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Abstract

We have applied principles of statistical signal processing and non-linear dynamics to analyze 

heart rate time series from premature newborn infants in order to assist in the early diagnosis of 

sepsis, a common and potentially deadly bacterial infection of the bloodstream. We began with the 

observation of reduced variability and transient decelerations in heart rate interval time series for 

hours up to days prior to clinical signs of illness. We find that measurements of standard deviation, 

sample asymmetry and sample entropy are highly related to imminent clinical illness. We 

developed multivariable statistical predictive models, and an interface to display the real-time 

results to clinicians. Using this approach, we have observed numerous cases in which incipient 

neonatal sepsis was diagnosed and treated without any clinical illness at all. This review focuses 

on the mathematical and statistical time series approaches used to detect these abnormal heart rate 

characteristics and present predictive monitoring information to the clinician.

Keywords

Neonatal sepsis; heart rate characteristics; sample entropy; predictive monitoring

Introduction

We aim to develop useful numerical algorithms to assist in the care of patients with common 

and severe medical problems, particularly those with subclinical prodromes in which early 

diagnosis and treatment might improve outcomes. To date, we have focused on sepsis in 

premature infants.
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Sepsis, an often severe bacterial infection of the bloodstream, is a common cause of illness 

and death in premature infants in the neonatal intensive care unit (NICU). The early signs of 

sepsis are neither specific for the disease, nor very sensitive, and infants are often not 

diagnosed until they are very ill. Diagnostic testing via blood cultures is usually reserved 

until signs of illness appear, and even so are limited by the very small amounts of blood that 

can be safely removed and the length of time before results are available.

Premature infants in the NICU have high risk for systemic infection because of indwelling 

vascular catheters and incompletely developed immunity. The NICHD Neonatal Research 

Network consistently finds a rate of sepsis of 25% or more in very low birth weight (VLBW, 

<1500g birth weight) infants. Sepsis comes at a high cost – mortality is more than doubled, 

hospital stay is lengthened by 50%, and neurodevelopmental outcomes are worse. Strategies 

for early diagnosis are badly needed (40).

We have investigated continuous analysis of heart rate (HR) and RR interval time series as 

just such an early detection strategy. We have observed abnormal heart rate characteristics 
(HRC) of reduced variability and transient decelerations that were unlike any variant of 

normal heart rate variability (HRV) (1, 16, 19, 31), and developed mathematical algorithms 

that detect them (7, 8, 22, 26, 30, 35). In clinical studies, we have found that abnormal HRC 

precede clinical signs of illness (13, 15, 17, 18), and can be used by doctors and nurses to 

raise concerns about sepsis, and to initiate antibiotic treatment much earlier than usual (14, 

30).

We suggest that this form of monitoring is unique in clinical medicine, and delivers on the 

promise of novel mathematical analyses of clinical time series data in the care of individual 

patients. Here, we review our approach to HRC analysis using mathematical and statistical 

time series analysis monitoring, including our work on time-domain, frequency-domain, 

entropy, non-stationarity analysis, and a non-linear dynamical analysis of heart rate 

decelerations.

Mathematical analysis of neonatal HR – overview

Figure 1 shows the central observations of the overall work.

Figure 1A to C show three 20-minute time series of RR intervals, the times from one 

heartbeat to the next, from the same infant at various intervals prior to the diagnosis of 

bacterial neonatal sepsis. Panel A shows normal heart rate variability. Panel B shows 

reduced baseline variability and a single deceleration – note that the baseline HR does not 

change, and that the deceleration does not lead to HR less than 100 beats per minute, a 

conventional alarm threshold in the NICU. Panel C shows a cluster of such decelerations 

early in the course of gram-negative sepsis, and Panel D shows a 4 minute excerpt.

Prominent among the abnormal HRC are the decelerations. These oscillations of the HR 

arise from the sinus node, and are unexplained by known periodic phenomena in the 

cardiovascular system. The transient slowings are usually subclinical – that is, they do not 

lead to heart rates slow enough to reach alarm thresholds - and thus are not detected by 

clinical personnel. Most of the measures that we use report on decelerations only indirectly, 
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and only in new work have we developed a deceleration detector. The approach is based on a 

wavelet transform inspired method for template matching, and has allowed us to detect low-

dimensional non-linear dynamics of clustered decelerations (9).

The indirect measures were suggested by inspection of the HR or RR histograms. Figure 2 

shows HR time series and histograms from exemplary records. Panel A shows a normal 20-

min record, and Panel B shows a record with a storm of decelerations near the time of 

sepsis.

Normal HR, which we consider as a mix of many small decelerations as well as 

accelerations, leads to a reasonably symmetric histogram. The large decelerations and 

relative lack of accelerations that characterize abnormal HRC lead to a distinctly asymmetric 

histogram. Thus our original three HRC metrics can be rationalized – the standard deviation 
tells us the width of the histogram, the sample asymmetry tells us the degree to which 

decelerations and accelerations are present, and the sample entropy tells us the degree of 

non-Gaussianity (Gaussian random numbers have the highest entropy). Each of these 

measures is described more fully below, as are our tests of measures in the frequency 

domain, of non-stationarity, and of individual decelerations.

Data collection and filtering

EKG data are collected from bedside monitors, and we analyze sets of 4096 intervals, about 

20 to 25 minutes of data depending on the heart rate. For analysis of S.D., sample 

asymmetry and sample entropy, we filter outlying intervals by eliminating those that are 

more than 20% from the mean of the previous 15, or if the difference from one interval to 

the next is more than 5 S.D.s of the last 512 interval-to-interval differences. For smoothing, 

the time series is low-pass filtered by subtracting a 2M+1 point moving average window:

where n is the index of the RR interval (1 to 4096) and M=100. The -3 dB point is 0.0039 

cycles per beat (7). The remaining signal has mean = 0, and is then normalized by dividing 

by its S.D.

These are severe filtering criteria that serve well the purpose of estimating the statistical 

properties of distributions of intervals in heart rate series with reduced variability and 

transient decelerations. We find, though, that many intervals during decelerations are 

removed. For the deceleration detection we employed a different filtering strategy, 

eliminating intervals greater than 1000 msec, less than 200 msec, or more than 50 msec 

different from immediate neighbors. This filtering preserves deceleration structure much 

better.
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Time-domain analysis: Moments

These are descriptive statistics of the set of RR intervals. The rth sample moment mn of a 

data set x1, x2,…, xn is: . The first moment is the mean. If the mean is 0, the 

other moments are called central moments. The second central moment is the variance (σ2), 

a familiar measure of the dispersion. Its square root is the standard deviation (S.D., σ). The 

third central moment is the skewness, which measures the deviation of the distribution from 

symmetry. A distribution with a tail toward large values has positive skewness. The fourth 

central moment about the mean is the kurtosis, which measures “peakedness” of the 

distribution. A distribution that is flatter or more peaked than the normal distribution has 

greater and lesser kurtosis, respectively.

The mean and S.D. are most informative when the distribution is bell-shaped (Gaussian or 

normal). In this special circumstance, all odd-numbered moments higher than the second are 

0. Especially for conspicuously non-Gaussian data, non-parametric measures such as 

percentiles can provide more intuitive information. The percentile (or quantile) of a 

distribution of values is a number xp such that a proportion p of the population values are 

less than or equal to xp. For example, the 10th percentile of a variable (we call this p10) is a 

value such that 10% of the values of the variable fall below that value.

Sample asymmetry

One characteristic of abnormal HRC is a marked asymmetry of the distribution of inter-beat 

intervals accompanied by an occurrence of large deviations, especially to the right of the 

distribution median. In order to quantify this observed phenomenon we adapted an approach 

developed by Kovatchev and coworkers in their studies of blood glucose (21). The first step 

is to construct a quadratic function that will be used for weighting the deviation of each 

inter-beat interval from a median of the set of n RR intervals x1, x2, ... xn. Figure 2 presents 

a quadratic function r(xi)=(xi-m)2where m is the median of the data. The two branches of 

this parabola quantify deviations towards increase (we call this R2) and decrease (R1) of an 

inter-beat interval with respect to the median. We compute r1(xi)=r(xi) if xi<m; 0 otherwise, 

and r2(xi)=r(xi) if xi>m; 0 otherwise for each RR interval xi. R1 and R2 are computed as:

respectively. R1 and R2 are non-negative quantities that increase when the number and/or the 

magnitude of large deviations from the median increases. Intuitively, a distribution of inter-

beat intervals that is skewed to the right by the long RR intervals during decelerations will 

result in R2 > R1. Thus the characteristic abnormality early in the course of neonatal sepsis 

is reduced R1 (few or no accelerations) and increased R2 (more and bigger decelerations).
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Entropy

Sample entropy analysis

Sample entropy is an estimate of irregularity. In 1991, Pincus introduced approximate 

entropy (ApEn) as potential measure for clinical use. We found, however, that there are 

important practical issues in implementing the algorithm. These findings motivated us to 

develop Sample Entropy (SampEn) in 2000 as an alternative method for entropy estimation 

in real world data (36). SampEn is a more robust measure less influenced by record length 

(36), and we optimized its use in detection of reduced variability and transient decelerations 

in neonatal HR (26). Richman has demonstrated asymptotic normality of the SampEn 

estimate, and proposed methods for hypothesis testing based on entropies (34).

More recently, Lake refined concepts relevant to quadratic entropy and placed ApEn and 

SampEn in context (23). An important stride forward was the introduction of a correction for 

the tolerance r that allows much more flexibility in entropy estimation and avoidance of 

pitfalls of poor choices of parameters. This allows rational choices of the parameters m and r 
for each data segment, knowing the individual entropy estimates can be normalized for r and 

compared directly. We have successfully applied these ideas in detection of atrial fibrillation, 

a common arrhythmia of adults (24).

In principle, the calculations are simple enough and are depicted in Figure 4.

For a time-series x1,x2, …,xN, let xm(i) denote the m points xi,xi+1, …,xi+m−1 , which we 

call a template and can be considered a vector of length m. When all the components of the 

vector xm(j) are within a distance r of xm(i), there is a template match. Let Bi denote the 

number of template matches with xm(i) and Ai denote the number of template matches with 

xm+1(i) . Then pi=Ai/Bi is an estimate of the conditional probability that the point xj+m is 

within r of xi+m−1 given that xm(j) matches xm(i). Pincus (32) defined approximate entropy 
or ApEn calculated as the negative average natural logarithm of this conditional probability 

on a template-by-template basis (in this work, log and logarithm refers to the natural 

logarithm base e):

Self-matches are included in the original ApEn algorithm to avoid the pi=0/0 indeterminate 

form, but this convention leads to large bias (33) when there are few other matches.

To give more robust results, we omit self-matches and define sample entropy or SampEn as:

i.e., the negative logarithm of the conditional probability of a match of length m +1 given a 

match of length m throughout the data set, not template-by-template. SampEn has closer 
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agreement with theory for data of known probabilistic content over a wider range of m, r and 

N, and its statistical properties are more tractable.

We have addressed the important question of how to make the optimum choice of 

parameters for the SampEn calculation. A central concept is that the parameters should be 

relaxed enough - that is, m short enough and r large enough - to allow sufficient numbers of 

matches, but not so relaxed as to allow all points to match each other.

Our current approach is to pick m based on autocorrelation, and to pick r such that there is a 

minimum numerator count that allows statistical confidence in the conditional probability 

fraction (24). This strategy requires that r can vary among templates while still allowing 

comparison with other values. This is achieved by calculating the quadratic entropy by 

converting the probability estimate to a density, a step that requires normalizing by the 

matching volume 2r (23).

A common practice is to interpret low values of entropy as increased order. We have found, 

though, that time series with spikes have low values of ApEn and SampEn (25), a direct 

consequence of the practice of basing the tolerance r on the S.D. Spikes inflate the S.D. and 

allow many template matches of lengths m and m+1 in the baseline. The high CP leads 

inevitably to a low value for the entropy, but it is not intuitively correct that a large number 

of matching templates in the baseline necessarily reflect order.

Frequency domain

Frequency domain analysis is a conventional approach to quantifying HRV. Akselrod and 

coworkers reported three peaks in the HRV power spectrum, at 0.04 Hz, 0.12 Hz, and at the 

respiratory rate, which they named the low-, mid-, and high-frequency peaks (2). Atropine, 

which blocks muscarinic acetylcholine receptors and therefore the parasympathetic nervous 

system, eliminated the high-frequency peak and greatly reduced the mid-frequency peak. 

Subsequent addition of propranolol, which blocks beta-adrenergic receptors and therefore 

the sympathetic nervous system, eliminated the remaining peaks. Thus, it is accepted that 

high (i.e., respiratory sinus arrhythmia) and mid-frequency HRV results mainly from 

parasympathetic activity, and that low frequency HRV results (at least somewhat) from 

sympathetic activity.

We find four fundamental problems with applying frequency domain analysis to the study of 

human heart rates. First, as originally conceived, the Fourier transformation seeks to 

characterize a signal that is the sum of periodic components that do not change their 

behaviors over time – in other words, a periodic signal that is stationary if only in the 

weakest sense that the mean and variance do not change over time (3). These conditions 

only rarely apply to the human heart rate, and in particular do not apply to the abnormal 

heart rate characteristics of transient decelerations that we seek to identify and understand. 

Second, the amount of sinus arrhythmia depends on the rate and the regularity of breathing. 

At fast rates, sinus arrhythmia is greatly decreased or absent even in the same individual at 

fast rates or if breaths are taken randomly with respect to time (5). Third, the heart rate only 

marginally meets the Nyquist criterion for sampling the respiratory rate at more than 2 
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points per cycle in neonates. This leads to assignment of some of the HRV due to respiration 

to frequencies lower than that of respiration, a phenomenon appropriately called “cardiac 

aliasing” (37, 41)

Fourth, the mathematics assume that the time series has been sampled at equal time intervals 

– this clearly does not apply, as the samples are the RR intervals themselves, and it is their 

variability that interests us. For the first, second and third problems, there are no excellent 

answers except to study sinus arrhythmia during slow, controlled regular breathing. For the 

fourth problem, that of using Fourier techniques for unevenly sampled data, there are two 

workable solutions. The first is an elegant interpolation technique introduced by RD Berger 

that converts the RR data to evenly-sampled point estimates of heart rate based on a 

weighted average of recent RR intervals (4). The second is the Lomb periodogram, a 

technique born in astrophysics (27) and applied to HR originally by GB Moody (28).

Using these methods, we calculated frequency domain characteristics of RR intervals near 

the time of neonatal sepsis using both Berger’s method and the Lomb periodogram (8). We 

affirmed that the Berger’s algorithm acted as a low-pass filter, and accentuated low 

frequency power while the Lomb method did not. We found, however, no convincing useful 

differences in the frequency content of time series near the time of sepsis. As in many 

studies of HRV in illness, there was less power in all frequency bands, especially in the 

lowest. There was modest statistical impact on predictive models using demographic 

information. We have not employed frequency-domain measures in our current bedside 

monitors.

Non-stationarity

Heart rate is not a stationary signal, and we reasoned that measures of stationarity would fall 

further near illness in the presence of abrupt decelerations. A hallmark of this behavior is 

that short epochs of points during the deceleration would be unlike the great majority of 

other points. We devised a test based on the Kolmogorov-Smirnov two-sample test (20, 38, 

39), which relates the probability of the null hypothesis (the epochs belong to the same 

distribution) to the maximum vertical distance D between the empirical cumulative 

distribution functions (ECDF) of the epochs (7).

The ECDF is formed by ranking the values from smallest to largest, converting them to 

order statistics. In a set of n values, the first order statistic is the smallest value, the nth is the 

largest value, and the kth is the kth smallest. The ECDF plots k/n, the relative rank, as a 

function of order statistics, and increases from 0 to 1. As a statistical tool, it is non-

parametric and can be used for any data distribution.

We formed ECDFs of many short RR interval epochs, and compared pairs with the 

Kolmogorov-Smirnov two-sample test. We examined several characteristics of these 

analyses from many randomly selected pairs, including a new measure, the area between 

cumulative distributions. As shown in Figure 5, we used real and synthetic data sets with 

known numerical properties to develop theory and practice.
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The exercise is to measure the maximum distance D between the ECDF pairs from the 

observed data, and compare to the expected result from theory (16). As shown in Figure 6, 

only random numbers (panel A) matches this contour well. None of the observed data sets 

match the results for stationarity, and the result for the record with reduced variability and 

transient decelerations (panel D) is particularly abnormal, with a high proportion of records 

with D=1, the expected result when the ECDFs do not overlap at all.

From these observations, we developed related metrics on non-stationarity. For example, we 

measured the area between the expected and observed ECDFs, and found in a clinical data 

set that the new metric had a significant association with neonatal RR interval time series 

prior to the clinical diagnosis of sepsis (7).

Deceleration detection

We have recently completed a systematic evaluation of the decelerations themselves (9). The 

approach was based on the observation that most appeared to have similar characteristics 

from infant to infant. Hence, Flower devised an analytic expression that described an 

individual deceleration and used a patter-searching and scaling algorithm with features of 

wavelet transform methods. In a large data set, she identified many decelerations and made a 

number of seminal observations. First, she affirmed the idea that large decelerations of 

neonatal HR indeed are very similar in infants, suggesting a common pathophysiological 

basis for them. Second, she showed that the frequency of decelerations increases near the 

time of the clinical diagnosis of neonatal sepsis. Third, she found several infants with 

repeated and almost completely periodic clusters of decelerations (one is shown as panels C 

and D of Figure 1). Finally, she was able to show that the dynamics of clustering of 

decelerations could be successfully modeled as a Hopf bifurcation, a familiar path to chaos 

in dynamical systems.

This final finding is interesting in its own right, and the number of decelerations may well be 

clinically useful in early detection of neonatal sepsis. Perhaps more importantly, though, is 

the prospect of deploying the formidable arsenal of non-linear dynamical mathematics on 

clinical problems such as early detection of subacute potentially catastrophic illnesses. 

Consideration of the human as an integrated organism whose health depends on successful 

non-linear coupling of organs through extracellular and intracellular signaling was advanced 

by Buchman (6, 10), Goldberger (11, 12) and their coworkers. Our finding of deterministic 

non-linear dynamics of cardiovascular oscillations at the bedsides of critically ill premature 

infants emphatically underscore these ideas, and justify much further work in this field.

Summary

We have applied principles of statistical signal processing and non-linear dynamical systems 

to the clinical problem of early detection of neonatal sepsis in premature infants in the 

Neonatal ICU. We have based our work on the repeated observation of abnormal heart rate 

characteristics (HRC) of reduced variability and transient decelerations in the hours to days 

prior to the clinical appearance of illness. To test the real-world applicability of our findings, 
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we have completed a large randomized clinical trial to test the impact of HRC monitoring on 

neonatal outcomes, the results of which we expect to be published in 2011 (29).

Acknowledgments

Funded by the American Heart Association, National Institutes of Health, Swortzel Foundation.

References

1. Aghili AA, Rizwan u, Griffin MP, Moorman JR. Scaling and ordering of neonatal heart rate 
variability. Phys Rev Lett. 1995; 74:1254–1257. [PubMed: 10058973] 

2. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of 
heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science. 1981; 
213:220–222. [PubMed: 6166045] 

3. Bendat, JS.; Piersol, AG. Random data: Analysis and measurement procedures. New York: John 
Wiley; 1986. p. 566

4. Berger RD, Akselrod S, Gordon D, Cohen RJ. An efficient algorithm for spectral analysis of heart 
rate variability. IEEE Transactions on Biomedical Engineering. 1986; BME-33:900–904. [PubMed: 
3759126] 

5. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R 
interval power spectra is largely ignored. Journal of Applied Physiology. 1993; 75:2310–2317. 
[PubMed: 8307890] 

6. Buchman TG. Nonlinear dynamics, complex systems, and the pathobiology of critical illness. 
CurrOpinCrit Care. 2004; 10:378–382.

7. Cao H, Lake DE, Griffin MP, Moorman JR. Increased nonstationarity of neonatal heart rate before 
the clinical diagnosis of sepsis. Ann Biomed Eng. 2004; 32:233–244. [PubMed: 15008371] 

8. Chang KL, Monahan KJ, Griffin MP, Lake D, Moorman JR. Comparison and clinical application of 
frequency domain methods in analysis of neonatal heart rate time series. Ann Biomed Eng. 2001; 
29:764–774. [PubMed: 11599584] 

9. Flower AA, Moorman JR, Lake DE, Delos JB. Dynamical theory of periodic heart rate decelerations 
in premature infants. Experimental Medicine and Biology. 2010; 235:531–538.

10. Godin PJ, Buchman TG. Uncoupling of biological oscillators: a complementary hypothesis 
concerning the pathogenesis of multiple organ dysfunction syndrome. Crit Care Med. 1996; 
24:1107–1116. [PubMed: 8674321] 

11. Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE. Fractal dynamics in 
physiology: alterations with disease and aging. Proc Natl Acad Sci USA. 2002; 99 (Suppl 1):
2466–2472. [PubMed: 11875196] 

12. Goldberger, AL.; West, BJ.; Degn, H.; Holden, AV.; Olsen, LF. Chaos in biological systems. New 
York: Plenum Press; 1987. Chaos in physiology: health or disease? In; p. 1-4.

13. Griffin MP, Lake D, Moorman JR. Heart rate characteristics and clinical signs in neonatal sepsis. 
Pediatric Research. 2007; 61:222–227. [PubMed: 17237726] 

14. Griffin MP, Lake DE, Bissonette EA, Harrell FE Jr, O'Shea TM, Moorman JR. Heart rate 
characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics. 2005; 
116:1070–1074. [PubMed: 16263991] 

15. Griffin MP, Lake DE, Moorman JR. Heart rate characteristics and laboratory tests in neonatal 
sepsis. Pediatrics. 2005; 115:937–941. [PubMed: 15805367] 

16. Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness 
using novel heart rate analysis. Pediatrics. 2001; 107:97–104. [PubMed: 11134441] 

17. Griffin MP, O'Shea TM, Bissonette EA, Harrell FE Jr, Lake DE, Moorman JR. Abnormal heart rate 
characteristics are associated with neonatal mortality. Pediatr Res. 2004; 55:782–788. [PubMed: 
14739356] 

Moorman et al. Page 9

Physiol Meas. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



18. Griffin MP, O'Shea TM, Bissonette EA, Harrell FE Jr, Lake DE, Moorman JR. Abnormal heart rate 
characteristics preceding neonatal sepsis and sepsis-like illness. Pediatr Res. 2003; 53:920–926. 
[PubMed: 12646726] 

19. Griffin MP, Scollan DF, Moorman JR. The dynamic range of neonatal heart rate variability. Journal 
of Cardiovascular Electrophysiology. 1994; 5:112–124. [PubMed: 8186882] 

20. Kolmogorov A. Sulla determinazione empirica di una legge di distribuzione. IstItalAttuariG. 1933; 
4:1–11.

21. Kovatchev BP, Cox DJ, Gonder-Frederick LA, Clarke W. Symmetrization of the blood glucose 
measurement scale and its applications. Diabetes Care. 1997; 20:1655–1658. [PubMed: 9353603] 

22. Kovatchev BP, Farhy LS, Cao H, Griffin MP, Lake DE, Moorman JR. Sample asymmetry analysis 
of heart rate characteristics with application to neonatal sepsis and systemic inflammatory 
response syndrome. Pediatr Res. 2003; 54:892–898. [PubMed: 12930915] 

23. Lake DE. Renyi entropy measures of heart rate Gaussianity. IEEE TransBiomed Eng. 2006; 53:21–
27.

24. Lake DE, Moorman JR. Accurate estimation of entropy in very short physiological time series: The 
problem of atrial fibrillation detection in implanted ventricular devices. Am J Physiol Heart Circ 
Physiol. 2011; 300:H319–325. [PubMed: 21037227] 

25. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate 
variability. Am J Physiol Regul Integr Comp Physiol. 2002; 283:R789–797. [PubMed: 12185014] 

26. Lake DE, Richman JS, Griffin MP, Moorman JR. Sample entropy analysis of neonatal heart rate 
variability. American Journal of Physiology. 2002; 283:R789–R797. [PubMed: 12185014] 

27. Lomb NR. Least-squares frequency analysis of unequally spaced data. Astrophysics and Space 
Science. 1976; 39:447–462.

28. Moody GB. Spectral analysis of heart rate without resampling. Computers in cardiology. 
1993:715–718.

29. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Naverrete CT, Bancalari E, 
Aschner JL, Walker MW, Perez JA, Palmer C, Wagner DP, Stukenborg GJ, Lake DE, O'Shea TM. 
Mortality reduction by heart rate characteristics monitoring in very low birthweight neonates: a 
randomized trial. Journal of Pediatrics. 2011 In press. 

30. Moorman JR, Lake DE, Griffin MP. Heart rate characteristics monitoring in neonatal sepsis. IEEE 
Transactions in Biomedical Engineering. 2006; 53:126–132.

31. Nelson JC, Rizwan u, Griffin MP, Moorman JR. Probing the order within neonatal heart rate 
variability. Pediatr Res. 1998; 43:823–831. [PubMed: 9621994] 

32. Pincus SM. Approximate entropy as a measure of system complexity. Proceedings of the National 
Academy of Science. 1991; 88:2297–2301.

33. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? 
American Journal of Physiology. 1994; 266:H1643–H1656. [PubMed: 8184944] 

34. Richman JS. Sample entropy statistics and testing for order in complex physiological signals. 
Communications in statistics - theory and methods. 2006; 36

35. Richman JS, Lake DE, Moorman JR. Sample entropy. Methods Enzymol. 2004; 384:172–184. 
[PubMed: 15081687] 

36. Richman JS, Moorman JR. Physiological time series analysis using approximate entropy and 
sample entropy. American Journal of Physiology. 2000; 278:H2039–H2049. [PubMed: 10843903] 

37. Rother M, Witte H, Zwiener U, Eiselt M, Fischer P. Cardiac aliasing--a possible cause for the 
misinterpretation of cardiorespirographic data in neonates. Early Human Development. 1989; 
20:1–12. [PubMed: 2806158] 

38. Smirnov NV. Ob uklonenijah empiricheskoi krivoi raspredelenija. Recueil MathMatSbornik, NS. 
1939; 6:13–26.

39. Smirnov NV. On the estimation of the discrepancy between empirical curves of distributions for 
two independent samples. Bull Math Univ Moscou. 1939; 2

40. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, Lemons JA, Donovan 
EF, Stark AR, Tyson JE, Oh W, Bauer CR, Korones SB, Shankaran S, Laptook AR, Stevenson DK, 

Moorman et al. Page 10

Physiol Meas. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Papile LA, Poole WK. Late-onset sepsis in very low birth weight neonates: the experience of the 
NICHD Neonatal Research Network. Pediatrics. 2002; 110:285–291. [PubMed: 12165580] 

41. Witte H, Zwiener U, Rother M, Glaser S. Evidence of a previously undescribed form of respiratory 
sinus arrhythmia (RSA)--the physiological manifestation of “cardiac aliasing”. Pflugers Archiv - 
European Journal of Physiology. 1988; 412:442–444. [PubMed: 3174402] 

Moorman et al. Page 11

Physiol Meas. Author manuscript; available in PMC 2016 June 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Neonatal HR time series. (A) Normal, (B) Reduced variability, (C) Reduced variability and a 

storm of transient decelerations, (D) Excerpt from (C). All records are from the same infant, 

and B to D occurred in the hours prior to clinical signs of sepsis.
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Figure 2. 
Time series and histograms of neonatal heart rates.
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Figure 3. 
Sample asymmetry weights deviations from the center of a distribution.
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Figure 4. 
Schema for entropy estimation in HR timer series
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Figure 5. 
Examples of test data sets. (A) random numbers within a possible range of a RR intervals 

(mean 400, S.D. 25). (B),(C),(D) RR intervals from a same infant when the infant was 

healthy (B), and within 3 to 6 hours prior to an episode of sepsis when the RR interval time 

series was (C) abnormal with low variability and (D) abnormal with low variability and 

transient deceleration.
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Figure 6. 
Histogram of KS distance D for test datasets in Figure 5 to demonstrate stationarity. The 

smoothed contour is the expected histogram for a stationary dataset theoretically.
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