producing timber and biomass, storing
carbon, etc. In such situations where multiple objectives
need to be met within a forest landscape, disturbances can
be expected to have both positive and negative impacts
on possible objectives of ecosystem management (see e.g.
Huston & Marland, 2003), a hypothesis that we here refer
to as the ‘disturbance paradox’. Considering that not only
disturbances have increased recently but also the range
and demand for societally relevant ecosystem services has
been growing steadily in recent decades, we estimate that
addressing this paradox will be a key challenge for future
forest ecosystem management.

Here we attempt to describe and quantify the various
effects of natural disturbances in a literature review and
meta-analysis of disturbance impacts at the global scale.
In particular, we examine the effects of three of the
most detrimental disturbance agents globally [i.e. fire,
wind, and bark beetles (FAO, 2010)], focusing on forest
ecosystems of the boreal and temperate biomes, a forest
area of approximately 13.5 million km2 (Hansen, Stehman
& Potapov, 2010). Acknowledging the growing societal
importance of a variety of different ecosystem services
we not only survey disturbance impacts on traditionally
important forest goods (such as timber production) but also
include a total of 13 different ecosystem services from all
four categories distinguished by the Millennium Ecosystem
Assessment in our analysis: provisioning, supporting,
regulating, and cultural services (MEA, 2005). Furthermore,
we also investigated disturbance impact on three important
indicators of biodiversity. Our overall objectives were (i) to
synthesize the effect of natural disturbances on a wide range of
possible objectives of forest ecosystem management, and (ii)
to investigate standardized effect sizes of disturbance impacts
for selected indicators via a quantitative meta-analysis.
Based on these analyses we discuss pathways to addressing
disturbances in ecosystem management in the particular
context of changing disturbance regimes.

II. MATERIALS AND METHODS

(1) Literature review

We searched the literature for studies on disturbance by
fire, wind and bark beetles, and their impacts on ecosystem
services as defined by the Millennium Ecosystem Assessment
(MEA, 2005), as well as their effects on biodiversity, focusing
on species richness and habitat quality as well as on indices
of diversity (e.g. Shannon-Index, Simpson-Index, etc.). We

restricted our literature review to boreal and temperate
forest ecosystems as subtropical and tropical forests differ
considerably in ecological processes and anthropogenic
impacts. In particular, extratropical forests are generally
less diverse than tropical forests, and share a common
set of genera as well as drivers of forest dynamics (e.g.
temperature) (Thomas & MacLellan, 2002). Furthermore,
land-use history and recent management differ strongly
between tropical and extratropical regions, with a long
history of intensive human use and several decades of
sustainable management in the temperate and boreal zone
(Siry, Cubbage & Ahmed, 2005; Canadell & Raupach,
2008). Focusing solely on the boreal and temperate subset
of the literature controlled for these broad differences in
our analysis, and thus increased the inferential potential
with regard to disturbance effects. The literature search
was performed using the Scopus database (SciVerse Scopus,
2013), and the cutoff date for the inclusion of publications
was June 6th, 2013. The search terms and synonyms used
are listed as supporting online information in Appendix
S1. In total, 1958 papers were identified for screening.
From this overall body of literature, reviews and syntheses
were excluded in order to avoid double counting and the
potential transfer of artifacts or errors from one review to the
next (Whittaker, 2010). Furthermore, we excluded articles
which did not compare disturbed forests with long-lasting
undisturbed ‘control’ sites. Depending on the study scale and
context, either the state before a disturbance, an undisturbed
reference, or an assumption about an equilibrium condition
was assumed as a reference to determine the disturbance
effect. From the 1958 papers screened initially 478 were
selected for further analysis. For each of these studies we
collected information on geographical location, spatial and
temporal scales, assessment methodologies and management
treatments (Tables 1 and 2, see online Appendix S2). We
furthermore recorded whether the reported disturbance
effect is related to single or multiple disturbance events (i.e.
disturbance regime). If studies included expert opinions on
certain disturbance effects they were initially included in our
database, but were subsequently omitted from quantitative
analyses. We allowed multiple entries per study, for instance
if a study examined more than one disturbance agent,
ecosystem service or biodiversity indicator. Furthermore,
considering that ecological effects can change over time, we
also recorded the temporal time frame for every study. In
order to alleviate potential autocorrelation issues, effects were
grouped into four different time horizons (i.e. short term:
1–5 years, mid term: 6–25 years, long term: 26–100 years,
very long term: >100 years). The final database for analysis
contained 887 entries of disturbance effects on ecosystem
services and biodiversity.

(2) Analysis

We analysed our literature-derived database of disturbance
effects in two steps. First, we assessed the disturbance effect
on indicators of ecosystem services and biodiversity. To
that end, a descriptive classification of the disturbance

Biological Reviews 91 (2016) 760–781 © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Disturbance impacts on biodiversity and services 763

Table 1. Geographic distribution of observations (N = 887)
of disturbance impacts on ecosystem services and biodiversity
reported in 478 peer-reviewed publications included in the
analysis.

Disturbance agent

Biome Continent Fire Wind
Bark

beetles

Boreal Africa 0 0 0
Asia 11 1 0
Europe 28 23 3
North America 221 24 30
South America 0 0 0
Australasia 0 0 0

Cool temperate Africa 0 0 0
Asia 2 10 0
Europe 54 38 11
North America 198 25 18
South America 9 0 0
Australasia 28 6 0

Warm temperate Africa 2 0 0
Asia 10 0 0
Europe 33 0 0
North America 55 18 0
South America 2 0 0
Australasia 24 1 0

Total 677 146 62

Note that two observations addressing fire and wind impact,
respectively, at the global scale, are not included.

impact was made based on the findings reported in
the literature (i.e. negative, neutral, mixed, or positive
impact of disturbance on the respective indicator). This
classification allowed us to synthesize results consistently from
different methodological approaches. It furthermore enabled
a comparison of disturbance impacts between ecosystem
services measured on different scales (e.g. recreational value
versus carbon storage in a forest landscape), as well as
between the impacts on ecosystem services and biodiversity.
Initially, we tested whether the observed distribution of
studies over response categories differed significantly from a
random distribution, i.e. we assessed whether a significant
disturbance effect can be established from the literature.
Subsequently, we tested for differences in disturbance impact
among agents, biomes, and study approaches, evaluating the
variation of disturbance impacts with these categories. In
an attempt to confirm or reject the hypothesized diverging
impacts of disturbance on criteria of relevance for ecosystem
management (disturbance paradox hypothesis) we also tested
whether disturbance impacts differ between indicators of
ecosystem services and biodiversity. Another controversial
issue in the context of disturbance management is the effect of
salvage harvesting after disturbance, i.e. partial or complete
removal of disturbance-killed trees from a site (Donato et al.,
2006; Lindenmayer, Burton & Franklin, 2008; Thorn et al.,
2014). We thus also tested the hypothesis that disturbance
effects after salvage differ significantly from unsalvaged
conditions. Finally, we also compared impacts of prescribed
burning to those of wildfires, in order to test for differences
in disturbance impacts from intended and unintended fires.

All these tests were conducted using independence tests,
a powerful, permutation-based approach to test the null
hypothesis that two variables (measured on arbitrary scales)
are independent of each other (Hothorn et al., 2008), using
the package coin (Hothorn et al., 2013) within the R language
and environment for statistical computing (R Development
Core Team, 2014).

In a second step, in order to determine effect size, we
conducted a meta-analysis based on quantitative information
on disturbance impact for two particularly well-researched
criteria: biodiversity and carbon storage. For biodiversity,
we analysed disturbance-induced changes in species richness
(S ′, N = 57) and species entropy (H ′, N = 28), the latter
represented by the Shannon-Index of diversity. Due to the
limited sample size further subdivision into the effects of
disturbance on specific taxonomic groups was not possible.
With regard to carbon storage, we distinguished between
disturbance effects on total ecosystem carbon (TEC, N = 27),
aboveground live carbon (ALC, N = 38), dead aboveground
carbon (DAC, N = 25), and soil organic carbon (SOC,
N = 39) in our meta-analysis. For all variables the effect
size was calculated as the per cent change induced by
disturbance relative to the reference condition (control). Only
entries from single disturbance events without subsequent
salvage logging were considered in this second analysis step.
We used multiple linear regression analysis to examine the
size and statistical significance of disturbance effects on
indicators of carbon storage and biodiversity. To generalize
the disturbance regime and allow a comparison across studies
we used time since disturbance (in years) and disturbance
severity (i.e. proportion of timber volume, basal area, or
forest area affected by disturbance, using a scale of 0–1) as
covariates in the analysis. These parameters were recently
used by Miller, Roxburgh & Shea (2011) in an attempt to
generalize disturbance effects on diversity. We analysed the
residuals of our regression models for trends as well as for
temporal autocorrelation (using a Durbin–Watson test), and
found support for the assumptions of homoscedasticity and
independence. From these regression models we analysed
both the intercepts (i.e. the standardized effect at fixed
severity and time since disturbance) and slopes (i.e. how
the disturbance effect changes with time and severity).
To aid the interpretation of the former we transformed
severity to 1–severity in our analysis, making the intercept a
standardized effect of 100% severity. Additionally, we fitted
multiple linear regression models with disturbance agents
and biomes as covariates in order to test for the generality of
our findings across agents and geographical locations.

III. RESULTS

(1) Disturbance effects on ecosystem services and
biodiversity

Overall, 478 studies from the boreal (34.9%), cool (47.1%)
and warm temperate (18.0%) biomes addressing effects
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Table 2. Assessment methodology and focal scale of observations (N = 887) regarding disturbance impacts on ecosystem services
and biodiversity reported in 478 peer-reviewed publications included in the analysis.

Assessment methodology

Temporal scale Spatial scale Empirical
Remote
sensing Simulation Questionnaire

Expert
opinion Mixed

Short term (1–5 years) Stand 237 1 12 0 14 1
Patch 23 0 2 0 0 0
Landscape 28 0 5 2 14 3
Region 6 2 24 0 4 2
Global 0 0 0 0 0 0

Mid term (6–25 years) Stand 117 0 16 0 7 0
Patch 16 0 2 0 3 0
Landscape 12 0 9 0 8 2
Region 5 10 23 1 3 1
Global 0 0 0 0 0 0

Long term (26–100 years) Stand 50 0 12 0 6 0
Patch 5 0 2 0 3 0
Landscape 4 0 11 0 4 0
Region 1 1 24 1 10 0
Global 0 0 2 0 0 0

Very long term (>100 years) Stand 22 0 6 0 8 0
Patch 1 0 2 0 2 0
Landscape 4 0 11 0 16 0
Region 4 0 14 0 17 0
Global 0 0 0 0 0 0

NA Stand 0 0 0 0 2 0
Patch 0 0 0 0 1 0
Landscape 3 0 0 0 10 0
Region 0 0 3 4 5 0
Global 0 0 0 0 0 0
NA 0 0 0 0 1 0

Total 538 14 180 8 138 9

Stand: 1–10 ha, patch: 11–100 ha, landscape: 101–100000 ha, region: >100000 ha. NA: undefined temporal or spatial scale.

of disturbances on forest ecosystems were reviewed.
The overwhelming majority of articles originated from
North America (63.8%), followed by Europe (21.3%) and
Australasia (8.8%) (Fig. 1, Table 1). With regard to
disturbance agents the effects of forest fires were addressed
most frequently (78.0%), while only 15.4% of studies
investigated impacts of wind and 6.6% of bark beetles.
60.9% of the research results compiled in our database
were empirical, while 19.3% were based on expert opinion,
16.0% derived from simulation studies, and the remaining
3.8% either investigations based on remote sensing, public
questionnaires or a combination of different approaches
(Table 2). Studies from recent years were overrepresented
in our database, with publications on disturbance impact
increasing at a rate of approximately 3.1 papers per year
between 1996 and 2012 (before 1996 the number of studies
was sparse and irregular). This rate of increase of +11.9%
year−1 is considerably higher than that of the general
literature on, e.g. ecosystem management, which was +7.0%
over the same period (Seidl, 2014).

Overall, there is strong evidence for a distinct impact of
disturbances on criteria relevant to ecosystem management,
with only 19.3% of entries in our database showing no
or mixed effects of disturbance. The fact that in our

sample of the literature negative impacts (45.1%) and
positive effects (35.6%) were nearly equally distributed
confirms the hypothesized disturbance paradox in ecosystem
management. These divergent impacts are primarily driven
by the disparity of disturbance effects on biodiversity and
ecosystem services (Fig. 2). We found that all ecosystem
service categories [i.e. supporting, provisioning, regulating
and cultural services (see online Fig. S1)] were affected
predominately negatively by disturbance (P < 0.001). At
the level of individual ecosystem service indicators, the
only investigated aspect that was positively influenced was
albedo (Fig. 3), as related to the climate change mitigation
function of forest ecosystems (Jin et al., 2012). Timber and
primary production, fresh-water provisioning as well as
protection against gravitational natural hazards were found
to be predominately negatively affected by disturbances.
Moreover, the large majority of studies reported a negative
disturbance impact on carbon storage, mainly due to a
reduction of live biomass in the ecosystem. However, there
were also some examples of a positive disturbance effect
on carbon storage: in a boreal forest ecosystem in Ontario,
ALC peaked 92 years after disturbance then declined to
a significantly lower level during the following decades,
stabilizing 140 years after disturbance (Seedre & Chen, 2010).
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Fig. 1. Geographical distribution of papers addressing the impacts of fire (red, comprising wildfire and prescribed burning), wind
(blue) and bark beetles (orange) on ecosystem services and biodiversity. The size of the circles represents the number of peer-reviewed
papers per agent and region, while percentages indicate the relative share of disturbance agents per continent. The focal areas of
our analysis were the boreal, cool- and warm-temperate biomes as defined by Holdridge (1947, modified using World Clim data),
illustrated here in different shades of green.

Fig. 2. Disturbance effects on (A) biodiversity and (B) ecosystem
services. N indicates the number of observations in our database
of disturbance effects synthesized from 478 peer-reviewed
articles.

For the same forest, SOC peaked between 29 and 140 years
after disturbance, before decreasing by approximately
one-third over the next 63 years (Chen & Shrestha, 2012).
This suggests that not only direct disturbance-related C losses
in ALC but also the enhanced growth of a regenerating forest
as well as the rate of decomposition of dead organic matter
need to be considered for a comprehensive assessment of
disturbance effects on forest C budgets. Overall, however,
96.3% of 27 observations on C cycle impacts indicated a
negative effect of disturbances on TEC.

By contrast, we found an overall positive effect of
disturbances on biodiversity (P < 0.001). Species richness,
habitat quality, and diversity indices were equally positively
affected by disturbances. However, the disturbance effect is

less consistent for biodiversity than for many ecosystem
service indicators, and a number of studies also report
negative impacts of disturbances on the indicators of
biodiversity investigated here. Hingston & Grove (2010),
for example, reported reduced bird species richness in
Tasmanian lowland wet eucalypt forests during the first
50 years after wildfire. By contrast, Klaus et al. (2010) found
a positive effect of fire on the number of bird species in
southern Appalachian upland forests. This illustrates that
some species groups might react differently to disturbances
depending on the context and specific ecosystem investigated.
Also belowground diversity is affected by disturbances, yet
dedicated studies are still rare to date. Negative impacts on
earthworm biomass and diversity at sites with uprooted
trees were reported from areas as different as Belgium
and northern Iran (Nachtergale et al., 2002; Kooch &
Hosseini, 2010). Another belowground species group that
was reported to be negatively affected by windthrow
(salvaged) and fire disturbance was Oribatida in the Slovakian
High Tatra Mountains (Lóšková et al., 2013). However, a
positive impact of fire was reported on soil collembolan
diversity in a northern hardwood forest (Huebner, Lindo &
Lechowicz, 2012) as well as on soil microbial communities in
Spain (Fontúrbel et al., 2012), indicating that disturbances
can have both positive and negative impacts on soil
diversity. Overall, however, 73.1, 69.8 and 65.3% of
studies reported either a positive or neutral response of
diversity, species richness and habitat quality, respectively, to
disturbance.
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Fig. 3. Disturbance effects on indicators of ecosystem services and biodiversity (shaded). Bars show the distribution of positive,
neutral and negative disturbance effects per indicator; N denotes the total number of observations. Note that neutral and mixed
effects were subsumed under the neutral category here, and that findings based on expert opinions were excluded.

At the level of different disturbance agents we found
no support for significant differences between the effects of
fire, wind, and bark beetles on indicators of biodiversity.
With regard to ecosystem services, however, the impacts
of fire differed significantly from those of wind and bark
beetles (P < 0.001 and P = 0.006, respectively), with the
latter agents being more frequently reported to have
no influence on ecosystem services. This indicates that
bottom-up disturbances such as fire (i.e. susceptibility
decreasing with tree size and/or age) might have different
impacts than top-down disturbances such as wind and
bark beetles (where susceptibility increases with tree size
and/or age). Differences in disturbance impacts between
biomes were evident in our data: the effect of disturbances
on ecosystem services differed among the boreal and
temperate biomes (P < 0.001 and P = 0.005 for cool- and
warm-temperate biomes, respectively), while boreal and
cool-temperate biomes differed with regard to disturbance
impacts on biodiversity (P = 0.022). Generally, disturbance
effects were least distinctive in the boreal biome, with negative
disturbance impacts on ecosystem services more pronounced
in the temperate biomes compared to boreal ecosystems.
However, disturbances also had a stronger positive effect on
biodiversity in the cool-temperate biome than in the boreal
biome.

By comparing results across different types of methodolo-
gies, e.g. simulation studies versus empirical approaches, we
found some noteworthy deviations from the null hypothesis
of consistent disturbance impacts across study methods. Con-
cerning the impacts of disturbances on ecosystem services
we found a significant difference between empirical studies
and simulation studies (P = 0.030) as well as an indication
for differences between empirical studies and expert opinions
(P = 0.057), with simulation studies and experts reporting a
stronger negative effect than empirical analyses. With regard

to the effects of biodiversity, we found that both simulation
studies (P = 0.007) and expert opinions (P < 0.001) differed
significantly from empirical studies. Here, our data indicate
that simulation studies underestimate the positive effects of
disturbance on biodiversity compared to empirical analyses,
while experts overestimate this positive effect. It is also inter-
esting to note that neutral effects (i.e. no disturbance impact
on biodiversity) were more commonly reported in empirical
studies than in any other methodological approach.

(2) The effect of salvage logging and prescribed
burning

We tested whether the reported disturbance impacts of
prescribed burning differed relative to those of wildfires,
hypothesizing that controlled burns will have fewer negative
effects on ecosystem service provisioning. We found no
support for this hypothesis: prescribed burns were more
frequently reported to have a negative impact on ecosystem
services than wildfires (P < 0.001). Yet, this result must be
interpreted with caution as it is based only on a small sample
of studies for the effect of prescribed burning (N = 13).
With regard to the predominately positive effects of fire on
indicators of biodiversity, prescribed burns did not differ
significantly from wildfires (P = 0.413).

Another frequently discussed management intervention in
the context of disturbance management is salvage logging.
Based on previous findings, we hypothesized a negative
impact of salvage logging on biodiversity (Lindenmayer et al.,
2008). Although a slight trend was evident in our data
(i.e. the positive disturbance effect on biodiversity indicators
was more pronounced for non-salvaged forests), it was not
significant in our comparison of 38 observations on salvage
logging with 145 observations of unsalvaged disturbance
effects (P = 0.205). Moreover, with regard to the impact
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Table 3. Meta-analysis (multiple linear regression) of
disturbance effects on indicators of carbon and biodiversity
(response variables) and their relation to covariates describing
the disturbance regime.

Time since
disturbance 1–severity

Indicator Coefficient P-value Coefficient P-value R2

ALC 0.606 <0.001 33.461 0.064 0.736
TEC 0.192 0.006 12.860 0.361 0.280
DAC −1.435 0.014 −477.129 0.200 0.258
SOC 0.260 0.042 −9.075 0.792 0.124
S ′ −0.307 0.291 −19.400 0.576 0.022
H ′ −2.608 0.589 −175.386 0.555 0.020

ALC, aboveground live carbon; TEC, total ecosystem carbon;
DAC, dead aboveground carbon; SOC, soil organic carbon; S ′,
species richness; H ′, species entropy (Shannon-Index).

on ecosystem services no significant differences between
salvaged and unsalvaged studies were found (P = 0.168),
however the data reveal a negative trend for salvaged
forests.

(3) The size of disturbance effects on biodiversity
and forest carbon storage

Disturbance effects on forest ecosystems differ greatly with
disturbance severity and time since disturbance, which is why
we studied effect sizes using these two variables as covariates.
Time since disturbance significantly explained disturbance
effects for all investigated carbon compartments (Table 3).
Effects on ALC and DAC were particularly strongly related
to this variable, and differences to undisturbed conditions
(−91.3 and +155.5% in the first year after disturbance
for ALC and DAC, respectively) decreased by +0.6%
(ALC) and −1.4% (DAC) on average with every passing
year following disturbance. Disturbance severity was not
significant in any model, but was retained in the analysis
due to its ecological relevance (see also Miller et al., 2011).
While the analysis of disturbance impacts on indicators of C
storage yielded acceptable coefficients of determination (R2

from 0.736 to 0.124), the explanatory value of disturbance
regime covariates was poor with regard to species richness
and entropy. Neither species richness nor entropy was
found to differ significantly with time since disturbance and
disturbance severity. Tests for differences between agents and
biomes overall supported a common global meta-analysis
under consideration of disturbance regime covariates for
both response variables (data not shown).

The analysis of the standardized disturbance effect (i.e. the
calculated impact for a year of an event with 100% severity)
showed that indicators of biodiversity as well as deadwood
C stocks increased with disturbance, while aboveground and
soil carbon stocks decreased (Fig. 4). The mean ± 95% C.I.
standardized effect of disturbance on total ecosystem carbon
was −38.5 ± 8.3% (P < 0.001), while species richness was
significantly increased by +35.6 ± 32.3% (P = 0.035).
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Fig. 4. Standardized disturbance effect size (i.e. per cent
disturbance-induced change relative to reference condition)
for indicators of carbon stock (filled symbols) and biodiversity
(open symbols). Values are standardized coefficients for a
disturbance severity level of 100%, and whiskers denote the
95% confidence interval. ALC, aboveground live carbon; TEC,
total ecosystem carbon; SOC, soil organic carbon; DAC, dead
aboveground carbon; S ′: species richness; H ′, species entropy
(Shannon-Index).

IV. DISCUSSION

(1) What we know about disturbance impacts on
forest ecosystems

We investigated disturbance effects of fire, wind, and bark
beetles in a search for general differences in disturbance
impacts on ecosystem services and biodiversity. The
large number of studies available for analysis not only
indicates the importance of disturbance impacts to forest
ecosystems, but also provides a suitable basis for a global
synthesis on disturbance effects. The increasing number
of publications over time may represent a response of the
scientific community to the increase in disturbance frequency
observed in recent decades (Westerling et al., 2006; Seidl
et al., 2014), and should imply a growing understanding of
disturbance processes. However, while disturbance impacts
on biodiversity are increasingly well researched, we found
more variability in information on different ecosystem
services. While the main focus of the reviewed papers was
on regulating services (predominately on C storage as an
important mechanism of climate regulation), supporting and
provisioning services are less well studied. The disturbance
impact on cultural services has barely been assessed to date
(see online Fig. S1).

In addition, the information available on disturbance
impacts also differs with disturbance agent and region. The
impact of fire on biodiversity and ecosystem services is the
most intensively studied disturbance agent, reflecting the
dominant role of wildfire in disturbance regimes around the
globe (e.g. Conard et al., 2002; Schelhaas et al., 2003; Littell
et al., 2009; Newton et al., 2011; Knox & Clarke, 2012).
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Regional differences were apparent in our database of
published studies on disturbance impacts: Asia, for instance,
is underrepresented in our analysis; we found only 10 unique
studies on disturbance impacts on biodiversity and 11 on
ecosystem services for that continent. However, it has to be
noted that not the entire geographic imbalance in distur-
bance studies is likely to be related to regional differences
in scientific understanding of disturbance processes. The
main cause of such variation in peer-reviewed information
available from different regions is likely to be the language
barrier (Powell, 2012). Differences in local research agendas
are also likely to play a role (see e.g. Kajala & Watson, 1997).
Nonetheless, we advocate research programs that facilitate
a broader study of disturbance effects (geographically as well
as in terms of the indicators studied), in order to close some
of the remaining gaps in our understanding of the role of
disturbances in forest ecosystems.

(2) Challenges for synthesizing disturbance impacts

One challenge for a global synthesis lies in a comparison
of the different methodological approaches used to study
disturbance impacts. Simulation approaches appear to
underestimate the effect of disturbances on biodiversity
perhaps because current disturbance models are rarely able
to assess effects on diversity over a broad variety of guilds.
Future improvements in simulation modelling should thus
aim to capture the multiple impacts of disturbances better
on ecosystems and their diversity (see also Seidl et al., 2011a).
Another interesting finding was that expert knowledge
differed significantly from the results of empirical studies. Part
of this difference could be explained by expert knowledge
being reported for different systems and contexts, i.e. systems
and indicators that are less well represented by empirical
studies. However, the finding that disturbance impacts
estimated by experts are more negative on ecosystem services
and more positive on biodiversity than those estimated
empirically strongly suggests that expert opinions should be
omitted from further quantitative analysis (Whittaker, 2010).
It should also be noted that our data – like most published
literature reviews – are likely to incorporate a degree of
publication bias (Møller & Jennions, 2001), i.e. neutral or
mixed effects are likely to be underrepresented.

A second challenge relates to the general ability to
synthesize the published literature. Although we found a
large number of papers dealing with disturbance impacts
on biodiversity and carbon storage, only a limited number
(18.4 and 22.4%, respectively) could be used in a quantitative
meta-analysis. In most instances we had to exclude studies
due to inconclusive reporting of disturbance severity, or
the absence of a proper control, consequently making
it impossible to quantify the disturbance effect. We
thus call for better reporting, especially the inclusion of
summary statistics in publications, and advocate a BACI
(before – after, control – impact) design (Stewart-Oaten,
Murdoch & Parker, 1986) to facilitate future syntheses
on this topic. The increasing requirement to make the
results of studies available upon publication, either as an

electronic supplement or in archiving services such as Dryad
(http://datadryad.org/) should benefit such syntheses in
the future. However, some variation in the choice of an
appropriate control to disturbed systems is likely to persist,
as, for example, the definition of ‘old-growth’ conditions
often differs regionally. Note also that historic land-use and
management practices may influence reference conditions as
well as disturbance drivers and impact (e.g. Carcaillet et al.,
2009), an aspect that cannot be rectified in a global review
and meta-analysis such as that presented here.

Another difficulty for synthesis and generalization arises
from the inherent complexity of disturbance regimes in tem-
perate and boreal forests (see also White & Jentsch, 2001).
While we studied three of the most influential disturbance
agents globally, other agents of high regional significance
were not considered. For example, ash dieback, a dis-
ease affecting common ash (Fraxinus excelsior L.) trees of all
age-classes, is currently strongly impacting forest ecosystems
in many European countries (Halmschlager & Kirisits, 2008;
Ogris, Hauptman & Jurc, 2009), but was not included in this
analysis. Our first analysis step revealed significant differences
in impact among disturbance agents, documenting that the
unique ecology of every agent is important for understanding
its effects (e.g. which trees are affected and how). In the second
step of our analysis we included severity and time since distur-
bance as covariates in order to generalize across agents in our
meta-analysis. Tests of this generalization assumption show
that differences among agents could be explained satisfacto-
rily with these two covariates (data not shown), enabling a sta-
tistical analysis across agents and scales. This underlines the
potential for a process-based analysis of disturbance regimes
in synthesizing knowledge from individual observations to
reach general patterns and principles (Turner et al., 1993;
White & Jentsch, 2001; Miller et al., 2011; Seidl et al., 2011a).

However, this ability to generalize might to some degree
be attributed to the inclusion of only temperate and boreal
forest ecosystems in our data set. Whether the general
patterns deduced for these biomes also hold for tropical
forests remains to be tested. Martin, Newton & Bullock
(2013), conducted a review on the effects of anthropogenic
disturbance on carbon stocks and plant diversity for more
than 600 secondary forest sites in the tropics. They show
that both biodiversity and carbon storage were negatively
affected by clearing (a high-severity disturbance), and took
several decades to recover. Assuming that salvage logging
after natural disturbance results in an impact comparable to
anthropogenic clearing we here find contrasting results for
biodiversity effects in temperate and boreal forests: our data
suggest a weak positive effect of disturbance on biodiversity
(not significantly affected by salvage logging, P = 0.205).
This indicates that further studies are needed to establish
whether the disturbance paradox described here also applies
to tropical forests.

The existence and strength of simultaneous positive and
negative impacts of disturbances on objectives of ecosystem
management, described here as the disturbance paradox,
might not only vary geographically but is likely also strongly
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dependent on the indicators selected for analysis, and
hence the local relevance of specific ecosystem services
and aspects of biodiversity. Generalist species might, for
instance, benefit strongly from disturbance events while
specialists and late-seral species – which are often a priority
for conservation – could be negatively affected (Devictor &
Robert, 2009). Moreover, disturbances might benefit invasive
alien species (see e.g. Crawford et al., 2001), widely regarded
as negative for biodiversity. Owing to the broad scope of
this study such aspects were not explicitly considered in
our analysis. They might, however, be of high relevance in
local assessments and management decisions, and could thus
strongly modify the disturbance paradox, described here
based on a global synthesis for boreal and temperate forests.
A context-specific assessment of biodiversity effects at the
level of guilds, red-listed species, and alien/native/endemic
species in future studies is thus suggested in order to
scrutinize further the generality of the disturbance paradox
presented here.

(3) The disturbance paradox and how to address it
in ecosystem management

We found strong evidence for the existence of the disturbance
paradox in our global analysis of disturbance impact.
Disturbance effects on ecosystem services and biodiversity
clearly differ in the published literature, with ecosystem
services being overall negatively affected while biodiversity is
predominately positively influenced by natural disturbances.
Our meta-analysis of the disturbance effect on species
richness and total ecosystem carbon storage aptly illustrates
this paradox: while species richness increases by 35.6% on
average for a high-severity disturbance event, a simultaneous
loss of 38.5% of total ecosystem carbon storage is to
be expected. When management goals are to increase
carbon storage while at the same time fostering biological
diversity, managers are faced with ambiguity with regard to
assessing the impact of a disturbance event, and gauging the
implications of future disturbance regimes. Are disturbances
to be prevented (as far as possible) to reduce negative impacts
on ecosystem services, or are they to be welcomed and
incorporated into management due to their positive effects
on biodiversity?

While our global study cannot resolve this paradox of
ecosystem management – which needs to be addressed
in the local context of stakeholder preferences, habitat
quality, and other constraints – several interesting insights
for disturbance management can be deduced from our
analysis. Since negative disturbance impacts on carbon
storage are strongly reduced with time since disturbance,
but positive effects on biodiversity do not vary significantly
over time, our global meta-analysis suggests that managing
for a low- to medium-frequency disturbance regime would
result in limited impacts on provisioning services while still
benefiting biodiversity. In other words, our data indicate that
the disturbance event itself matters for biodiversity, while
having enough time between these events ensures recovery
of ecosystem services. Albeit not significant in our analysis,

the same is true with regard to severity, i.e. moderate-
or mixed-severity disturbances (see e.g. Perry et al., 2011)
are likely to be the best balance between negative effects
on ecosystem services and positive effects on biodiversity.
Traditional disturbance management approaches such as
salvage harvesting and prescribed burning, for instance,
are not able to moderate between negative ecosystem
service impacts and positive diversity effects according
to our analysis. We even found a higher proportion of
papers reporting negative effects from prescribed burning
on ecosystem services provisioning compared to wildfire.
However, due to sample-size limitations we were not able
to analyse these data for differences in effect size, although
differences in severity (i.e. mean severity over all studies for
prescribed burning = 26.2%, wildfire = 88.1%) suggest a
positive effect of prescribed burning (Hurteau & North,
2009; Meigs et al., 2009).

Ongoing climatic changes will likely increase disturbance
frequency and severity in many parts of the world
(Li et al., 2013; Temperli et al., 2013; Seidl et al., 2014)
which – according to our findings – may have negative
implications for ecosystem service provisioning. Hence,
adaptation of forest ecosystems to such changes in
disturbance regime is of great importance in current forest
ecosystem management, in order to sustain future ecosystem
services provisioning to society. However, as many important
drivers of the disturbance regime such as species composition
respond to management changes only on time scales of
decades to centuries (e.g. Hicke & Jenkins, 2008; Thom et al.,
2013), such management considerations need to take long
lead-times into account. On the other hand, our analysis
indicates that intensifying disturbance regimes may also
represent an opportunity to foster biodiversity in forest
ecosystems, and might thus to some degree alleviate the
ongoing biodiversity crisis (Stuart et al., 2004; Thomas et al.,
2004). In this context it is interesting to note that more
diverse ecosystems are often more resistant and resilient to
disturbance impacts (Bengtsson et al., 2000), so that in the
long term disturbance effects on ecosystem services might be
buffered by increasing structural and compositional diversity.

V. CONCLUSIONS

(1) Over the last decades, the number of peer-
reviewed publications on forest disturbances and their
effects has increased, mirroring the increasing relevance
of disturbance regimes and the changes therein. However,
the available literature is heterogeneously distributed over
agents and regions, with most studies addressing forests in
North America and Europe, and mainly focusing on fire
impacts.

(2) Disturbances in forest ecosystems can have both positive
and negative impacts on objectives relevant to ecosystem
management. We here find that ecosystem services of all
four categories defined by the MEA (2005) (provisioning,
supporting, regulating, and cultural) are predominately
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negatively impacted by natural disturbances. Biological
diversity, as represented by species richness, habitat quality,
and diversity indices is, on the other hand, predominately
positively affected by natural disturbances.

(3) In a meta-analysis we determined that on average a
disturbance event decreases total ecosystem carbon by 38.5%
(standardized coefficient for a stand-replacing disturbance
event in the year of the disturbance), while species richness
increases by on average 35.6%.

(4) For ecosystem management, which aims to provide
ecosystem services sustainably to society while preserving and
fostering biodiversity, these divergent disturbance impacts
present a paradox – they are at the same time risk factors and
facilitators of management objectives. Our analysis suggests
that measures of disturbance management such as salvage
logging and prescribed burning do not significantly moderate
these diverging impacts. However, a meta-analysis of carbon
storage (an important regulating service in the context of
climate change mitigation) and biodiversity suggests that
managing for a disturbance regime of low to medium
frequency and severity could limit impacts on ecosystem
services while still being beneficial for biodiversity.

(5) Our review suggests that intensifying disturbance
regimes under climate change will largely benefit
biological diversity of forest ecosystems. Ecosystem services
provisioning on the other hand will mostly be negatively
impacted by such changes in the disturbance regime. This
might require a timely adaptation to changing disturbance
regimes in order to provide important ecosystem services
sustainably in the future.
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*Palmer, M. W., McAlister, S. D., Arévalo, J. R. & DeCoster, J. K. (2000).

Changes in the understory during 14 years following catastrophic windthrow in two
Minnesota forests. Journal of Vegetation Science 11, 841–854.
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*Seidl, R., Rammer, W., Jäger, D. & Lexer, M. J. (2008). Impact of bark beetle
(Ips typographus L.) disturbance on timber production and carbon sequestration in
different management strategies under climate change. Forest Ecology and Management

256, 209–220.
Seidl, R., Schelhaas, M.-J., Rammer, W. & Verkerk, P. J. (2014). Increasing forest

disturbances in Europe and their impact on carbon storage. Nature Climate Change 4,
806–810.

*Seitz, D. (2010). Influence of different structures of windthrows on bird
habitats – investigations in the National Park ’Kellerwald-Edersee’ [Nutzung von
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VIII. SUPPORTING INFORMATION

Additional supporting information may be found in the
online version of this article.
Fig. S1. Reported disturbance effects on biodiversity and
ecosystem service categories (following the definition of the
Millenium Ecosystem Assessment, 2005): (A) biodiversity, (B)
supporting services, (C) provisioning services, (D) regulation
services and (E) cultural services. N indicates the number of
observations.

Appendix S1. Indicators of biodiversity and ecosystem
services and their respective synonyms used in the literature
search.

Appendix S2. Database of disturbance impacts on ecosys-
tem services and biodiversity derived from the literature.
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