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Abstract
Brain regions with high connectivity have high metabolic cost and their disruption is associated with neuropsychiatric
disorders. Prior neuroimaging studies have identified at the group-level local functional connectivity density (lFCD) hubs,
network nodeswith high degree of connectivity with neighboring regions, in occipito-parietal cortices. However, the individual
patterns and the precision for the location of the hubs were limited by the restricted spatiotemporal resolution of themagnetic
resonance imaging (MRI) measures collected at rest. In this work, we show that MRI datasets with higher spatiotemporal
resolution (2-mm isotropic; 0.72 s), collected under the Human Connectome Project (HCP), provide a significantly higher
precision for hub localization and for the first time reveal lFCD patterns with gray matter (GM) specificity >96% and sensitivity
>75%. High temporal resolution allowed effective 0.01–0.08 Hz band-pass filtering, significantly reducing spurious lFCD effects
in white matter. These high spatiotemporal resolution lFCDmeasures had high reliability [intraclass correlation, ICC(3,1) > 0.6]
but lower reproducibility (>67%) than the low spatiotemporal resolution equivalents. GM sensitivity and specificity benchmarks
showed the robustness of lFCD to changes in model parameter and preprocessing steps. Mapping individual’s brain hubs with
high sensitivity, specificity, and reproducibility supports the use of lFCD as a biomarker for clinical applications in
neuropsychiatric disorders.
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Introduction
Functional connectivity density mapping (FCDM) is a powerful
graph theory tool for exploring the topology of human brain func-
tion using magnetic resonance imaging (MRI) datasets collected
at rest and task states (Tomasi and Volkow 2010; Tomasi,
Wang, Wang, et al. 2014). FCDM quantifies local degree, the size
of the local network cluster functionally connected to a brain net-
work node, which measures the local centrality of every voxel in
the human brain connectome. In contrast to seed-voxel correl-
ation analysis (Biswal et al. 1995), data-driven FCDM is ideal for
exploratory analyses because it does not require a priori hypoth-
eses. Due to extremely high computational demand, it is almost

impossible to perform voxelwise analysis using other graph the-
orymetrics such as global degree, clustering, and path length, yet
ultrafast FCDM quantifies the strength of the local functional
connectivity hubs (network nodes with high connectivity to
nearby brain regions) at 3-mm isotropic resolution in just a few
minutes/subject (Tomasi and Volkow 2010). These characteris-
ticsmake FCDMoptimal for datamining of large image repositor-
ies of “resting-state” functional connectivity datasets such as the
“1000 Functional Connectome Project” (Biswal et al. 2010) and the
attention deficit hyperactivity disorder (ADHD)-200 (Tomasi and
Volkow 2012a).

Using FCDM, we have demonstrated the distribution of local
(lFCD) and global (gFCD) hubs with high functional connectivity
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density (i.e., degree; Tomasi and Volkow 2011a, 2011b) and the
functional asymmetry of the human brain (Tomasi and Volkow
2011d), as well as the effects of task performance (Tomasi,
Wang, Wang, et al. 2014), gender (Tomasi and Volkow 2011c),
and aging (Tomasi and Volkow 2012b) on lFCD and gFCD, and
the metabolic cost of functional connectivity (Tomasi, Wang,
et al. 2014). Recent studies using FCDM have demonstratedmod-
ulatory effects of catechol-O-methyltransferase and dopamine
D2 receptors (Tian et al. 2013) and the influence of the oxytocin
receptor gene (Wang, Qin, et al. 2013) on the strength of the func-
tional connectivity hubs. Independent laboratories (including
ours) have shown disrupted lFCD and gFCD in ADHD (Tomasi
and Volkow 2012a), traumatic axonal injury (Caeyenberghs
et al. 2014), non-epileptic seizures (Ding et al. 2014), schizophre-
nia (Tomasi and Volkow 2014; Zhuo et al. 2014; Liu et al. 2015),
congenital blindness (Qinet al. 2015), andcocaineaddiction (Konova
et al. 2015). lFCD and gFCD hubs have also shown to be sensitive to
stimulants (Konova et al. 2015), fluid reasoning capacity (Lang et al.
2015), and brain development (Tomasi and Volkow 2014).

Whereas functional connectivity metrics promise to have a
major impact on neuroscience research, several limitations still
prevent their translation as clinical biomarkers in neurology
and psychiatry. For instance, at 3-mm isotropic resolution (stand-
ard native spatial resolution in fMRI studies), the functional con-
nectivity metrics include significant contamination from blood
vessels and have suboptimal tissue specificity (Menon 2002;
Turner 2002). More importantly, functional connectivity metrics
from data collected with low temporal resolution (1.5–3.0 s)
include significant aliasing artifacts of physiological origin
(Birn et al. 2006). Thus, similar to other functional connectivity
metrics, FCDM would benefit significantly from greater accuracy
in spatial localization and faster image acquisition.

The HCP (https://db.humanconnectome.org/; Van Essen et al.
2012) recently released a large fMRI database including “resting-
state” functional connectivity datasets with unprecedented
spatiotemporal resolution (2-mm isotropic; 0.72 s) that allow
mapping the distribution of functional connectivity hubs at the
individual level (Cohen et al. 2008) with high spatial specificity
and reduced physiologic noise contamination. We hypothesized
that spontaneous fluctuations in the resting state are driven by
neuronal populations (Logothetis et al. 2001; Logothetis 2002;
Shmuel and Leopold 2008; Lei et al. 2014; Li et al. 2014; Siero
et al. 2014), andwe predicted that the better spatiotemporal reso-
lution of the data would enable us to observe these fluctuations
only within the gray matter (GM). Therefore, the higher spatial
resolution and faster sampling rate of the HCP datasets would
lead to sharper lFCD patterns with greater precision in spatial lo-
calization at the individual and group levels and with reduced
physiologic noise artifacts.

Here, we assess for the first time the distribution of lFCD hubs
with high spatiotemporal resolution at the individual and group
levels in 40 healthy adults using the HCP-Q1 dataset. Aiming to
identify the brain location of functional hubs with unprecedent-
ed spatial resolution, we assess GM sensitivity and specificity, re-
producibility and test–retest reliability, as well as the effects of
MRI acquisition (i.e., LR vs. RL phase encodings), and specific
lFCD parameters (i.e., correlation threshold) and preprocessing
steps (i.e., motion covariates, 0.08 Hz low-pass filtering, and
global signal normalization) on the strength of the lFCD patterns.
We hypothesized that higher spatiotemporal resolution would
enable precise identification of hub locations within occipito-
parietal and primary sensory cortices, which are the regions
that house themost prominent hubs in the human brain (Tomasi
and Volkow 2010).

Materials and Methods
Subjects

Data were drawn from the publicly available repository of the
WU-Minn HCP (http://www.humanconnectome.org/). The scan-
ning protocol was approved by Washington University in the
St. Louis’s Human Research Protection Office (HRPO), IRB#
201204036. No experimental activity with any involvement of
human subjects took place at the author’s institutions.

The 40 participants (age: 31 ± 3 years; 31 females) of the
WU-Minn HCP-Q1 data release included in this study provided
written informed consent and were scanned on a 32-channel
3.0-T Siemens Skyra unit according to procedures approved by
the IRB at Washington University. Resting-state functional
images were acquired while the participant relaxed with eyes
open using a gradient-echo-planar imaging (EPI) sequence with
multiband factor 8, time repetition (TR) 720 ms, time echo
33.1 ms, flip angle 52°, 104 × 90 matrix size, 72 slices, 2 mm iso-
tropic voxels, and 1200 time points (Smith et al. 2013; Uğurbil
et al. 2013). Scans were repeated twice using different phase-
encoding directions (RL and RL) in each of the 2 sessions (REST1
and REST2). To capitalize on the high-quality data offered by
the HCP, we used the “minimal preprocessing” datasets (hp2000_
clean.nii files), which include gradient distortion correction, rigid
body realignment, field map processing, spatial normalization to
the stereotactic space of the Montreal Neurological Institute
(MNI), high-pass filtering (1/2000 Hz frequency cutoff; Glasser
et al. 2013), independent component analysis (ICA)-based denois-
ing (Salimi-Khorshidi et al. 2014), and brain masking. Thus, 160
“resting-state” image time series with 902 629 2-mm isotropic vox-
els and 1200 time points (4.3 Gbmemory space) collected over 864 s
were used in this study. In addition, we used the HCP’s gray and
white matter parcellations (guided by “wmparc” and “ROIs” files)
of each subject’s brain structural scans, to create a GM template.
This template was used to assess the GM specificity of the lFCD.

lFCD Pipelines

The interactive data language (IDL, ITT Visual Information Solu-
tions, Boulder, CO, USA) and a workstation with 2 Intel® Xeon®

X5680 processors and 48 Gb random access memory were used
in subsequent FCDM-processing steps (Fig. 1). Seven lFCD
pipelines were implemented. Pipeline 1 included “scrubbing” to
remove image time points that could be severely contaminated
with motion. Specifically, framewise displacements, FDs, were
computed for every time point from head translations and
rotations, using a radius of r = 50 mm to convert angle rotations
to displacements. The mean FD was not different for the REST1
(0.17 ± 0.05 mm; mean ± standard deviation) and REST2 (0.18 ±
0.05 mm) sessions or for the LR (0.17 ± 0.05 mm) and RL (0.18 ±
0.05 mm) phase-encoding directions (P > 0.24; paired t-test).
Scrubbing was implemented in IDL to remove image time points
with temporal derivative of the root mean square variance of the
signal over voxels, DVARS >0.5% and FD >0.5 mm (Power et al.
2012). The number of time points removed per time series by
scrubbing was not significantly different for REST1 (0.5 ± 1.1;
mean ± SD) and REST2 (0.8 ± 1.1) or for LR (0.5 ± 1.2) and RL
(0.8 ± 1.1; P > 0.12, t-test).

Pipeline 1 also included multilinear regression to minimize
motion-related fluctuations in theMRI signals (Tomasi and Volk-
ow 2010), 3D global signal intensity normalization across time
points to minimize global fluctuations, and standard 0.08 Hz
low-pass filtering to remove magnetic field drifts and minimize
physiologic noise of high frequency components. Note that
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these standard lFCD preprocessing steps partially overlap with
those used by the HCP (ICA-based denoising) to remove unwant-
ed noise sources (Salimi-Khorshidi et al. 2014).

In addition, pipeline 1 assessed the lFCD at every voxel in the
brain, computed as the number of elements in the local function-
al connectivity cluster, using a “growing” algorithmwritten in IDL
(Tomasi and Volkow 2010). The Pearson correlation was used to
assess the strength of the functional connectivity, Rij, between
voxels i and j in the brain, and a correlation threshold, Rij > 0.3,
was selected to ensure significant correlations between time-
varying signal fluctuations are corrected at PFWE < 0.05. A voxel
(xj) was added to the list of voxels functionally connected with
x0 only if it was adjacent to a voxel that was linked to x0 by a con-
tinuous path of functionally connected voxels and R0j > 0.3. This
calculationwas repeated for all brain voxels that were adjacent to
those that belonged to the list of voxel functionally connected
to x0 in an iterative manner until no new voxels could be added
to the list. Spatial smoothing was not used to preserve the high
spatial resolution of the native datasets. Note that lFCDwas eval-
uated in the whole brain without any masking procedure (227
372 ± 2461 voxels; mean ± SD).

Three alternative pipelines avoiding either (pipeline 2) low-
pass filtering; or (pipeline 3) regressing out motion parameters;
or (pipeline 4) avoiding global signal normalization were imple-
mented to assess the effects of additional preprocessing steps
on the ICA-based denoising approach; and 2 alternative pipelines
with (pipeline 5) R0j > 0.6; or (pipeline 6) R0j > 0.15 and with
no global signal normalization were also implemented to
assess the effects of model parameters on lFCD patterns at high
spatiotemporal resolution. Furthermore, time series with low
spatiotemporal resolution (3-mm isotropic, spatial resolution of

typical fMRI studies; 2.16 s = 3TR, temporal resolution of typical
fMRI studies) were created from high-resolution scans (REST1 and
REST2) using reslicing and downsampling (pipeline 7) in order to
assess potential gains in sensitivity, specificity, and reproducibility
for lFCD maps (R0j > 0.3; no global signal normalization) with high
versus low spatiotemporal resolution (pipeline 4 vs. pipeline 7).
Group mean normalization using a single scaling factor reflecting
the average lFCD across subjects was performed independently as
the last step of the 7 pipelines to allow comparison of results.

Reproducibility, Sensitivity, and Specificity Indices

The “reproducibility” of the lFCD hubs in the brain across resting-
state sessions was quantified across voxels for each subject or
across subjects for each voxel as:

Reproducibility ¼ 1� 1
N

XN
i∈brain

abs
lFCDi

REST1 � lFCDi
REST2

lFCDi
REST1 þ lFCDi

REST2

 !
: ð1Þ

The gray and white matter parcellations provided with the Q1 re-
lease of the HCP dataset were used to compute 2 additional indi-
ces assessing tissue-specific differences in lFCD across image
voxels for each subject or across subjects for each image voxel:

Sensitivity ¼ NGM

Ntissue

P
i∈ftissueg

lFCDiP
i∈fbraing

lFCDi
; if

X
i∈fbraing

1>
X

i∈ftissueg
1 ð2Þ

gauges the proportion of lFCD within the tissue of interests (i.e.,
cortical and subcortical GM and white matter), normalized by

Figure 1. lFCD processing pipelines. Seven lFCDmaps (see text) were computed for each subject, session, and phase-encoding direction. A total of 960 lFCDmaps covering

thewhole brain (whitematter and cerebrospinal fluid regionswere notmasked out to assess the strength of the lFCD in these regions) with 2-mm isotropic resolution and

91 × 109 × 91 voxelswere computed using 160HCP datasetswith “minimal preprocessing” (Glasser et al. 2013) from the Q1 release. Smoothingwas not used to preserve the

high spatial resolution of the resting-state functional dataset.
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tissue volume to that of GM. Note that brain counts,
P

i∈fbraing 1,
must be larger than tissue counts,

P
i∈ftissueg 1, in order to assess

the true positive rate of lFCD in the tissue. This criterion is natur-
ally satisfied across voxels for each individual (gray matter vol-
ume < brain volume) but is not warranted across subjects for
each image voxel because normalized brain anatomy in the
MNI space is highly similar across subjects. Thus for subcortical
structures and cerebellum, and major sulci and gyri sensitivity
could not be determined.

Specificity ¼
P

i∈fWMg εP
i∈fWMg 1

;

ε ¼
1 if lFCDi �

1
N

X
k∈fbraing lFCDk

0 if lFCDi >
1
N

X
k∈fbraing lFCDk
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>: ;

ð3Þ

a true negative rate test, gauges the proportion of white matter
measures with lower lFCD than thewhole-brain average. Specifi-
city could not be determined across subjects for voxels that were
either classified as GM or had lower lFCD than the whole-brain
average in all subjects.

Reliability

The test–retest reliability of the lFCD patterns was evaluated for
each imaging voxel using two-waymixed single-measures intra-
class correlation (Shrout and Fleiss 1979)

ICC(3,1) =
BMS�EMS

BMS + (k�1)EMS
: ð4Þ

Specifically, ICC(3,1)wasmapped in the brain in termsof between-
subjects (BMS) and residualsmean-square (EMS) values computed
for each voxel using the IPN matlab toolbox (http://www.
mathworks.com/matlabcentral/fileexchange/22122-ipn-tools-for-
test-retest-reliability-analysis) and the lFCD maps corresponding
to REST1 and REST2 sessions (k = 2). Note that ICC(3, 1) coefficients
range from 0 (no reliability) to 1 (perfect reliability).

Physiologic Noise

The HCP datasets included physiologic data (cardiac and respira-
tory) corresponding to the resting-state functional scans, which
were collected with 2.5 ms temporal resolution. The fast Fourier
transform was used to assess the amplitude of the different fre-
quencies of the cardiac and respiratory signals in the 0- to 200-Hz
bandwidth of the frequency domain representation. In addition,
the physiologic data were downsampled to the 0.72-s temporal
resolution of the multiband acquisition using the trigger signal
embedded in the physiologic data file, which render frequency
domain representations of the cardiac and respiratory signals
in the 0.0- to 0.7-Hz bandwidth. The power amplitudes in the
low-frequency bandwidth, relative to the full power of the Fourier
spectra, were computed for each scan.

Statistical Methods

A full factorial design was used to compare lFCD between ses-
sions (REST1 vs. REST2) and phase encoding directions (LR vs.
RL) and to compare lFCD differences associated with specific
lFCD preprocessing steps (i.e., multilinear motion regression,
low-pass filtering, and global signal normalization). The statistic-
al parametricmapping package (SPM8)was used for this purpose.
Statistical significance was set by PFWE <0.05, corrected for mul-
tiple comparisons at the cluster level with the random field the-
ory and a family-wise error correction with a cluster-forming
threshold of P < 0.001 and a minimum cluster size of 625 voxels
(5 mL).

Results
lFCD Patterns

For all resting-state scans, the individual’s lFCDpatterns predom-
inantly followed the shape of cortical GM, and hadminimal over-
lap with white matter and cerebrospinal fluid (Fig. 2A). These
individual’s cortical lFCD patterns were highly reproducible
across sessions and phase-encoding conditions. Figure 2 demon-
strates the reproducibility of the lFCD patterns from pipeline 1

Figure 2. GM sensitivity and specificity across subjects. (A) Four exemplary lFCD maps from test–retest sessions (REST1 and REST2) with different multiband acquisition

(phase-encoding directions: LR and RL) for 2 randomly selected subjects, superimposed on the subjects’ T1-weighted MRI structures. Average sensitivity for subcortical

and cortical GM andwhitematter (B) and specificity (C) of lFCD across subjects for each of the processing pipelines in Figure 1, for REST1 and LR phase encoding. Error bars

are standard deviations.
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(see Materials andMethods) across sessions and phase-encoding
conditions for 2 randomly selected subjects. In most cortical
regions, the average lFCD across subjects was stronger than the
whole-brain mean lFCD. Inferior ventral, orbitofrontal, and insu-
lar cortices and subcortical regions showed attenuated lFCD, per-
haps reflecting the lower sensitivity of the 32-channels coil used
to collect the data in these regions (Anteraper et al. 2013). The
remarkable GM specificity of the lFCD in cortical regions across
all subjects was used as one of the benchmark criteria to assess
the effect of image preprocessing steps on lFCD.

Reproducibility

The lFCD patterns computed with global signal normalization
and correlation threshold R > 0.3 had reproducibility of 70 ± 4%
across sessions. The lack of global signal normalization im-
proved the sensitivity and specificity (Fig. 2B,C) indices but re-
duced lFCD reproducibility to 67 ± 5% (P < 0.002; paired t-test,
df = 79). lFCD patterns (without global normalization) computed
with R > 0.6 had higher reproducibility (88 ± 4%) and those with
R > 0.15 had lower reproducibility (59 ± 6%) than at R > 0.3. The
reproducibility of the lFCD patterns did not differ between LR
and RL runs. The reproducibility index was maximal in white
matter and minimal in the visual cortex (Fig. 3). Voxelwise ana-
lysis contrasting REST1 and REST2 did not show statistically sig-
nificant lFCD differences between sessions in any brain region.
To assess the impact of higher spatiotemporal resolution, we
compared the reproducibility of lFCD maps for high versus low
spatiotemporal resolution (downsampled) datasets, which
were computed with R > 0.3 and without global signal normal-
ization (pipeline 4 vs. 7). The reproducibility index was signifi-
cantly lower for datasets with high spatiotemporal resolution

(67 ± 5%; mean ± SD) than for those with low spatiotemporal
resolution (82 ± 3%; P < 10−26, paired t-test).

Sensitivity

Across subjects, the “sensitivity” index (i.e., the proportion of
lFCD within a tissue of interest; see Materials and Methods) was
higher for cortical gray matter than for white matter and subcor-
tical GM (including cerebellum; Fig. 2B). This differential pattern
was highly significant across subjects and reproducible across
sessions and phase-encoding conditions (P < 10−9; paired t-test,
df = 39; Supplementary Fig. 1). For cortical GM, the sensitivity
index reached a maximal value (85 ± 3%; mean ± SD) for lFCD
maps computed without global signal normalization and using
a correlation threshold R > 0.3 (Fig. 2B). Decreasing or increasing
the correlation threshold from R > 0.3 to >0.15 or >0.6 reduced
the sensitivity index to 80 ± 3% or 76 ± 8% (P < 10−10; paired
t-test, df = 39) for cortical GM. The lack of 0.08 Hz low-pass filter-
ing significantly reduced the sensitivity index in cortical regions
to 55 ± 5% (P < 10−17). Multilinearmotion regression did not have a
significant effect on the sensitivity index (P > 0.4), suggesting
that ICA-based denoising properly corrects for motion artifacts
in lFCD.

The cortical GM sensitivity index was significantly higher for
datasets with high spatiotemporal resolution (85 ± 3%; mean ±
SD) than for those with low spatiotemporal resolution (65 ± 9%;
P < 10−18, paired t-test). Figure 3 shows that the sensitivity index
was maximal in cortical regions, minimal in white matter, and
null in the ventricles. Note that sensitivity could not be assessed
for major sulci and gyri, thalamus, caudate putamen, amygdala,
hippocampus,midbrain, and cerebellar GM, due to the absence of
white matter in these regions in all subjects.

Figure 3. Reproducibility and GM sensitivity and specificity of lFCD patterns computed across subjects superimposed on axial view of the GM template. Sensitivity and

specificity could not be computed for major sulci and gyri, thalamus, caudate putamen, amygdala, hippocampus, midbrain, brainstem, and cerebellar GM, due to the

absence of white matter in these regions in all subjects.
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Specificity

The specificity of the lFCD patterns for cortical GM was higher
than 93.6% across threshold and global normalization condi-
tions, sessions, and phase-encoding directions (“specificity
index” = 96.3 ± 1.7; mean ± SD; Fig. 2C). Global normalization im-
proved the specificity index (P < 0.04, paired t-test, df = 39). The
correlation threshold used in the computation of lFCD did not
have a significant impact on the specificity index, in different
sessions or phase-encoding directions. The specificity index
was significantly higher for datasets with high spatiotemporal
resolution (97 ± 1%; mean ± SD) than for those with low spatio-
temporal resolution (92 ± 7%; P = 0.0001, paired t-test; pipeline 4
vs. pipeline 7). The specificity indexwasmaximal inwhitematter
regions, minimal in cortical regions, and null in the ventricles
(Fig. 3). Similar to sensitivity, specificity could not be assessed
for major sulci and gyri, thalamus, caudate putamen, amygdala,
hippocampus, midbrain, brainstem, and cerebellar GM, due to
the absence of white matter in these regions in all subjects.

Strength

Figure 4 highlights the distribution of the lFCD in the human
brain, which is consistent with our previous reports at lower

spatiotemporal resolution (Tomasi and Volkow 2010, 2011b). Spe-
cifically, in cuneus, precuneus, and primary visual cortices, the
lFCD was 3 times or higher than the whole brain average. Within
this large region, the cuneus and the precuneus, encompassing
posterior ventral regions of the parieto-occipital fissure, exhib-
ited maximal lFCD. The angular gyrus, posterior cingulum, and
the posterior regions of the default-mode network also demon-
strated prominent lFCD with 6 times or higher strength than
the whole brain average. Other regions with high lFCD included
precentral gyrus, anterior cingulum, as well as primary auditory,
somatosensory, and motor cortices.

Hubs

The local maxima of the average lFCD highlight the precise loca-
tion of the hubs (i.e., nodes with high local connectivity) in the
human brain (Fig. 5). The strongest hubs (lFCD > 5.0) were densely
located in a posterior occipito-parietal network, which included
cuneus,middle and superior occipital, supramarginal and angular
gyri, and inferior parietal cortex (BAs2, 7, 18, 19, 39, and 40; Supple-
mentary Table 1). The probability of lFCD local maxima within a
1-mL cubic volume, P, was used to assess the reproducibility of
hub locations across subjects. The locations and intensity of the

Figure 4. lFCD patterns. Average lFCD strength across subjects showing brain areas with higher lFCD than thewhole brain average (pipeline 1), superimposed on axial (top

row), sagittal (middle row), and coronal (bottom row) views of cortical and subcortical GM template developed using the HCP structural scans.

Figure 5. lFCD hubs. Local maxima of the average lFCD detected with probability P > 0.5 across subjects, sessions, and phase-encoding directions within a 1-mL cubic

volume, superimposed on axial (top row) and sagittal (bottom row) views of a GM template of the human brain. The color pattern indicates the average strength of

the lFCD hubs in a logarithmic scale.
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hubs varied across subjects (see Supplementary Fig. 2), but were
highly reproducible within the 1-mL cubic search volume (P > 0.8,
Supplementary Table 1). Similarly, the locations and intensity of
the lFCD hubs were highly reproducible across sessions and
phase-encoding directions (Fig. 6). The linear associations be-
tween GM sensitivity and specificity, reproducibility, and strength
of the lFCD hubs were not statistically significant (P > 0.07,
Pearson correlation).

Global Signal Normalization

Global signal normalization did not alter the lFCD inmost cortical
regions, but caused significant increases in lFCD in white matter,
ventral temporal cortex, basal ganglia, thalamus, and brainstem
and in the lateral ventricles (Fig. 7B).

Phase-Encoding Direction

The lFCDwas sensitive to the phase-encodingdirectionof themul-
tiband EPI acquisition, particularly in brain regions affected by
magnetic field gradients induced bymagnetic susceptibility differ-
ences at air-tissue interfaces such as the sinus cavity. In contrast to
LR phase encoding, RL phase encoding increased lFCD in right or-
bitofrontal gray and white matter and left ventral temporal white
matter and decreased it in the contralateral regions (Fig. 7C).

Physiologic Noise

When sampled at TR = 0.72 s, physiological (cardiac and respira-
tory) signals are aliased into the 0- to 0.7-Hz bandwidth and lack

of proper low-pass filtering could spuriously increase MRI signal
fluctuations (see Supplementary Fig. 3). The lFCD maps corre-
sponding to datasets processed without low-pass filtering had
lower strength in cortical regions and higher strength in white
matter, ventral temporal cortex, basal ganglia, thalamus, brain-
stem, and the lateral ventricles than those corresponding to data-
sets processed with low-pass filtering (Fig. 7D).

Reliability

Intraclass correlation analyses of test–retest datasets demon-
strated the high reliability (ICC(3,1) > 0.6) of the lFCD in cortical
regions (Fig. 7E). lFCDmeasures with global signal normalization
showed increased reliability in cortical regions, compared with
those without global signal normalization (see Supplementary
Fig. 4). Test–retest reliabilitywashigher for R > 0.3 than forR > 0.15.
The high correlation threshold (R > 0.6) had poor reliability.

Discussion
Here, we show for the first time patterns of lFCDwith high spatio-
temporal resolution that can reliably identify the precise location
of functional connectivity hubs in each individual. Specifically,
we quantified the sensitivity and specificity of lFCD for GM as
well as the reproducibility and reliability of the lFCD patterns
while assessing effects of image preprocessing steps and lFCD
model parameters. Based on these analyses, optimal sensitivity
and specificity were obtained for the threshold R > 0.3, 0.01–
0.08 Hz frequency bandwidth, and without global normalization.

Figure 6. lFCD hubs: Reproducibility. Local maxima of the average lFCD across subjects, detected with probability P > 0.5 within a 1-mL cubic volume, for each session

(REST1 and REST2) and phase-encoding direction (LR and RL), superimposed on axial (top row) views of a GM template of the human brain. The colored pattern

indicates the strength of the lFCD hubs in a logarithmic scale.
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The lFCD is a graph theorymetric thatmeasures the degree of
the local cluster functionally connected to a given network node.
UsingMRI data (Achard et al. 2006; van denHeuvel et al. 2008; Beu

et al. 2009; Buckner et al. 2009; Tomasi and Volkow 2010, 2011b),
magnetoencephalography and electroencephalography (Stam
2004), and optical imaging (Bonifazi et al. 2009), others and we

Figure 7. lFCD: Effects of global signal, phase encoding and low-pass filtering, and test–retest reliability. (A) Brain regions with high lFCD superimposed on 3 orthogonal

views of the GM template (pipeline 1). The dashed rectangle insert depicts the lFCD distribution in ventral occipital and posterior parietal regions using a higher upper

threshold (color map: 6 < lFCD < 21). (B) A t-score map demonstrating the significant lFCD increases in white matter and subcortical regions elicited by global signal

normalization (pipeline 1 vs. pipeline 4). (C) t-score maps highlighting brain regions with significant phase-encoding-related artifacts in the lFCD. (D) t-score maps

highlighting regions with significant lFCD increases (red-yellow) and decreases (blue-green) associated with 0.8 Hz low-pass filtering (pipeline 1 vs. pipeline 2). Two-

way mixed single-measures intraclass correlation ICC(3,1) maps at 2-mm isotropic resolution depicting regional variability in reliability for lFCD measures for

processing pipeline 1 with LR phase-encoding data.
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have demonstrated that brain network architecture is based on
few hubs (regions with high degree) and numerous nodes with
low degree (Bullmore and Sporns 2009). This distribution of
the nodes is also in agreement with the structure of the
small-world (Watts and Strogatz 1998) and scale-free (Barabasi
and Albert 1999) networks. The hubs of the human brain are en-
ergy demanding (Tomasi, Wang, et al. 2013) and prone to mal-
function in neuropsychiatric disorders of metabolic origin
(Bassett et al. 2008; He et al. 2008; Buckner et al. 2009; Supekar
et al. 2009; Crossley et al. 2014). Even in normal subjects, the
strength of the functional connectivity hubs is influenced by
aging (Tomasi and Volkow 2012b) and genetic background
(Kelly et al. 2007; Biswal et al. 2010; Van Dijk et al. 2010; Wang,
Qin, et al. 2013). Thiswork demonstrates for the first time the pre-
cise location of the functional connectivity hubs in the brain, as
defined by lFCD local maxima. Using high spatiotemporal reso-
lution FCDM, we demonstrate that cortical hubs are densely lo-
cated in occipito-parietal cortices, which are known to be
disrupted in patients with schizophrenia (van den Heuvel et al.
2013), autism spectrum disorders (ASDs) (Blanken et al. 2015),
and Alzheimer’s disease (Sheline and Raichle 2013). At lower
spatiotemporal resolution (∼3-mm isotropic; ∼2 s), we have
quantified the variability across subjects in the position of the 2
more prominent hubs as 4.4 ± 2.7 and 6.7 ± 4.1 mm, respectively,
which are located in posterior and inferior parietal cortices
(Tomasi and Volkow 2010). However, in our previous study, the
variability in the spatial location of other hubs was larger
(>11 mm). In the present work, we identify the precise locations
of 120 cortical hubs that can be detected across subjects with
probability higher than 80% within a 1-mL cubic volume (i.e.,
within 5 mm from MNI coordinates in Supplementary Table 1).
The locations of these cortical hubs were highly reproducible
across subjects and sessions.

This is also the first study to quantify sensitivity, specificity,
and reproducibility of functional connectivity measures in
GM tissue, which is where neuronal activity gives rise to oscilla-
tions in the blood oxygenation level-dependent MRI signals
(Logothetis et al. 2001; Lu et al. 2016; Carandini et al. 2015). The
lFCD patterns were highly reproducible within and across sub-
jects and exhibited high GM specificity such that they accurately
delineated the shape of cortical gyri and sulci for each individual
subject. Reproducibility ranged from 59 ± 6%, for the lowest cor-
relation threshold, to 88 ± 4%, for the highest correlation thresh-
old, and the fraction of lFCD (sensitivity index) in GM reached a
maximum of 85 ± 3% for the medium correlation threshold. In
this study, the reliability of the lFCD was high in cortical regions
(ICC(3,1) = 0.65 ± 0.14; mean ± SD) and moderate in basal ganglia
and cerebellum (ICC(3,1) < 0.40 ± 0.20). Previous studies have
reported low to moderate reliability (0.15 < ICC(3,1) < 0.6) of
functional connectivity measures (Zuo et al. 2010; Braun et al.
2012; Guo et al. 2012; Yang et al. 2012; Birn et al. 2013; Wang,
Jiao, et al. 2013), in part due to intrinsic limitations in the spatio-
temporal resolution of theMRI data. Thepresentwork shows that
MRI acquisition protocols with high spatial and temporal resolu-
tions, as those used under the HCP (Van Essen et al. 2012; Uğurbil
et al. 2013), can provide a quantum leap in sensitivity, specificity,
reproducibility, and reliability of the cortical lFCD hubs at the in-
dividual- and group-level analyses. Precise identification of hubs
at the individual level is needed in order to develop biomarkers
that assess variability of these hubs through an individual’s
brain developmental trajectory and in disease, and to assess
the effects of therapeutic interventions.

The predominance of lFCD in occipito-parietal cortices at the
group level is consistent with findings from our previous studies

at lower spatiotemporal resolution (Tomasi and Volkow 2010,
2011b). The strength of the lFCD hubs in cuneus and primary vis-
ual cortex was 10 times or higher than the whole brain average.
The cuneus and visual cortex have higher neuronal density than
other cortical regions (Changeux 1997) and show high glucose
metabolic rates (Raichle and Gusnard 2002) that are associated
with their functional connectivity (Tomasi, Wang, et al. 2013).

Many sources of fMRI signal variability confound the detec-
tion of spontaneous fluctuations in resting-state functional con-
nectivity studies. The data used in this work were cleaned by the
HCP using FIX (“FMRIB’s ICA-based X-noiseifier”), an ICA-based
automatic noise detection algorithm that can minimize the
effect of various types of noise sources (Salimi-Khorshidi et al.
2014). Here, we assessed residual effects of global signal normal-
ization, low-pass filtering, and motion regression, preprocessing
steps that overlap with those implemented in FIX. We show that
the GM localization of the lFCD patterns was significantly im-
proved by 0.08 Hz low-pass filtering. These improvements are
consistent with the prediction that proper low-pass filtering at-
tenuates the spurious effect of physiologic noise (cardiac and res-
piration fluctuations) on resting-state functional connectivity
patterns (Birn et al. 2006, 2008). Whereas previous resting-state
fMRI studies at lower temporal resolutions (TR > 1 s) were unable
to effectively filter out physiologic noise, the higher temporal
resolution (TR = 0.72 s) enabled by theHCP’smultiband EPI acqui-
sition provided the necessary bandwidth to filter out spurious
signal fluctuations of physiologic origin. However, the lFCD in or-
bitofrontal and ventral temporal cortices was sensitive to the
multiband phase-encoding scheme, which might be a concern
for studies targeting these brain region such as in ADHD, obses-
sive compulsive and addiction disorders, and for those on impul-
sivity and reward processing.

We also studied the effect of global signal normalization on
the strength of lFCD in GM, aswell as the specificity, reproducibil-
ity, and reliability of the lFCD patterns. Global signal normaliza-
tion increased the sensitivity, reproducibility, and reliability of
the lFCD in cortical GM, but spuriously increased lFCD in white
matter and subcortical regions, which might confound results
in these regions (Wong et al. 2012). Techniques such as global sig-
nal regression/normalization are proposed to control for scanner
instabilities in resting-state functional connectivity. However,
global signal fluctuations could reflect true electrophysiological
activity (Schölvinck et al. 2010) and global normalization may
lead to side effects such as creating spurious anticorrelations
(Murphy et al. 2009; Chai et al. 2012; Saad et al. 2012).

Overall, this work demonstrates the robustness of FCDM at
high spatiotemporal resolution. The high sensitivity, specificity,
and reliability make high-resolution lFCD ideal for the develop-
ment of imaging biomarkers for neurological and psychiatric dis-
orders and for studying normal variability in human brain
development and aging. Finally, the established reproducibility
and robustness of the high spatiotemporal resolution lFCDmetric
offer promise as a potential biomarker for the evaluation of
therapeutic interventions at the individual level.

Supplementary material
Supplementary material can be found at http://www.cercor.
oxfordjournals.org/.
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