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Abstract
Skill learning results in changes to brain function, but at the same time individuals strongly differ in their abilities to learn
specific skills. Using a 6-week piano-training protocol and pre- and post-fMRI of melody perception and imagery in adults, we
dissociate learning-related patterns of neural activity frompre-training activity that predicts learning rates. Fronto-parietal and
cerebellar areas related to storage of newly learned auditory-motor associations increased their response following training; in
contrast, pre-training activity in areas related to stimulus encoding and motor control, including right auditory cortex,
hippocampus, and caudate nuclei, was predictive of subsequent learning rate. We discuss the implications of these results for
models of perceptual andofmotor learning. Thesefindings highlight the importance of considering individual predisposition in
plasticity research and applications.
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Introduction
Practice of skills affects brain networks that are involved in both
basic and higher-order task-related cognition (Jäncke 2009; May
2011; Zatorre, Fields et al. 2012). Musical training has emerged
as a valuable framework to study the effects of learning complex

tasks on the human brain (Münte et al. 2002; Zatorre et al. 2007;
Herholz and Zatorre 2012) because it affects both auditory per-
ception (Shahin et al. 2003; Bosnyak et al. 2004; Fujioka et al.
2004) and higher-order cognition such as auditory imagery
(Herholz et al. 2008). But is it only practice that makes perfect?

Individuals clearly differ in their ability to learn complex tasks,

and individual differences in brain function and structure, in-
cluding in the auditory cortices, can predict learning rates in vari-
ous tasks (Wong et al. 2008; Zatorre, Delhommeau, et al. 2012;
Zatorre 2013). Neurophysiological measures of auditory percep-
tion and imagery show considerable individual variability
(Schneider et al. 2002; Daselaar et al. 2010; Herholz et al. 2012),
but individual predictors of complex multimodal learning are
poorly understood. An important goal of our study was thus to
identify any preexisting neural markers that predict learning
outcome.

Multisensory integration during practice enhances training-
related changes in sensory and association cortical areas during
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auditory cognition (Lappe et al. 2008; Paraskevopoulos et al. 2012),
and training results in stronger auditory-motor synchronization
or co-activation during auditory and motor tasks (Bangert and
Altenmüller 2003; D’Ausilio et al. 2006; Lahav et al. 2007). Musical
experience also modulates performance and brain activity in
auditory imagery tasks, as shown in cross-sectional studies com-
paring experts and novices (Aleman et al. 2000; Herholz et al.
2008). Auditory perception and imagery engage partly overlap-
ping and partly distinct cortical networks (Herholz et al. 2012)
and have been described as parallel processes, such that imagery
represents the “offline” use of the top-down model of expected
outcomes from perception and action (Grush 2004; Rauschecker
and Scott 2009). Our second goal was therefore to test whether
auditory-motor training would affect neural activity not only
during perception but also during imagery, and to what extent
changes for perceptual andmore abstract cognitive tasks overlap.

Both exact encoding of incoming sensory information as well
as predictions of upcoming sensory events and of outcomes
of motor actions are important for learning. In the framework
of predictive coding (Friston 2005), top-down internal models of
rules and regularities generate expectations about sensory
events and are modulated by error signals with the overall goal
to minimize prediction error. Thus, bottom-up or forward infor-
mation about sensory input is compared with predictions gener-
ated from higher-order levels of processing. Importantly, while
forward input is relatively stable, learning occurs through the
adaptation of the higher-order, backward, or top-down connec-
tions (Friston 2005). Based on these considerations, we expected
that predisposition for learning versus experience-dependent
plastic changes might dissociate at the level of brain networks.

Here, we investigated the effects of piano training using a
longitudinal design that enabled us 1) to observe the causal influ-
ence of training on brain activity under naturalistic but controlled
conditions and 2) to determine individual predictors of learning,
within the same individuals. To test the effects of multisensory
training on higher-order auditory cognition, we used a basic
music perception task and a more demanding musical imagery
task, which we administeredwhile collecting BOLD fMRI data be-
fore and after 6 weeks of systematic piano training. We expected
task-specific changes due to musical training in cortical auditory
and motor areas, and comparable changes in the networks for
auditory perception and imagery. Regarding individual predis-
position, we hypothesized that pre-training levels of activity in
the auditory-motor network would predict the subsequent per-
formance during piano training. While both neuroplastic and
predictive findings were expected in task-relevant brain areas,
we aimed to dissociate specific components of these networks
that either change through training or are predictive of learning.

Methods
Participants

Fifteen healthy, right-handed young adults (aged 20–34 years,
average 25.6 years; 7 male) enrolled in the study. Fourteen parti-
cipants completed the study. One person (female) dropped out
before training due to reasons unrelated to the study. Participants
were selected based on lack of musical background, as assessed
by an online version of theMontreal Music History Questionnaire
(Coffey et al. 2011), MRI compatibility, availability at the time of
the study, and personal commitment. None of the participants
had >2 years of formal musical training, none were currently en-
gaging in activemusicmaking, and none had previously received
any training on a keyboard instrument. All participants were

native English speakers or bilingual (English and French), had
grown up in the United States of America or Canada and were fa-
miliar with the melodies used as stimulus material. Participants
provided informed consent before enrolling. The ethics review
board of the Montreal Neurological Institute, McGill University,
approved the protocol.

Materials

Twelve familiar melodies including Christmas carols, nursery
rhymes, and pop songswere used as stimulusmaterial. Themel-
odies were piloted for familiarity on a different group of 10 Can-
adian and American participants that was comparable to the
study group with respect to age and musical background. From
those found to be universally familiar, we selected melodies
that were relatively easy to play on the piano and that yielded
above-chance performance in the imagery task (see below) in
pilot participants. Stimuli were presented in piano timbre in
the fMRI tasks (see below) andduring training.Melodieswere cre-
ated as MIDI stimuli first (grand piano timbre, Anvil Studio, Wil-
low Software) and then converted to wav-files (stereo, 44 100 Hz
sampling rate, plug-in to Winamp). The headphones used in
the fMRI experiment (S14, Sensimetrics Corporation) have a flat
response in the range of 100 Hz to 8 kHz. Melodies were trans-
posed as needed so that the training keyboard covered their
tonal range and so that they were relatively easy to play. The
tempo of themelodies varied, and for eachmelody, it was similar
to popular recordings. The keyand tempo of eachmelodywas the
same for the piano training and for the fMRI tasks. For a control
condition in the fMRI experiment (see section “Musical cognition
tasks” below), we prepared permutated tone sequences based on
the familiar melodies that were physically comparable to the
stimuli used in the imagery task but were unrecognizable and
sounded unfamiliar.

Procedures

Longitudinal Study Design
We used a within-subject design with baseline and training
periods, in which subjects were tested at 3 time points spaced
6 weeks apart (Fig. 1, top panel). Scans 1 and 2 took place before
and after a baseline period of 6 weeks, during which no training
occurred. Immediately after the secondMRI session, participants
began the 6-week piano training period, after which Scan 3 took
place. This design allowed us to distinguish the effects of training
from unrelated changes, as well as to determine individual
predictors of learning (Thomas et al. 2009). For one subject, the
baseline period had to be extended to 8 weeks due to unforeseen
scheduling problems. In all other cases, scans were scheduled
6 weeks ± 2 days apart.

Piano Training Protocol
Participants took part in a 6-week piano training in home- and
lab-based practice sessions. They took an electronic keyboard
home that was connected to an online training system imple-
mented with Presentation Software (Neurobehavioral Systems,
Inc.). Participants learned to play simple tunes on the piano in
practice sessions of 30-min’ duration each, 5 days per week (30
sessions total), following a custom training curriculum. The
piano-training protocol was created for the study and piloted
for progression of difficulty on several additional subjects who
were not included in the study. The training focused on the audi-
tory and motor domains by having subjects listen to a short
melody and repeat it on the piano on each trial. During the first
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4weeks (20 sessions), participants learned to play simple tone se-
quences that were composed for the study. Exercises were
grouped in levels that focused on a specific skill to be taught, ran-
ging from 3-tone isochronous sequences to be played by one
hand only, to more complex rhythmic sequences that involved
both hands. During Weeks 5 and 6 (10 sessions), participants
learned to play 6 familiar melodies. These melodies were parti-
tioned into smaller fragments that were successively taught
and then put together to form the complete melodic phrase.
Two randomly assigned subgroups learned to play different
halves of the set of 12 melodies used in the functional paradigm
(6 melodies per participant, counterbalanced across subjects
with approximately equal difficulty and song genres in each sub-
group). This allowed us to later testmaterial-specific and general-
ized effects of training.

At the beginning of each level, participants sawa slide that ex-
plainedwhat the goal of this levelwas, which hand theywould be
using, which keys on the piano they would need, and where they
should place their hands. On each practice trial (Fig. 1, bottom
panel), participants first listened to a tone sequence (template
melody), cued by theword “listen” on the screen. Then, following
the cue “practice,” a graphic appeared to indicate the piano key of
the first tone. We included this starting reference becausewe ob-
served that curriculum pilot subjects did not form sufficiently
strong direct associations between the tones and key position
during this short training period. However, they received no fur-
ther visual or verbal information onwhat to play, and thus, train-
ing was mainly by ear. Participants repeated the melody to their
best ability. Once participants had struck the same number of
keys as in the template melody, they received visual feedback
about the correctness of the keys and the rhythmic timing. Posi-
tive and negative feedback was given in form of a smiling or sad
face for the tones and a smiling, neutral, or sad face for the
rhythm. Participants had to repeat the exercise if they received
negative feedback regarding tones, rhythm or both. In the first
part of the training, each exercise could only be repeated up to
3 times. After the third failure, the order of exercises within the
corresponding level was shuffled and a differentmelodywas pre-
sented on the next trial. This prevented participants from getting
stuckwith one particularmelody, and limited frustration. Partici-
pants passed a level if they correctly played allmelodies (within 3
attempts per melody) in one run.

In the last 2 weeks of training (10 sessions), participants prac-
ticed familiar melodies, which were also used in the fMRI experi-
ment. The rules regarding feedbackwere the same as in the first 4
weeks, but we omitted the shuffling of exercises since they were
meant to successively make up the melody and scrambling

would have confused participants. Here, exercises had to be com-
pleted in order. At the end of each level, the completemelody had
to be performed correctly 3 times before passing on to the next
level (i.e., the next melody). If participants completed all melod-
ies before the end of the 10 sessions, they went through the mel-
odies a second time. After this, they practiced filler melodies that
were from similar genres and of similar difficulty, but that were
not used in the fMRI protocols. In the last training session that
took place immediately before the last MRI session (see below),
participants reviewed all 6 familiar melodies. Each melody was
practiced for 5 min, to ensure that all participants had the same
exposure to all trainedmelodies immediately before the scanning.

Participants practiced on 25-key midi keyboards (Q25, Alesis)
interfacing with a custom training program created with Presen-
tation (Neurobehavioral Systems, Inc.). Participants came to the
lab once per week for a supervised training session, so that we
could monitor the training progress personally and to answer
questions. Participants practiced at home without personal
supervision for the remaining 4 sessions per week. Training ses-
sions were limited to 30 min by the software. Output files con-
taining detailed information about the performance in the
session were automatically uploaded to a lab-based ftp-server
at the end of each session, so we were able to remotely monitor
progress and compliance with the program and to remind parti-
cipants about their schedule if necessary. Participants were in-
structed to do only one 30-min session per day and generally
compliedwith this rule, but in rare cases,we allowedparticipants
to do 2 sessions on a single day in order to accommodate their in-
dividual schedules for a particular week.

MRI Scanning Session

Functional and structuralMRI scanswere collected at each of the 3
measurement time points in the study (Scans 1 to 3). The duration
of each session was ∼2 h. Scans took place at the McConnell Brain
Imaging Center at theMontreal Neurological Institute on a 3 Tesla
MR scanner with a 32-channel head coil (Siemens Trio, Erlangen,
Germany). Auditory stimuli were delivered via MRI-compatible
headphones (S14, Sensimetrics Corp.) with foam inserts placed
inside the ear canal. Stimuli were delivered at a volume deemed
comfortable by each participant. Visual stimuli were presented
via back projection on a screen placed at the end of the MRI
bore. Responses were recorded via anMRI-compatible button box.

Musical Cognition Tasks
Participants performed musical cognition tasks during 2 runs,
with 4 conditions that involved judging the correctness of the

Figure 1. Illustration of the longitudinalwithin-subject repeated-measures design (upper panel) and illustration of an example trial of the piano training (lower panel). See

text for details on the design and on the training program.
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last tone of a familiar melody (Listen), imagining part of the mel-
ody and judging if a final tone correctly completed the imagined
tune (Imagine), listening to the random tone sequences and
pressing a response key but without an auditory cognition task
(Random), or resting in silence (Baseline). All conditions are illu-
strated in Figure 2. Briefly, on each trial, first a visual cue for the
condition and the title of the melody (in Listen and Imagine con-
ditions) were presented for 1 s, followed by the auditory stimulus
or silence, immediately followed by the scan acquisition. The
duration of auditory stimuli was on average 10.1 s. Participants
were instructed to respond (Imagine, Listen, and Random condi-
tions) during the scanner noise following the auditory stimulus
or silence. Conditions were presented in blocks of 12 trials each
for listen, imagine, and random conditions interspersed by
blocks of 4 trials of the baseline condition. The order of the stim-
uli within the blocks was pseudo-randomized for each block. The
order of the blocks was counterbalanced across subjects and dif-
ferent for the 2 runs for each subject. In total, 48 trials of each con-
dition were presented.

Listen condition. On each listen trial, a melodic excerpt as de-
scribed under Materials was presented. The last tone of the ex-
cerpt was incorrect in half of the trials. Participants had to
indicate their judgment of correctness via button press. Incorrect
tones were always in key, and excerpts ended before the end of
the melodic phrase. Thus, participants could not use harmonic
cues for their decision.

Imagine condition. The same familiar melodies as in the Listen
condition were presented. However, instead of the full melody,
only an initial segment of melody was presented, followed by a
silent gap of at least 6 s. The last tone of the excerpt (as in Listen
condition) was then presented again at the same time point
when it would occur in the original melody. Participants’ task
was to imagine the continuation of the melody during the silent
gap and judge the correctness of the last tone. This task was
adapted for fMRI from a previous MEG study on mental imagery
of music (Herholz et al. 2008). Since participants can only judge
the last tone if they have correctly imagined the preceding part
of the melody, it provides an objective measure of musical
imagery.

Random condition. We included the random tone condition to
control for the acoustic input that occurred in the imagery con-
dition. These stimuli had the same physical parameters and si-
lent gaps as in the Imagine condition, but the melody had been
replaced by randomly scrambled versions containing the same
pitch and duration of tones. Two scrambled versions were used
for each melody in order to minimize an increase in familiarity

over the scanning session. Furthermore, 2 independent raters
screened the scrambled melodies to exclude the possibility
that any evoked a different familiar melody. This control was
intended to reduce the possibility of spontaneous imagery of
familiar songs. The same last tones as in the imagery and
listen condition were presented, but since the initial tones
were scrambled, they were not meaningful. No judgments re-
garding the tone were required from the participants in this
condition, but in order to also control for the motor output
of imagery and listen conditions, participants were instructed
to press a button after the presentation of the last tone in this
condition too.

Baseline condition. In the baseline control condition, no audi-
tory input was presented. Participants were instructed to rest
with eyes open during these trials, and not to perform any button
presses.

Scanning Parameters
We used a sparse sampling paradigm for functional scanning
(Belin et al. 1999; Hall et al. 1999), that is, the volume acquisition
took place after the presentation of the tones, and the stimuli
were presented during the silent periods in between acquisitions.
The timing of the volume acquisition was optimized to pick up
listen- and imagery-related activity in these conditions and to
avoid picking up activity related to processing of the initial
tones in the imagery condition. We included the random tone
condition to enable removal of any residual influences of the
auditory stimulation in the analysis.We recorded EPI images cov-
ering the whole head (voxel size 3.4 mm3, 42 slices, TE 30 ms, TR
15 000 ms) immediately after the last tone was presented (Listen,
Imagery, and Random conditions) or after an equivalent lapse of
time (Baseline condition) (See Fig. 2). Between the first and
second functional imaging run, we recorded anatomical
T1-weighted images (MPRAGE, voxel size 1 mm3).

Data Analysis

Behavioral Data Analysis
During training, participants progressed to a new curriculum
level after successfully completing each set of exercises. We re-
corded the level reached at the end of each session and calculated
a linear trend line for each subject. The slope of thesewere taken
as a measure of the relative speed with which subjects pro-
gressed from the first to the nineteenth levels that made up the
second part of the piano training (during which participants
learned to play familiar melodies; see Fig. 3b).

Figure 2. Illustration of example trials of all conditions in the functionalMRI paradigm. In these examples, the last tone for the Listen condition is correct, and incorrect for

the Imagine condition. In the Random condition, no judgment of the last tone had to be given. Still, tones were the same 2 possible tones as in the respective Imagine

condition. In the baseline condition, no acoustic stimuli were presented. The EPI BOLD sequence was run immediately after the last tone or after lapse of time (baseline

condition), in order to optimally pick up activity related to the task. Participants gave their responses during the EPI scanning sequence.
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Although power law fits are frequently used tomodel learning
data, this approach can often be problematic (Clauset et al. 2009).
Instead, we used linear modeling because it requires few as-
sumptions and provided excellent fits (see below). Furthermore,
our aim was to capture relative differences between individuals
as input for other analyses, rather than to describe the shape of
each participant’s learning curve.

For the auditory cognitive tasks in the fMRI session,mean cor-
rect responses were analyzed in repeated-measures analyses of
variance. Alpha level was 0.05 for all analyses.

fMRI Data Analysis
Analyses were performed using FSL software (fMRIB, Oxford, UK;
RRID:birnlex_2067 and RRID:nif-0000-00305) (Smith et al. 2004;
Jenkinson et al. 2012). For preprocessing, images were motion-
corrected and spatially smoothed (5 mm FWHM). Individual
fMRI data were registered to the individual’s T1-weighted ana-
tomical images (3-parameter linear transformation) and regis-
tered to MNI standard space for third-level analyses (12-parameter
linear transformation). Task-related BOLD responses of each
run were analyzed within the GLM (FEAT; Beckmann et al.
2003; Woolrich et al. 2004; Woolrich 2008), including all 4 condi-
tions in themodel (Listen, Imagine, Random, Baseline). For each
individual scan, contrast images were computed for Listen vs.
Random and Imagine vs. Random to assess basic task-related
activity and changes of activity due to training. To also assess
stimulus-specific training effects, we computed the following
contrasts between each individual’s trained and untrainedmel-
odies in a separate analysis: Listen trained vs. Listen untrained
and Imagine trained vs. Imagine untrained. In this analysis, the
Random and Baseline conditions were also included in the
model but were not used in contrasts. For both analyses, the se-
cond analysis step was to combine contrast images of each run
within one scan for each individual in a fixed-effects model in
subject space. On the third level, comparisons across runs and
between subjects were made in a random effects model in
MNI space (FLAME1 in FSL). For correction of multiple compari-
sons, we applied cluster-corrected thresholds (z > 2.3, P < 0.05
cluster-corrected) as implemented in FSL, using a Z statistic

threshold to define contiguous clusters, followed by estimation
of significance level of each cluster based on the cluster prob-
ability threshold (Worsley 2001). Tables show significant local
peaks for each cluster thatwere located in graymatter according
to the Harvard-Oxford cortical and subcortical atlases and cere-
bellar atlas (Diedrichsen et al. 2009) implemented in FSL. Train-
ing effectswere assessed in the comparison of Scans 2 and 3.We
also compared activations between Scans 1 and 2 as a baseline
during which no changes in task-related activity were expected.
To identify predictors of subsequent training success, we per-
formed regression analyses of task-related activity (Imagine
vs. Random, Listen vs. Random) during Scan 2 using the mel-
ody-learning rate measure as a regressor. This analysis would
therefore reveal if activity patterns prior to learning were corre-
lated with individual rates of subsequent learning.

Results
Behavioral Data

The individual learning trajectories of the 14 participants in the
melody training phase are given in Figure 2b. Although the vari-
ability of learning rates was considerable, by the end of the train-
ing phase, all subjects had successfully learned to play at least
the 6melodies assigned to them for training. The choice of linear
slopes as a measure of relative training rate appears justified
given the excellent fit in the vast majority of subjects (mean r2 =
0.92, SD = 0.11; 13 of 14 r2 > 0.88).

Average performance during scanning in the Imagery and
Listen conditions, split for trained and untrained melodies
(balanced across subjects), is shown in Figure 2a. Participants
performed above chance in both the Listen and Imagery condi-
tions at all time points (all P < 0.05, one-sample t-tests, Bonferroni
corrected for multiple comparisons). Thus, participants were
able to accurately imagine the songs as evidenced by their
above-chance performance in judging correct or incorrect conti-
nuations of the melodies following the imagery interval. Per-
formance in the Listen condition was better than the Imagine
condition in all subjects, and in the Listen condition, we observed

Figure 3. (a) Group average performance on the imagery and listen tasks in the fMRI paradigm, for trained and untrainedmelodies and on each scan. Error bars represent

standard deviations. (b) Individual performance curves during the melody part of the piano training. Numbers on the y-axis represent the number of melodies that were

successfully learned.
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a clear ceiling effect, as expected since this is a comparatively
simple task even for nonmusicians. Nonparametric tests com-
paring the 2 conditions showed significant differences at each
time point (Wilcoxon tests, all P < 0.001). Due to violation of the
normality assumption for the Listen condition, we computed a
repeated-measures ANOVA only for the Imagery condition,
with factors time point (Scans 1, 2, and 3) and training (trained
vs. untrained melodies), and found a main effect of time point
(F2,24 = 4.58, P = 0.021) but no other significant effects. A one-way
ANOVA on the factor time point with planned comparisons re-
vealed no significant change during baseline (Scan 1 vs. Scan2),
and a significant increase after compared with before training
(Scan 2 < Scan 3, t12 = 2.02, P = 0.027, one-tailed). Thus, training re-
sulted in an improvement of task performance on the imagery
task.

Functional Imaging Data

To establish a basis for interpretation, we first identified basic
networks of melody imagery and perception. At baseline (Scan
1, before any training took place), listening to familiar melodies
(Listen > Random) strongly activated bilateral primary and sec-
ondary auditory cortices, bilateral thalamus, and parts of the
motor network (caudate, cerebellum lobule VI and crus I, left pre-
central gyrus) as expected. Imagery of familiarmelodies, control-
ling for auditory input (Imagery > Random), resulted in activity in
secondary auditory cortices, superior parietal and inferior frontal
cortices, as well as the motor network comprising left precentral
gyrus, SMA, putamen, and cerebellum, lobule VI (see Supplemen-
tary Table 1). Building on this basic analysis of the imagery and
music listening networks, we then focused on our 2 main ques-
tions: the effects of 6 weeks of piano training on auditory percep-
tion and imagery, and preexisting individual predictors of
subsequent learning.

Training Effects
We analyzed changes in task-related activation across the base-
line period (Scan 2 vs. Scan 1) and across the training period (Scan
3 vs. Scan 2). Across the baseline period, we found no significant
changes other than a decrease of activity in medial frontal and
paracingulate cortex during imagery (Supplementary Table 2).
In contrast, for training-related effects (Scan 3 > Scan 2), we
found similar increases over time for both the imagery and for
the perception tasks. For all melodies, including the ones that
were not trained, left dorsal premotor cortex activity increased
after training for both task contrasts (Imagery > Random, Listen
> Random), with a partial overlap of the significant clusters as
confirmed in a conjunction analysis (intersection of significant
clusters). For the contrast Imagery > Random, we also found a
training-related increase in a cluster comprising supramarginal
and postcentral gyri (Fig. 4a and Supplementary Table 2). In
order to assess specific training effects, we analyzed the changes
over time for trained comparedwith untrainedmelodies for each
task (Imagine trained > Imagine untrained, Listen trained > Listen
untrained). The pattern of changes was similar for both tasks: for
trained melodies compared with untrained melodies, we found
training-related increases of activity in premotor and dorsolat-
eral prefrontal cortex, and in bilateral posterior parietal cortex,
including intraparietal sulcus. Again, the significant clusters in
both task conditions overlapped. Additionally,we observed train-
ing-related increases of activity in bilateral cerebellum (lobule VI)
and training-related decreases in lateral occipital cortex for the
contrast Imagery trained > Imagery untrained (Supplementary

Table 2). No changes were observed in subcortical regions or in
auditory regions.

In summary, we observed both general and material-specific
training effects caused by the 6-week piano training. Changes
that occurred for all melodies were limited to left motor/pre-
motor cortex close to the representation of the right hand,where-
as more extensive changes were found for trained melodies
compared with untrained melodies, encompassing left dorsal
premotor and prefrontal cortex and bilateral posterior parietal
cortex, with more extensive activations on the left. As predicted,
training resulted in improvement of task performance on the im-
agery task. The functional imaging data showed very few
changes during the baseline period, as expected, whereas after
the training, there were many relevant changes in activity. Both
findings point to the success and specificity of the training proto-
col and validate our tasks.

Predictors of Subsequent Learning Rates
Individual learning rates during themelody training (last 2 weeks)
were predicted by stronger activity in multiple areas pre-training,
during both listening and imagining (Fig. 4b and Supplementary
Table 3). We used the learning rates associated with the 2-week
period of melody training, since this part of the training was
most related to the melody perception and imagery tasks used
in fMRI. For the Listen condition (Listen > Random), more activity
in right auditory cortex (lateral portion of Heschl’s gyrus [HG]) and
right hippocampus predicted higher subsequent learning rates.
For the Imagine condition (Imagine > Random),more activity in bi-
lateral caudate (extending into thalamus), left mid-premotor cor-
tex, and right hippocampus predicted higher learning rates. Less
activity in several brain regions also predicted higher learning
rates: less activity in medial frontal areas and frontal pole for
both Listen and Imagine conditions, and less activity in occipital
and precuneus cortex during Imagine (Supplementary Table 3).
These analyses were designed to capture the extent towhich vari-
ance in behaviormeasured at a later timepoint could be explained
byactivity patterns acquired at an earlier time point; the use of the
term prediction ismade in this context, rather than in the context
of “out-of-sample” prediction. It remains to be seen how well ac-
tivity measured in regions identified in the present study would
transfer to a separate population; but logically, it is necessary to
demonstrate prediction in the current context before being able
to address this question in future research.

Discussion
The key findings of this study are the clear evidence for both
training-related neuroplasticity and neural predisposition for
auditory-motor learning, with a dissociation of their respective
brain substrates.

Training-Related Plasticity

We showed that auditory-motor training enhances activation of
areas involved in motor preparation and sensorimotor integration
during perception and imagery of familiar melodies, including
premotor and posterior parietal areas in both conditions, and
cerebellar hemispheres during imagery. Our findings extend pre-
vious findings of training-related plasticity and auditory-motor
coactivation (D’Ausilio et al. 2006; Lahav et al. 2007) to covert
mental tasks. Going beyond previous cross-sectional studies on
expertise effects in mental imagery (Aleman et al. 2000; Herholz
et al. 2008), we demonstrate causal effects of active auditory-
motor trainingonneural correlates of imagery. Putmore generally,
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the results show that training-related modulation of sensory-
motor networks is also relevant for tasks that are more abstract
in nature (i.e., without an overt sensory or motor component).

Premotor cortex can be subdivided into ventral and dorsal
subregions that have been characterized as supporting direct ver-
sus abstract mapping of stimulus–action relationships (Petrides
1985; Fogassi et al. 2001; Kohler et al. 2002; Pizzamiglio et al.
2005; Hoshi and Tanji 2006; Zatorre et al. 2007). The complexity
and large tonal range of the musical material in our study re-
quired computations of complex auditory-motor response selec-
tions, and the changes in dorsal premotor cortex are consistent
with its role for abstract auditory-motor mapping (Zatorre et al.
2007; Chen et al. 2008a; 2008b; Chen et al. 2012). Posterior parietal
regions support mental transformations of acoustic or visual in-
formation intomotor representations (Stewart et al. 2003;Warren

et al. 2005; Zatorre et al. 2007; Brown et al. 2013) and mental mu-
sical transformations (Foster and Zatorre 2010; Foster et al. 2013),
consistent with our task demands. Another parietal subregion,
left supramarginal gyrus, that showed training-related increases
for the imagery task has also previously been implicated inmotor
imagery (Hanakawa et al. 2008). Finally, the modulation of cere-
bellum activity after piano training is likely related to its implica-
tion in sensorimotor integration and formation of internal
models of movements for motor sequence learning (Penhune
and Steele 2012).

Changes in activity in the fronto-parietal network might be
explained bymore focused attention to the stimuli after training.
If the effect of training had resulted in some generalized atten-
tional enhancement then onewould expect it to apply to all mel-
odies, not only to the specific melodies trained. However, the

Figure 4. (a) Functional activation changes due to the 6-week piano training for imagery and listen conditions, and for all melodies (left panel) and specifically for trained

melodies (right panel, assignment counterbalanced across subjects). Specific training-related changes are seen in left premotor and bilateral intraparietal sulcus for both

conditions, and in cerebellar lobule IV for imagery. (b) Functional activity during imagery and listen conditions at Scan 2 that predicts subsequent training rates (slopes of

learning curves) as estimated by linear regression. Individual differences in right hippocampus and right Heschl’s gyrus were predictive during the listen condition,

whereas clusters in right hippocampus, bilateral caudate and left mid-prefrontal cortex were predictive during the imagery condition.
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principal training-related effects are obtained in the contrast of
trained versus untrained melodies. One possible explanation is
that training altered the top-down control of attention specifical-
ly or to a larger extent for the trainedmelodies comparedwith the
untrained melodies.

The pattern of parallel changes in premotor and parietal re-
gions for both perception and imagery tasks is also consistent
with their role in representing complex internal models, predic-
tions, and transformations in auditory-motor learning. During
explicit, initial stages of motor learning, prefrontal and parietal
cortices and lateral cerebellar association areas are thought to
store representations of learned sequences (Doyon and Benali
2005; Penhune and Steele 2012), and these areas would thus be
expected to change their activity due to training. In perceptual
learning, the predictive coding model suggests that top-down re-
presentations about rules and regularities are adapted through
learning (Friston 2005). Consistently, structures important for
adaptation of top-down processing, possibly including top-
down control of attention, including premotor and parietal
cortices and cerebellar hemispheres, showed training-related
changes of activity in our study. Across both the perceptual and
motor-learning models, the top-down predictions and internal
models that are assumed to change through learning are also
the most important conceptual parallel of imagery and percep-
tion/action in the online-offline model of forward models and
efferent copies (Grush 2004; Rauschecker and Scott 2009). The re-
gions of change and the parallel findings of training-induced
changes across both tasks are in agreement with both theories.

Predisposition for Learning

We identified several cortical and subcortical regions whose ac-
tivity pre-training predicted subsequent learning rates on the
piano training, and which were distinct from the areas that
showed training-related changes. These included right HG, left
mid-premotor cortex, bilateral caudate nucleus, and right hippo-
campus. The central roles of these regions in the context of audi-
tory-motor training and auditory cognition can be attributed to
encoding of stimuli (HG and hippocampus) and aspects of
motor control (premotor cortex and caudate nuclei).

Lateral HG and adjacent regions, particularly of the right
hemisphere, are known to be involved in fine-grained spectral
processing and pitch discrimination from a large number of
prior studies using both lesion and functional imaging ap-
proaches (Zatorre 1988; Johnsrude et al. 2000; Zatorre and Belin
2001; Patterson et al. 2002; Fujioka et al. 2003; Krumbholz et al.
2003; Penagos et al. 2004). Our result extends previous findings
of HG function and structure as predictors of purely auditory
learning (Wong et al. 2008; Zatorre, Delhommeau, et al. 2012) to
more complex auditory-motor learning. Here, the predictive
role of right auditory cortex most likely reflects enhanced encod-
ing of pitch relationships, such that subsequent mapping of pitch
to motor sequences is facilitated. While the perception and im-
agine tasks did not require episodic memory encoding, both
tasks required retrieval of familiarmelodies from long-termmem-
ory andmaintenance inworkingmemory. Right hippocampus ac-
tivity has been related to successful melodic memory retrieval
(Watanabe et al. 2008), and joint prefrontal and hippocampal ac-
tivity are associated with high-load working memory tasks (Finn
et al. 2010). Also, our piano training required participants to store
a melody on each trial for immediate reproduction, and to com-
pare template to outcome in order to correct errors regarding
pitches and rhythm. It is notable that the predictive relationship
with the hippocampus is found in 2 independent task conditions.

Enhanced processing of melodies in hippocampus during pre-
learning perception and imagery tasks might therefore be re-
flected in enhanced performance during training.

In contrast to the training-related changes in dorsal premotor
cortex discussed earlier, activity in more ventral premotor areas
was predictive of subsequent learning rates. Left mid-premotor/
inferior frontal cortex is involved in both mental imagery
(Herholz et al. 2012) and in auditory-motor mapping, even
when no clear sound-action association is established yet
(Chen et al. 2012), indicating the beneficial effect of preexisting
basic abilities to directly map sounds to actions. Ventral pre-
motor cortex may support the initial basic ability to map actions
to sounds, whereas more training-specific, complex mapping
(dorsal premotor) needs to be established through training.

The caudate nucleus is activated in motor imagery (Nedelko
et al. 2012), supports encoding ofmotor associations, and chunks
during motor learning (Penhune and Steele 2012) and is active
during the associative phase of cognitive procedural learning
(Hubert et al. 2007). It is also active in musicians during tonal
working memory (Schulze et al. 2011). This role of the caudate
in challenging motor and auditory cognitive tasks is consistent
with our finding that the level of caudate recruitment during
auditory cognition predicted learning rates in auditory-motor
training. Furthermore, inmodels ofmotor learning, the dorsolateral
striatum, including caudate, supports chunking and fine-tuning
of movements throughout and is thus crucial for learning but
not expected to change through training—quite the opposite:
Fine-tuning requires continuous practice, even in experts such
as musicians and athletes (Penhune and Steele 2012).

Conclusion
Learning canbeconceivedas interplayof bottom-upand top-down
processing. According to the predictive coding theory (Friston
2005), top-down predictions based on bottom-up sensory input
are continuously refined through evaluation of the mismatch of
prediction and experience. Our results show that neural substrates
that might be considered most relevant for bottom-up or forward
input, encoding and chunking of auditory and sensorimotor infor-
mation, including auditory cortex, hippocampus, and caudate, are
predictive of subsequent learning success, in linewith the idea that
the quality of the forward signals is crucial for learning but does
not necessarily change through training, at least not in the short
term. In turn, training modulated activity in regions that integrate
sensory information (parietal regions) and that select theappropri-
ate motor programs during training (dorsal premotor cortex) and
that are thus responsible for adapting responses to achieve correct
auditory-motor performance and minimize errors. Findings from
visuo-motor learning (denOuden et al. 2010) andmodels of speech
learning (Hickok and Poeppel 2007; Rauschecker and Scott 2009)
also propose an interplay of prediction and feedback signals be-
tween auditory, motor, and association areas. This interpretation
also fits with the concept of an efference copy of expected percep-
tual or action outcomes as an “online” top-downmodel, with par-
allel “offline” use of this model in mental imagery (Grush 2004;
Rauschecker and Scott 2009). Our data thusmatch these combined
concepts both regarding regions of change and parallelism of
changes across Imagery and Listen tasks.

Cross-sectional studies in domains of expertise, including
musicianship, cannot rule out the influence of predisposition,
but this problem is often phrased as if it were merely a relatively
minor drawback that would be overcome with corresponding
findings of neuroplasticity in longitudinal training studies.
Here, we show that predisposition plays an important role for
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auditory-motor learning that can be clearly distinguished from
training-induced plasticity. This dissociation contributes to our
understanding of how the initial state of the nervous system
can influence both the behavioral outcome of learning and its as-
sociated neural features (Zatorre 2013). Our findings pertain to
the debate about the relative influence of “nature or nurture,”
but also have potential practical relevance for individualized
medicine and education, where they could help create custo-
mized interventions. Different interventions might be selected
for individuals based on their predisposition and needs. The ex-
tent to which individual differences in predisposition are them-
selves the outcome of plasticity due to previous experiences in
other domains and/or to (epi)genetic variability remains an im-
portant topic for cognitive neuroscience in the future.
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