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Abstract
The classification of pollen species and types is an important task in many areas like foren-

sic palynology, archaeological palynology and melissopalynology. This paper presents the

first annotated image dataset for the Brazilian Savannah pollen types that can be used to

train and test computer vision based automatic pollen classifiers. A first baseline human

and computer performance for this dataset has been established using 805 pollen images

of 23 pollen types. In order to access the computer performance, a combination of three fea-

ture extractors and four machine learning techniques has been implemented, fine tuned

and tested. The results of these tests are also presented in this paper.

Introduction
The analysis of pollen grains can be useful in many different scenarios, as for instance, the qual-
ity control of honey based products, the collection of evidences in a crime scene to help in
criminal investigations or the reconstruction of a remote paleoenvironment through fossil pol-
len identification. Melissopalynology, forensic palynology and paleopalynology are some of the
fields where the classification of pollen grains is an important task, that is usually conducted by
the visual analysis of light microscope (LM) images.

More recently, with the introduction of microscopes that can be connected to a computer to
record digital images, the use of graphical softwares started to be used to enhance the images
and facilitate the analysis of pollen, but this task is still mostly accomplished through human
visual inspection. This inspection involves the recognition of differences in shapes, texture and
other visual features from the pollen exine that can, sometimes, be very subtle and lead to
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classification errors by novice palynologists [1]. This paper presents some advances regarding
the construction of a computer vision system to automate the classification of pollen grains.

The contribution of this paper is threefold. First, a new annotated dataset comprising 805
images from 23 pollen types collected in the Brazilian Savannah has been constructed and
made publicly available to help in the development of new computer vision systems. Second, a
baseline human performance on the task of classifying these 23 pollen types has been measured
and analyzed and can now be used to benchmark the computer performance. Finally, three
image feature extractors and four supervised machine learning techniques have been imple-
mented and explored in order to build a computer vision system that can classify pollen
images. Experiments to find the best configuration for this vision system have been conducted
and the results are reported.

The three feature extractors explored in this work are the Bag of Visual Words (BOW),
Color, Shape and Texture (CST), and a combination of BOW and CST that is being called CST
+ BOW. For machine learning, two variations of support vector machines, SMO and C-SVC, a
decision tree based classifier (J48) and the k-nearest neighbors (KNN) approach have been
tested. The highest Correct Classification Rate (CCR) of 64% was achieved using CST+BOW
and C-SVC.

The next section presents a brief review on the state-of-art regarding the automation of the
pollen classification task and is followed by the materials and methods section. The results, dis-
cussion and conclusions are then reported, and future works are finally suggested.

RelatedWork
The importance of the identification of fossil pollen for the reconstruction of remote paleoen-
vironments is described previously [2]. The authors searched for approaches to automate the
process of pollen identification through a neural network system, which is a logical program-
ming approach that assumes connections similar to those between human neurons, using
microscopic images of three plant species. Although the classification is difficult due to struc-
tural deformities and pollen clusters, these researchers achieved up to 90% efficiency in pollen
classification.

The technique of analyzing shape and texture features was previously used to classify pollen
from Urticaceae species, some of which cause respiratory allergies [3]. The investigators also
emphasized the importance of a system that would be able to recognize pollen of this family,
which is the most frequent family throughout the year. The system that they developed
obtained an accuracy of 89% in the classification of three pollen types, which is a markedly
higher accuracy than achieved by a palynologist in routine analysis. In a research study
described previously [4], the researchers reached an overall accuracy of 94% using a system
that was developed based on color features to recognize the four most frequent pollen types
from Spanish plants with the aim of authenticating the origin of pollen to prevent honey label-
ing fraud.

The development of an automatic method for pollen and honey classification with a water-
shed segmentation system was accomplished in a previous study [5]. These investigators used a
dataset with 333 pollen images of Fabaceae (60 images), Schinus (136), Protium (64) and Serja-
nia (73). The watershed segmentation reduced the unnecessary information in the image
through a blurring and smoothing process. The best accuracy (98.9%) was found using texture
entropy with a first-order histogram in a binary image.

The Bag of Visual Words technique was used to automate the recognition of nine pollen
types found in honey: Anadenanthera colubrina, Arecaceae, Cecropia pachystachya,Myrcia,
Protium, Poaceae, Serjania, Schinus and Syagrus oleracea. The technique’s performance was
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evaluated with five classifiers, and the best performance for all of the pollen types was obtained
with SMO, which yielded a 70% accuracy in pollen classification [6].

In a previous study [7], the researchers applied color, shape and texture analysis techniques
on pollen LM images for the development of a method for the automatic classification of seven
pollen types found in the Midwestern region of Brazil: A. colubrina, C. pachystachya,Myrcia,
Protium, Schinus, Serjania and S. oleracea. They used 30 images of each pollen type. First, the
images were segmented through a watershed method. The color, shape and texture features
from each image were then extracted. The Wavelet transform technique for texture extraction
was used with a co-occurrence matrix of the extracted features using the second angular
momentum, contrast, correlation and entropy in the images. The performance as reflected by
the F-measure metric was 79%.

A database containing 345 images from 17 different pollen types has been presented in [8].
The images correspond to 17 sub-genders and species of tropical honey plants situated in
Costa Rica, Central America. Using 50 image features and artificial neural networks, a Correct
Classification Rate (CCR) of 92.81% has been achieved. More recently, [9] explored the use of
the Bag of Visual Words technique on the classification of pollen apertures but just one pollen
species, Betula, has been tested. They achieved 95.8% of accuracy with the best threshold
parameter.

All but one of the eight papers reviewed used a significantly smaller image dataset than
ours, with less than ten different pollen types. As the number of pollen types is directly related
to the classification performance, the results obtained in such simpler scenarios are not compa-
rable to ours. The largest dataset, in terms of pollen types, was presented in [8], with 17 types,
still smaller than the 23 pollen types dataset presented in our work. Besides, differently from
[8], we used two additional metrics to test our proposed method, F-Measure and AUC, and
presented a more detailed study regarding the performance of the software on each of the pol-
len types using confusion matrices.

Materials and Methods
This research had involved human participants who completed a questionnaire asking them to
identify pollen samples and which pollen features they used to do pollen identification. No per-
sonal information was requested from beekeepers. This activity was previously scheduled in
the beekeeping course where the questionnaire was applied. The research was verbally
explained and all beekeepers were informed that it was a voluntary research. They verbally con-
sented to participate in the research as voluntaries. This research was approved by the Presi-
dent of the Beekeeping and Meliponiculture Federation of Mato Grosso do Sul (FEAMS) state,
in Brazil (see S1 Text).

Beekeepers from the cities of the state of Mato Grosso do Sul were interviewed, and they
each donated a sample of honey (1 kg) to be analyzed [10]. Through the honey analysis, it was
possible to select 23 pollen types (Fig 1) in accordance with their proven importance for
beekeeping and because they have been frequently found in honeys from Cerrado (Brazilian
Savannah). Some of the pollen grains used in this research were reported in previous studies [5,
6, 7, 11] and are important for beekeeping in this state. The 23 pollen types used in this
research were: Anadenanthera colubrina, Arecaceae, Fridericia florida, Cecropia pachystachya,
Chromolaena laevigata, Combretum discolor, Croton urucurana, Dipteryx alata, Eucalyptus,
Faramea, Hyptis,Mabea fistulifera,Matayba guianensis,Mimosa somnians,Myrcia, Protium
heptaphyllum, Qualea multiflora, Schinus terebinthifolius, Senegalia plumosa, Serjania laruot-
teana, Syagrus, Tridax procumbens and Urochloa decumbens.
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The botanist Arnildo Pott of the Federal University of Mato Grosso do Sul identified the
botanical origins of the pollen grains through plant morphology identification. The Eucalyptus
genus is not from Brazilian flora; however, in this state, there are many Eucalyptus plantations,
which explains why eucalyptus pollen is usually found in bee products. We collected anthers
from each plant and used the acetolysis method to prepare microscope pollen slides, as
described previously [12].

The dataset that comprises all of the pollen images was called POLEN23E (see S1 Dataset),
where all of the pollen images were stored. This pollen dataset comprises a total of 35 images
for each type of pollen taken at different angles. Thus, the POLEN23E dataset has 805 images.
The images were captured with a digital Bresser LCD microscope at a 40x magnification. The
best pictures were transferred to a laptop and segmented (Fig 2) using the CorelDRAW1 soft-
ware. The sampling method used to test the automatic classification on the POLEN23E dataset

Fig 1. Sample images for each of the 23 pollen types from the Brazilian Savannah flora used in the experiments. (Scale = 10 μm). a)
Anacardiaceae: Schinus terebinthifolius; b-c) Arecaceae: b- Arecaceae; c- Syagrus. d-e) Asteraceae: d) Chromolaena laevigata; e) Tridax
procumbens. f) Bignoniaceae: Fridericia florida. g) Burseraceae: Protium heptaphyllum. h) Combretaceae: Combretum discolor. i-j)
Euphorbiaceae: i) Croton urucurana; j)Mabea fistulifera. k-n) Fabaceae: k) Anadenanthera colubrina; l) Dipteryx alata;m)Mimosa somnians; n)
Senegalia plumosa; o) Lamiaceae: Hyptis. p-q)Myrtaceae: p) Eucalyptus; q)Myrcia. r) Poaceae: Urochloa decumbens. s)Rubiaceae: Faramea.
t-u) Sapindaceae: t)Matayba guianensis; u) Serjania laruotteana. v) Urticaceae: Cecropia pachystachya. w) Vochysiaceae:Qualea multiflora.

doi:10.1371/journal.pone.0157044.g001
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was a three fold randomized cross-validation. For the tests with humans, some of the images
have been randomly chosen for training and another distinct group of images for testing.

The following subsections describe how the pollen grains were classified by human vision.
Afterward, the techniques used for automatic feature extraction from the pollen images using a
computer program are presented. Additionally, both the manual and automated techniques
are described and evaluated using the following metrics, which are available in the Weka soft-
ware system [13]: Correct Classification Rate (CCR), F-Measure and Area Under the Receiver
Operating Characteristic (ROC) curve (AUC). Finally, the statistical methods that were used
for the analysis of the data obtained by the techniques are reported.

Feature Extraction Techniques
Next we describe the algorithms utilized for attribute extraction from the pollen grain images.

Color, Shape and Texture (CST)
The extraction of features from an image is used to obtain only the relevant information that is
helpful for characterization [14]. For the extraction of features from pollen images, we created
an algorithm that combined three types of features: color, shape and texture based features.
The algorithm created in this research that contains the mentioned features is called CST
(color, shape and texture) and is referred as the CST technique.

The color-based feature is simply the arithmetic mean values on the H (hue), S (saturation), B
(brightness) and R (red) color channels over the entire pollen image. The original image is coded
using the standard RGB system and is converted to the HSB color-space. The G (green) and B
(blue) channels are discarded based on previous studies and results regarding pollen grains classi-
fication. As regarding the shape based features, three extractors have been used: the shape factor,
the circularity factor and a group of features extracted using the k-curvature algorithm [15, 16].

In the shape factor feature, the area of the pollen is divided by the area of a circumference
drawn around the pollen image. The shape factor calculation is given by Eq 1

Areaobject=Areacircumference ð1Þ

where Areaobject corresponds to the area in number of pixels that comprise the pollen image

Fig 2. Example of the image segmentation process. a) Image captured under the light microscope and containing several pollen grains. b) Resulting
segmented image containing just one pollen grain.

doi:10.1371/journal.pone.0157044.g002
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and Areacircumference corresponds to the value of the area of the minimum circumference that
covers the entire image of the pollen.

The circularity factor, also called isoperimetric quotient, roughly measures how close is the
pollen shape to a perfect circle. The circularity factor is given by Eq 2

4 x Areaobject=p x length2 ð2Þ

The k-curvature algorithm is a shape-based attribute extractor that creates a histogram that
roughly counts the occurrence of curves with different angles in the outer contour of the pollen
image. In this way we can have, for instance, a measure related to how many curvatures
between 80 to 100 or between 100 to 120 degrees are found in the pollen shape. The parameter
k is related to the length of the region around each point in the contours of the pollen image
that will be used to define each curve and is determined experimentally [17].

Co-occurrence matrices, also called Gray-Level Co-occurrence Matrices (GLCM), are used
to extract information related to texture [16]. In order to create a co-occurrence matrix, we cal-
culate the frequency of pairs of intensity values from the image pixels. Different groups of pairs
can be defined varying the distances and the directions or angles between the two pixels of a
pair. For each distance and angle chosen, a different GLCM is created and from each GLCM
the entropy and the contrast of these matrices are used as texture features. The contrast is cal-
culated using Eq 3, i and j are indexing the columns and rows of the matrix, ng is the number of
different gray values (usually 255) and p(i,j) corresponds to each entry or cell of a normalized
version of the GLCM [15]. Eq 4 defines the entropy feature.

functioncontrast ¼
Xng�1

n¼0

n2

(
Xng
i¼1

Xng
j¼1

pði; jÞ
ji�jj¼n

)
ð3Þ

functionentropy ¼ �
X

i

X
j

pði; jÞlogðpði; jÞÞ ð4Þ

Bag of Words (BOW). The Bag of Visual Words (BOVW or simply BOW) algorithm [18]
is inspired in the Bag of Words technique used in text classification.

This technique was firstly developed to count the frequency of a set of words in a text in
order to infer, for instance, the text main topic or subject. For example, in a text about plants it
is expected to find more often the words flowers and leaves than in a description of a quantic
theory. This way, BOW generates a histogram with the frequency of each word in each text
that can be used to classify the text into a set of topics.

In order to extend the use of BOW to images, the concept of a visual word or a vocabulary of
visual features have been introduced. A visual feature can be defined in many different ways, but the
one used in this research is based on the Speeded up Robust Features (SURF) technique [19], that
detects and describes interest points in an image based on the magnitude and direction of the gradi-
ents in and around each pixel of the image, discarding color information and using only the inten-
sity (gray scale value). Regions of the image with higher gradient magnitudes in different directions
are more likely to be chosen as an interest point. These regions correspond, for instance, to corners,
crosses and curves and can be found, using SURF, even when the object is rotated or scaled.

Using a training dataset of images, a clustering algorithm like k-means is used to group all
the interest points detected in all the training images in k groups. Each group is supposed to
represent a set of visually similar regions and is called a visual word and the set of all k groups
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is called a visual vocabulary. Using this visual vocabulary, each image can now be represented
by a histogram that counts the occurrence of each visual work in that image. Differently from
the features used in CST, that somehow summarize global information about the pollen, BOW
uses local information found in specific regions of the image.

Color, Shape, Texture and BOW (CST+BOW)
The third technique explored in this work is just a combination or grouping of all the features
extracted using CST and BOW and is called CST + BOW.

Supervised Learning Techniques
The experiments with supervised learning techniques, also called classifiers, have been con-
ducted using the Weka Software 3.7.9 [13]. Four classifiers available with Weka have been
used: two variations of support vector machines, Sequential Minimal Optimization (SMO) and
C-Support Vector Classification (C-SVC), a decision tree based classifier (J48) and the k-near-
est neighbors (KNN).

The decision tree based classifier (J48) builds a hierarchical data set through the divide and
conquer method. At each of the internal nodes of the tree, beginning with the root node, one
feature is used to indicate a path that will lead to the most probable class of the example that is
being analyzed. This path is followed until a leaf is reached and a decision about the most prob-
able class for the example is taken [20].

The SVM is a type of linear classifier. This classifier defines a hyperplane that maintains a
maximummargin which separates the categories or classes found from a data set of training
examples. With the maximummargin defined and given a new example, the classification is
made regarding the location of the new data into the maximummargin. SMO is, basically, a tech-
nique to speed-up the calculation of the quadratic programming (QP) problem that is central in
the training or learning phase. It is a sequential method that solves analytically a series of smaller
QP sub-problems derived from the original one [21, 22]. C-SVC is a realization of a soft-margin
classifier where the constraints of the QP problem are relaxed to admit that some examples of a
class overpass the hyperplane separating the classes. This is achieved by the introduction of slack
variables and a constant C multiplying the summation of these variables in the QP objective
function. Roughly speaking, the C constant, which is defined experimentally, controls howmany
examples and how deep into the other side of the hyperplane these examples can go [23].

The KNN is a type of lazy learning classifier where all the training images are simply memo-
rized during the learning step. When a new test image is presented to the classifier, it is com-
pared to each training image using a similarity measure and a rank is generated. The similarity
measure used in our work is the Euclidean distance, which is a common choice in computer
vision problems and is fast to calculate. The classes (e.g.: pollen types) of the K best ranked
images are used to classify the new image by choosing for this new image the most frequent
class among these K images.

To measure the performance of each technique in pollen identification, the following met-
rics were used: Correct Classification Rate (CCR), F-Measure and AUC. CCR is the percentage
of pollen grains whose types are correctly classified. The F-Measure is a harmonic average
among the true positives, false positives and false negatives, which measures the ability of the
system to classify data [24]. The metric AUC uses the area under the ROC curve, and a larger
area under the curve indicates a better performance [25]. Using the CCR metric, the data were
expressed in a confusion matrix, which shows the correct pollen type classifications and the
wrong classification cases obtained after the classification of the images. The confusion matrix
was colored by adapting the thermal method, as reported previously [26].
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A statistical analysis of the 12 combinations of techniques (3 feature extractors and 4 super-
vised learners) was performed using ANOVA and the R software [27]. Whenever significant
differences were found (p<0.05), the Tukey’s post-test was used to analyze the techniques in a
pairwise manner.

Parameter Tuning
Some of the parameters of the feature extraction and supervised learning techniques have been
tuned before testing. In special, for the BOW and the KNN techniques, the size of the dictio-
nary and the value of K have been determined beforehand and in this section the methods used
to find the values for these parameters are presented. No parameter tuning procedure was
implemented for the other methods utilized in the experiments. In the case of J48, C-SVC and
SMO, the default values available in Weka [13] were used and all the parameters related to the
CST techniques were initialized with the values reported in [15].

Different vocabulary sizes were tested by exponentially growing the values from 2 to 4392
and evaluating the resulting performance, which has been reached with a 1536-sized vocabu-
lary and at a 57% CCR. A finer test was then performed using arithmetic growth around the
best vocabulary sizes defined before and a better performance of 60% CCR has been reached
with a dictionary of 768 visual words. This value was used in the main experiment. Tests with
the K values for the KNN classifier were conducted over a variation range of 1 to 13. The best
performance was obtained with a K value of 1. Therefore, for the KNN classifier, the configura-
tion that we adopted for the analysis of the techniques included a value of K equal to 1.

Human Vision Classification
A questionnaire (see S2 Text) with pollen images was applied to evaluate human performance
in pollen classification. Twenty-three options of pollen types were available to be checked off in
each displayed image. For the formulation of the questionnaire, images from the POLEN23E
dataset were randomly selected for the test images. In addition, two different images of each
pollen type were selected, what means that 46 images were selected to be identified (Fig 3). The
common names of each pollen type were used as options to be marked to facilitate the assimila-
tion of the images.

From the POLEN23E dataset, five images of each pollen type were used for the training set,
which comprised 115 images altogether. The volunteers were allowed to examine the support
material (see S3 Text), while classifying the images, as shown in the questionnaire (Fig 4). In
this material, the pollen common names were used because these are easier to memorize than
their respective scientific names. The questionnaire also contained an open question where the
users could write down the visual features that they analyzed in order to classify a pollen grain
and the most difficult aspects of the classification process.

In this experiment, the questionnaire was applied to 34 volunteer beekeepers who did not
have previous knowledge of the pollen identification process. They were advised to classify the
46 types of pollen in a virtual questionnaire. The answering time was recorded. At the end of
the experiment, the answered questionnaire was saved and sent by e-mail to the researcher.

Results
Fig 5 shows the number of hits and misses of pollen types that were classified by humans and
indicates that 64% of the images were correctly classified (CCR of 64%). It is clear from the
data that human performance varies a lot depending on the pollen types. The Chromolaena lae-
vigata had the best accuracy of 92% while the pollen type Q.multiflora reached a correct classi-
fication rate of only 9%.
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As regarding the computer performance, no significant difference has been found (p-
value = 0.1902) among the techniques explored. Fig 6 shows the boxplot diagram for the fea-
ture extraction techniques used in this research and the human performance. The p-value
found, now considering human performance, was 0.576, which indicates no significant differ-
ence among computers and human performance. The higher p-value in this case is clearly
linked with the high standard deviation on the tests with human. Fig 7 shows the CCRs for the
computer performance separated by pollen types. In this case, ANOVA yielded a p-value of
0.000000125, indicating a clear dependence of the performance on the pollen types.

The analysis of 23 genera and species of 15 different families showed that a greater accuracy
was not found for a specific family. The pollen features are very distinct among different gen-
era, and there is no exclusive family feature set [1]. Tridax procumbens presented the highest

Fig 3. Part of the questionnaire containing a pollen image and the 23 pollen types options fromwhich the beekeepers should select one.

doi:10.1371/journal.pone.0157044.g003
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variation in its classification, ranging from 37% to 91%.Mimosa somnians had a small accuracy
variation, ranging from 80% to 94%, but it was the best classified pollen. The smallest accuracy
variation, which ranged from 74% to 80%, was obtained for Serjania laruotteana.

Table 1 shows the results of the computational technique performance achieved by each
combinations of feature extractor and classifier. The best performances for each metric are
shown in bold. Uppercase letters indicate no significant difference among the feature extractors
(rows) and lowercase letters represent no significant difference among the classifiers (column).

The highest CCR of 64% was obtained with CST+BOW and the C-SVC classifier, which
achieved the highest CCR and F-Measure for every feature extractor combination. The perfor-
mance using AUC was better for all of the feature extractors with the SMO classifier, all above
95%. It is well known in the computer vision field that the AUC is an over optimistic metric
that almost always delivers higher values than F-Measure and CCR. It is clear from the results,
and in accordance with the literature, that the support vector machine based classifiers (SMO
and C-SVC) outperform KNN and J48 under all the metrics used.

In order to further investigate the performance of the techniques with the highest scores
three confusion matrices have been produced, for each feature extractor combined with the
C-SVC classifier. The main matrix diagonal represents the number of correctly classified
images, and the off diagonal values represent errors in the classification.

Fig 8 shows that, using CST, the pollen typeM. somnians was mistakenly classified only
twice, with 33 correct classifications. The D. alata pollen presented the worst classification with
only 11 images being correctly classified. The pollen images of C. pachystachya had 31 hits
(85.57%) with this technique, a percentage that is very close (89%) to that obtained by [4] in a
study on Urticaceae pollen grains.

With the BOW technique, theM. somnians and T. procumbens pollen grains were correctly
classified 32 times (91%), whereas the Faramea and Q.multiflora pollen grains were the worst
classified pollen grains, with only 37% of their images being correctly classified (Fig 9). Using
the CST + BOW technique (Fig 10),M. somnians presented the highest percentage of correct
classifications, which equaled 94% (33 hits), whereas Faramea and Q.multiflora presented the
lowest percentages of correct classifications, which was only 37% (13 hits).

Discussion
Through the questionnaire applied to the beekeepers, it was possible to know which features
the beekeepers used for pollen classification. The beekeepers reported that the main feature
observed was the shape, in addition to the color, size and texture features. These characteristics
were also used by the computational techniques. Although the human classification was closely

Fig 4. Five images of Senegalia plumosa pollen used in the support material. Beekeepers had access to this kind of reference material to
answer the question during the application of the questionnaire. The common name of the Senegalia plumosa pollen type is “arranha-gato” in
Portuguese.

doi:10.1371/journal.pone.0157044.g004
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aligned with the automatic techniques, the beekeepers spent almost two hours, on average, fin-
ishing the questionnaire. The automated techniques required less than 10 seconds, on average,
to classify the pollen grains.

Comparing computers and humans performance regarding the time to complete a task is
very difficult and the results must be always used with caution. In our experiments, the training
and testing examples have been randomly chosen from the same POLEN23E dataset, for both
computer and humans, and we also have used roughly the same amount of images in the test
set for both. In the case of computers, a three fold cross-validation has been used and so three

Fig 5. Confusion matrix summarizing the human performance on pollen classification. The rows represent the true pollen types while the columns
indicate how the images have been classified by humans. All the correct answers are in the diagonal.

doi:10.1371/journal.pone.0157044.g005
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different sets of training and test images were used, whereas in the case of humans, only one
random training and test image set were used. This happened because the time we had with the
group of humans was limited. As not all beekeepers are trained to use computers, part of the
time they took to fill the online questionnaire can be associated with tasks that are not directly
related to the classification process but, for instance, to move the computer mouse to click a
button. Before the experiment, they have been instructed on how to use the questionnaire and
did some training to reduce this problem of the lack of computer skills influencing the time to
complete the task.

The pollen type that was best classified by the beekeepers, as shown in Fig 5, was C. laevigata
(Fig 11A). This type has a rounded shape with spines on its surface, which helped the beekeep-
ers to recognize it. The beekeepers mentioned difficulties during pollen classification with
regard to seeing similar shapes, having little perception of the pollen size, seeing unclear images
and having many views of the same pollen.

As shown in Fig 5, Q.multiflora presented the worst CCR (9%). The reason for this low per-
formance could be that the pollen is very similar to D. alata pollen from all points of view, as
seen in Fig 11B and 11C. Additionally, 54% of the images of Q.multiflora were misidentified as
D. alata.

Both CST (Fig 8), BOW (Fig 9) and CST + BOW (Fig 10) techniques faced problems to
identify the same pollen types that were most often mistakenly classified by the beekeepers, the
Q.multiflora and the D. alata. More images from different angles are needed, and more details
should be captured to allow distinction between these pollen grains.

In the pollen classification by computational techniques, all of the features were efficient for
extracting information from theM. somnians images. This pollen type presented the best
image classification performance with all of the automatic techniques. It is easy to perceive that

Fig 6. Boxplots for the CCR performance of the three feature extractors and the humans. Among the automatic techniques the
highest median value was 66%, very near the median of the human performance, 67%.

doi:10.1371/journal.pone.0157044.g006
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there are many interesting high-contrast corners in the images ofM. somnians that could be
easily detected by the BOW feature extractor. This pollen type has also some very distinctive
colors and shapes that facilitate its identification regarding the texture feature, there is a clear
perception that the cracks in pollen grain are helpful for the extraction of this feature.

As shown in Table 1, BOW achieved a performance of 96% when measured via the AUC
metric, with 0.4 of standard deviation. This value was close to the performance that was

Fig 7. Boxplots for the CCR performance of the automatic techniques considering each pollen type. These boxplots show that automatic classification
varies a lot among different pollen types.

doi:10.1371/journal.pone.0157044.g007

Table 1. Performance of each combination of techniques using three different metrics: CCR, F-Measure and AUC. For each combination and metric,
the mean and standard deviation values are shown. The best performances for each metric are shown in bold. The same capital letters in the superscripts
indicate no statistical difference between feature extractors (rows) as the same lower case letters indicate no significant difference between supervised learn-
ing techniques (columns).

Supervised Learning

Metrics Feature Extraction SMO C-SVC J.48 KNN

CCR CST 48 ± 2.21Bc 63 ± 3.89Aa 54 ± 3.27Ab 60 ± 2.15Aa

BOW 60 ± 2.58Aa 61 ± 2.59Aa 28 ± 3.27Cb 30 ± 2.02Bb

CST + BOW 63 ± 2.26Aa 64 ± 2.13Aa 47 ± 1.92Bb 31 ± 2.42Bc

F-Measure CST 46 ± 0.03Cd 63 ± 0.04Ba 54 ± 0.03Ac 60 ± 0.02Ab

BOW 60 ± 0.03Bb 61 ± 0.03Ca 28 ± 0.03Cd 29 ± 0.02Cc

CST + BOW 64 ± 0.02Aa 64 ± 0.02Aa 47 ± 0.02Bb 30 ± 0.02Bc

AUC CST 95 ± 0.02Ca 83 ± 0.08Bb 76 ± 0.09Ad 79 ± 0.09Ac

BOW 96 ± 0.04Ba 86 ± 0.09Ab 63 ± 0.09Cc 56 ± 0.02Cd

CST + BOW 97 ± 0.04Aa 87 ± 0.08Ab 73 ± 0.05Bc 57 ± 0.03Bd

doi:10.1371/journal.pone.0157044.t001
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obtained in a previous study [9] that sought to classify pollen types of Betula using apertures.
These researchers used the BOW technique with a dictionary with 184 descriptors, 92 images
of pollen apertures and 92 images without aperture. The performance was also analyzed with
SVM, and the result was evaluated with the AUC metric. The best performance obtained was
95.8%. In the present research, the BOW performance was similar to that obtained by those
researchers, which proves the efficiency of this technique for the extraction of features from
images. In our study, 23 pollen types from different genera were used, and the performance

Fig 8. Confusion matrix for the best combinations of feature extractor (CST) and classifier (C-SVC). The rows represent the true pollen types while the
columns indicate how the images have been classified by the computer. All the correct answers are in the diagonal.

doi:10.1371/journal.pone.0157044.g008
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measured with the AUC metric was similar to that obtained by other researchers, who assessed
only one genus.

In researches aiming to automate the classification of pollen grains, the performances
reported by [2] with three species achieved 90% with the technique of neural network. [4] have
used four pollen types and reached 94% with the single classification class technique. [6] had
70% with nine pollen types with the BOW technique, and [8] obtained 90% in classification of
17 pollen types with neural network. We obtained a performance of 64% with the CST+BOW
technique. In spite of the general low performance compared to studies that utilized less pollen

Fig 9. Confusion matrix for the combination of BOW and C-SVC. The rows represent the true pollen types while the columns indicate how the images
have been classified by the computer. All the correct answers are in the diagonal.

doi:10.1371/journal.pone.0157044.g009
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types [2, 4, 6, 8], seven pollen types that we classified with the CST+BOW technique had per-
formance�80%, A. colubrina and S. laruotteana (80%), C. laevigata (82%), C. pachystachya
(86%), T. procumbens (91%), C. discolor andM. somnians (94%). In the work of [28], which
used the technique of pollen grain recognition in 3D on 30 pollen types, those authors achieved
a performance of 77% in pollen classification. Thus, either in our research as in [28], we can
perceive in relation to the works of [2, 4, 6, 7, 8] that when the number of pollen types utilized
in automatic classification increases, the performance tends to decrease.

Fig 10. Confusionmatrix for the combination the CST+BOW feature extractor and C-SVC. The rows represent the true pollen types while the columns
indicate how the images have been classified by the computer. All the correct answers are in the diagonal.

doi:10.1371/journal.pone.0157044.g010
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Previous attempts to automate pollen identification have been reported, but the novelty of
our research is that it includes the largest number of tropical pollen types used in a study so far.
Seventeen tropical pollen types from Costa Rica was the highest quantity found for automatic
classification of pollen images obtained under LM [8]. Moreover, many of the features associ-
ated with color, shape and texture were not used in our research study, and even with the lim-
ited number of chosen features, we obtained a pollen classification accuracy greater than 64%.
Hence, the results with the techniques presented in this study are quite promising.

Conclusions
A new public dataset of pollen images, together with the baseline performance of humans to
classify images from this dataset, has been made available. Several computer vision and
machine learning techniques have been explored in order to automate the process of pollen
classification using these new dataset. These techniques can rapidly classify pollen images into
their respective types, which indicates the feasibility of using computer for this identification
task, especially considering that this research included as many as 23 different types of pollen.
It is still necessary to improve the image sharpness of the pollen structures to achieve better
classification by the program.

The best technique that should be used to automate pollen classification is CST+BOW with
the C-SVC classifier. A software for automatic pollen recognition can contribute to the knowl-
edge of the local flora, the botanical origin of bee products and other important fields, such as
forensic science and allergology.

Future Work
One method for sharpening images is to stack multiple images of the same pollen with changes
in only the focus. Thus, using a program such as ImageJ, it is possible to stack all of the cap-
tured images of the grain and create a single image that is acquired with the details obtained
from the stacked images.

For future research, we suggest using this stacking method for image capturing. This proce-
dure does not allow any loss of details of the pollen grains, and even blurred images become

Fig 11. Examples of the most easy andmost difficult pollen types for human classification. a) One example of theChromolaena laevigata
pollen that received the highest CCR score for human performance; b) One example of theQualea multiflora pollen, the hardest pollen during
human classification c) Example of the Dipteryx alata pollen that has been mostly confused withQualea multiflora.

doi:10.1371/journal.pone.0157044.g011
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sharp by grouping the images. Fig 12 shows this process in the pollen of D. alata, from which
four images were captured only by changing the focus. In Fig 12E, it is possible to see the result
of the stacking process of the images of D. alata and the details of this grain.

Supporting Information
S1 Dataset. POLEN23E (http://dx.doi.org/10.6084/m9.figshare.1525086).
(PDF)

S1 Text. Declaration of the President of the Beekeeping and Meliponiculture Federation–
Mato Grosso do Sul (FEAMS) authorizing the questionnaire application for beekeepers
(http://dx.doi.org/10.6084/m9.figshare.1529340).
(PDF)

S2 Text. Questionnaire with pollen images (http://dx.doi.org/10.6084/m9.figshare.
1529342).
(PDF)

S3 Text. Support material with pollen images (http://dx.doi.org/10.6084/m9.figshare.
1529341).
(PDF)

Acknowledgments
This work has received financial support from the Dom Bosco Catholic University, UCDB and
the Foundation for the Support and Development of Education, Science and Technology from
the State of Mato Grosso do Sul, FUNDECT. Some of the authors have been awarded with
Scholarships from the the Brazilian National Council of Technological and Scientific Develop-
ment, CNPq and the Coordination for the Improvement of Higher Education Personnel,
CAPES.

Author Contributions
Conceived and designed the experiments: JSS ABG HP. Performed the experiments: GGS ABG
AP. Analyzed the data: MPC ABG HP. Contributed reagents/materials/analysis tools: AP MPC
MHN. Wrote the paper: ABG JSS GGS MPC AP MHNHP.

References
1. Langford M, Taylor GE, Flenley JR Computerized identification of pollen grains by texture analysis.

Review of Palaeobotany and Palynology. 1990; 64: 197–203. doi: 10.1016/0034-6667(90)90133-4

Fig 12. Dipteryx alata image stacking. a-d) Images from the same pollen grain. e) Sharp image obtained by stacking the images shown in
a-d. To solve the problem of blurred images, the stacking of different focuses of the pollen image can be a promising approach.

doi:10.1371/journal.pone.0157044.g012

Automatic Pollen Grains Identification

PLOS ONE | DOI:10.1371/journal.pone.0157044 June 8, 2016 18 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157044.s001
http://dx.doi.org/10.6084/m9.figshare.1525086
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157044.s002
http://dx.doi.org/10.6084/m9.figshare.1529340
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157044.s003
http://dx.doi.org/10.6084/m9.figshare.1529342
http://dx.doi.org/10.6084/m9.figshare.1529342
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0157044.s004
http://dx.doi.org/10.6084/m9.figshare.1529341
http://dx.doi.org/10.6084/m9.figshare.1529341
http://dx.doi.org/10.1016/0034-6667(90)90133-4


2. France I, Duller AWG, Duller GAT, Lamb HF. A new approach to automated pollen analysis. Quater-
nary Science Reviews. 2000; 19: 537–546. http://dx.doi.org/10.1016/S0277-3791(99)00021-9

3. Rodriguez-Damian M, Cernadas E, Formella A, Fernandez-Delgado M, De Sa-Otero P. Automatic
detection and classification of grains of pollen based on shape and texture. Transactions on Systems,
Man and Cybernetics. 2006; 36: 531–542. doi: 10.1109/TSMCC.2005.855426

4. Chica M, Campoy P. Discernment of bee pollen loads using computer vision and one-class classifica-
tion techniques. Journal of Food Engineering. 2012; 112: 50–59. doi: 10.1016/j.jfoodeng.2012.03.028

5. AndradeWT, Quinta LNB, Gonçalves AB, Cereda MP, Pistori H. Segmentação baseada em textura e
watershed aplicada a imagens de Pólen. In: 25 Conference on Graphics, Patterns and Images.
2012. pp. 108–113.

6. Gonçalves AB, Rodrigues CNM, Cereda MP, Pistori H. Identificação computadorizada de tipos políni-
cos através de bag of words. Cadernos de Agroecologia. 2013; 8: 14634.

7. Silva DS, Quinta LNB, Gonçalves AB, Pistori H, Borth MR. Application of wavelet transform in the clas-
sification of pollen grains. African Journal of Agricultural Research. 2014; 9: 908–913. doi: 10.5897/
AJAR2013.7495

8. Pozo-Baños M, Ticay-Rivas JR, Cabrera-Falcón J, Arroyo J, Travieso-González CM, Sánches-Chavez
L, et al. Image processing for pollen classification. In: Lameed GA, editor. Biodiversity Enrichment in a
Diverse World. Croatia: InTech; 2012. pp. 493–508.

9. Lozano-Vega G, Benezeth Y, Marzani F, Boochs F. Classification of pollen apertures using bag of
words. Lecture Notes in Computer Science. 2013; 8156: 712–721. doi: 10.1007/978-3-642-41181-6_
72

10. Silva-Coiado DG. Caracterização do setor apícola do Mato Grosso do Sul como atividade sustentável
e fator de desenvolvimento local. Campo Grande: Universidade Católica Dom Bosco; 2010.

11. Gonçalves AB, Vasconcelos BR, Thomaselli-Junior I, Silva-Coiado DG, Cereda MP. Identification of
native bee trees pollen from honey samples of Mato Grosso do Sul, Brazil. In: XLII International Apicul-
tural Congress, Buenos Aires. 2011.

12. Louveaux J, Maurizio A, Vorrwohl, G. Methods of melissopalynology. BeeWorld. 1970; 51: 125–131.
doi: 10.1080/0005772X.1970.11097312

13. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. TheWEKA data mining software:
an update. SIGKDD Explorations. 2009; 11.

14. Witten I, Frank E. Data Mining: Practical machine learning tools and techniques. 2nd ed. United States
of America: Elsevier; 2005.

15. Quinta LNB. Visão computacional aplicada na classificação de pólen. Brazil: Universidade Católica
Dom Bosco; 2013.

16. Haralick RM, Shanmugam K, Dinstein IH. Textural features for image classification. Transactions on
Systems, Man and Cybernetics. 1973; 6: 610–621. doi: 10.1109/TSMC.1973.4309314

17. Malik S. Real-time hand tracking and finger tracking for interaction. Tech. rep.: University of Toronto;
2003.

18. Yang J, Jiang YG, Hauptmann AG, Ngo CW. Evaluating bag of visual words representations in scene
classification. Proceedings of the International Workshop onWorkshop on Multimedia Information
Retrieval. 2007; 197–206. doi: 10.1145/1290082.1290111

19. Bay H, Tuytelaars T, Gool LV. SURF: speeded up robust features. European Conference on Computer
Vision. 2006; 1: 404–417. doi: 10.1007/11744023_32

20. Bhargava N, Sharma G, Bhargava R, Mathuria M. Decision tree analysis on j48 algorithm for data min-
ing. International Journal of Advanced Research in Computer Science and Software Engineering.
2013; 3: 1114–1119.

21. Mateos I, Ramos D, Lopez-Moreno I, Gonzales-Rodriguez J. Support vector regression in NIST SRE
2008 multichannel core task. In: V Jornadas en Tecnología del Habla, Bilbao; 2008.

22. Platt J. Fast training of support vector machines using sequential minimal optimization. In: Burges CJC,
Schölkopf B, Smola AJ editors. Advances in Kernel Methods: Support Vector Learning. Cambridge:
MIT Press; 1991. pp. 185–208.

23. Zhang C, Shao X, Li D. Knowledge based support vector classification based on C-SVC. Procedia
Computer Science. 2013; 17: 1083–1090. doi: 10.1016/j.procs.2013.05.137

24. Rijsbergen CA. Information retrieval. London: Butterworths; 1979.

25. Fawcett T. An introduction to ROC analysis. Pattern Recognition Letters. 2006; 27: 861–874. doi: 10.
1016/j.patrec.2005.10.010

26. Lee HC. Introduction to color imaging science. Cambridge: New York; 2005.

Automatic Pollen Grains Identification

PLOS ONE | DOI:10.1371/journal.pone.0157044 June 8, 2016 19 / 20

http://dx.doi.org/10.1016/S0277-3791(99)00021-9
http://dx.doi.org/10.1109/TSMCC.2005.855426
http://dx.doi.org/10.1016/j.jfoodeng.2012.03.028
http://dx.doi.org/10.5897/AJAR2013.7495
http://dx.doi.org/10.5897/AJAR2013.7495
http://dx.doi.org/10.1007/978-3-642-41181-6_72
http://dx.doi.org/10.1007/978-3-642-41181-6_72
http://dx.doi.org/10.1080/0005772X.1970.11097312
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1145/1290082.1290111
http://dx.doi.org/10.1007/11744023_32
http://dx.doi.org/10.1016/j.procs.2013.05.137
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1016/j.patrec.2005.10.010


27. R Core Team. A language and environment for statistical computing. R Foundation for Statistical Com-
puting, Vienna, Austria; 2014.

28. Boucher A, Hidalgo PJ, Thonnat M, Belmonte J, Galan C, Bonton P, et al. Development of a semi-auto-
matic system for pollen recognition. Aerobiologia. 2002; 18: 195–201. doi: 10.1023/A:1021322813565

Automatic Pollen Grains Identification

PLOS ONE | DOI:10.1371/journal.pone.0157044 June 8, 2016 20 / 20

http://dx.doi.org/10.1023/A:1021322813565

