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3Université Lyon 1, LBBE, UMR5558, Villeurbanne, France
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Abstract

Models of evolution by genome rearrangements are prone to two types of flaws: One is to ignore the diversity of susceptibility to

breakage across genomic regions, and the other is to suppose that susceptibility values are given. Without necessarily supposing their

precise localization, we call “solid” the regions that are improbably broken by rearrangements and “fragile” the regions outside solid

ones.Weproposeamodelofevolutionby inversionswherebreakageprobabilitiesvaryacross fragile regionsandover time. It contains

asaparticular case theuniformbreakagemodelon the nucleotidic sequence,wherebreakageprobabilities areproportional to fragile

region lengths. This is very different from the frequently used pseudouniform model where all fragile regions have the same prob-

ability to break. Estimations of rearrangement distances based on the pseudouniform model completely fail on simulations with the

truly uniform model. On pairs of amniote genomes, we show that identifying coding genes with solid regions yields incoherent

distance estimations, especially with the pseudouniform model, and to a lesser extent with the truly uniform model. This incoherence

is solved when we coestimate the number of fragile regions with the rearrangement distance. The estimated number of fragile

regions is surprisingly small, suggesting thataminorityof regionsare recurrentlyusedby rearrangements. Estimations for several pairs

ofgenomesatdifferentdivergence timesare inagreementwitha slowly evolvable colocalizationofactivegenomic regions in the cell.

Key words: rearrangements, inversions, random graphs, amniote genomes, uniform breakpoint model, fragile breakpoint

model.

Introduction

Intuition, simplicity, and mistranslations of a so-called

Nadeau–Taylor rule have converged to a standard mathemat-

ical model for genome rearrangements (inversions, transloca-

tions, fusions, fissions, transpositions): Rearrangements are

operations acting on linear arrangements of genomic loci

and all operations of the same type have the same probability

to occur. For example, a usual computational problem is to ask

for the minimum number of inversions—that is, reversions of

the order of loci within subsegments—that are necessary to

transform one order into the other. Sturtevant and Tan (1937)

proposed in 1937 that, if the order of letters L H F E B A D C

K I J G M depicts the order of loci on the X chromosome of

Drosophila melanogaster, while A B C D E F G H I J K L depicts

the order of orthologous loci in the X chromosome of

Drosophila pseudoobscura, seven inversions are necessary to

explain the differences between the two orders. In fact six is

reachable but a statistician would ask for an estimation of the

most probable number of inversions given an evolutionary

model. In that case a possible answer is 7.6, if we apply the

formula of Caprara and Lancia (2000), assuming equiprobabil-

ity of inversions.

A consequent number of combinatorial (Fertin et al. 2009)

or statistical (Eriksson 2004) variants of the genome rearran-

gement problem have been proposed, almost always suppos-

ing a uniform weight or probability for all inversions. We call

such a model the “pseudouniform” model (also called

“Random Breakage Model” in the literature). This model

has de facto become the null model for the genome rearran-

gement problem. Growing biological evidence that genomic

regions do not break uniformly at random in many genomes

referred to this null hypothesis to reject it. There are, however,
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two major problems with it, independent from the biological

validity of the uniform hypothesis.

The first problem is that the Nadeau–Taylor hypothesis

does not naturally lead to the pseudouniform model despite

their frequent confusion (Wang et al. 2006; Alekseyev and

Pevzner 2010; Alexeev et al. 2015). Nadeau and Taylor

(1984) formalized a uniform random law for rearrangement

breakage locations on genetic maps, on which genes are

points on a line, with distances between them. Switching to

genome sequences, and knowing that breakages inside genes

(Lemaitre et al. 2009) or some conserved intergenic regions

(Mongin et al. 2009) are very often selected against, we can

reasonably translate their conclusion into the following:

Spontaneous rearrangements happen uniformly at random

along the genomic sequence and are selected against in

some regions, called “solid.” As a consequence, the probabil-

ity to find a fixed rearrangement breakpoint in a “fragile”

region, which is any region outside solid ones, is proportional

to its size. In that context, modeling the genome by a permu-

tation of solid regions where fragile regions are contracted is

an oversimplification, because a uniform model does not stay

uniform when contracting several objects of different sizes

(fig. 1A). It is unrealistic, unlikely, and unstable to assume

that fragile regions all have the same size and keep the

same size during a rearrangement scenario, as in a pseudouni-

form model.

The second problem is that the pseudouniform model as-

sumes that solid regions are known. In practice, comparing

genome organizations begins with preparing homologous loci

in different genomes, which can be either a selection of ortho-

logous sets of genes or synteny blocks made from genes or

genomic alignments (Sankoff and Nadeau 2003). However,

real fragile regions could lie within such loci, and real solid

regions could lie between two consecutive loci. This makes

statistical estimations based on the pseudouniform model

depend on the arbitrary choices of data preparation.

Despite these drawbacks, all statistical estimators of

genome rearrangement distances based on a uniform

model (Wang and Warnow 2001; Larget et al. 2002;

Eriksen and Hultman 2004; Berestycki and Durrett 2006; Lin

and Moret 2008; Biller et al. 2015) assume that fragile regions

are known and all have the same probability of breakage. The

same statement holds for simulators aimed at validating infer-

ence methods, whether they are ad hoc constructions imple-

mented for the purpose of validating a single method, or less

dedicated simulators (Dalquen et al. 2012) (but see a possible

alternative with Knibbe et al. 2007; Biller et al. 2016).

Methodological work on deviations from a uniform model

concerns giving a different weight to different types of events

(Blanchette et al. 1996; Wang et al. 2006); designing models

where inversions are weighted by their length, symmetry

around a replication origin (Baudet et al. 2014), or by the

proximity of their extremities in the cell (Berthelot et al.

2015; Swenson and Blanchette 2015); weighting breakage

probabilities by chromatin state (Berthelot et al. 2015); or pre-

dicting the existence of hot regions for rearrangement break-

ages (Pevzner and Tesler 2003; Peng et al. 2006; Alexeev and

Alekseyev 2015). The diversity of susceptibilities to rearrange-

ments reflects genetic or epigenetic structural or functional

constrains on genome arrangements and rearrangements,

like the pattern of repetitions along the genome, chromatin

structure, three-dimensional (3D) organization of

A

B

FIG. 1.—Transformation of a genome into a permutation of genes. A uniform random breakage in the sequence (A) is not a uniform random breakage

in the gene order (B) unless intergenes (the sequences between the subelements) are assigned a probability proportional to their size. Moreover, including

these breakage probabilities supposes a rule for their redistribution after a rearrangement, leading to an evolutionary process on breakage probability

distributions.
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chromosomes, regulation, replication, or cotranscription

(Farré et al. 2015). Fragile breakpoint models (Peng et al.

2006; Alekseyev and Pevzner 2010; Alexeev and Alekseyev

2015) presented a decisive solution to the second concern

on the pseudouniform model: Solid regions are uncorrelated

from loci given in the input. Yet a constant probability of

breakage is still assumed on the fragile regions.

Here, we propose a Markovian model without this homo-

geneity hypothesis (see the first part of the Results section).

This model is called INFER, standing for “INversions in FragilE

Regions.” It is defined on solid and fragile regions, where solid

regions cannot break, and fragile regions break with given

probabilities. The crucial points are that 1) the fragile regions

of a genome do not necessarily have the same probability to

break and that 2) breakage probabilities in fragile regions

evolve together with the genome. We show that this model

has an equilibrium distribution in which breakage probabilities

are distributed according to a flat Dirichlet law. The INFER

model contains as a particular case the truly uniform

model—meaning uniform at the nucleotide level—in which

fragile regions are broken with a probability proportional to

their sizes. In this particular case, the equilibrium distribution

of the model resembles the distribution of intergene sizes

from diverse organisms (fig. 2).

The INFER model can be used for statistical inference with

or without the knowledge of the solid and fragile regions,

whose number can be estimated, as well as with or without

the knowledge of the breakage probabilities, which can be

assumed to be distributed according to a Dirichlet law. In the

second part of the Results section, we consider the case where

the boundaries of the solid and fragile regions are known, as

well as the breakage probability of each fragile region. We

derive a first statistical estimator of the rearrangement dis-

tance between two genomes accounting different probabili-

ties for fragile regions, based on the observed number of

“common adjacencies” linking solid regions of both ge-

nomes. As expected, this estimator shows similar perfor-

mances to pseudouniform-based estimators on simulations

of a pseudouniform process, and incomparably better perfor-

mances on simulations of the truly uniform process. This stres-

ses that the two models are not equivalent and switches the

null hypothesis from the pseudouniform to the uniform

model.

However, as explained in the third part of the Results

section, testing this estimator on real genomes revealed that

fixing coding genes as solid and breakage probabilities pro-

portional to intergene sizes leads to incoherent distance esti-

mations, as they are systematically lower than a parsimony

value. The uniform model, despite bringing an improvement

over the pseudouniform model, is still not able to explain the

mode of evolution in real genomes. This is coherent with the

often observed fact that rearrangement breakage densities

measured in genome comparisons are not homogeneous

along genomes (among other possible references, see Ruiz-

Herrera et al. 2006; Lemaitre et al. 2009; Mongin et al. 2009;

Berthelot et al. 2015), or that some regions are recurrently

used in evolutionary scenarios (Pevzner and Tesler 2003;

Alekseyev and Pevzner 2007, 2010). Thus, we propose a

second INFER-based estimator of the rearrangement distance

between two genomes, this time considering the number of

fragile regions unknown, as first proposed by Alexeev et al.

(2015) and Alexeev and Alekseyev (2015), and their exact

breakage probabilities unknown but distributed according to

a flat Dirichlet law. As predicted by Pevzner and Tesler (2003),

estimates of the number of fragile regions are surprisingly low,

an order of magnitude lower than the number of intergenes,

or even the number of regions with open chromatin. It gives

the image of a genome organization in which a small mea-

surable number of regions are recurrently used by rearrange-

ments. We finally discuss the relevance of this model with

respect to several genomic observations and the 3D confor-

mation of chromosomes in the cell.

A

B

FIG. 2.—Density of the set of the logarithms (base 10) of intergene

sizes from (A) simulated genomes (black) sampled from the Markov chain

process starting from a genome with 10,000 solid regions and equally

distributed breakage probabilities, applying 500,000 inversions as a

burn-in, and then sampling breakage probabilities every 10,000 additional

inversions, or sampled genomes (red) by picking values in an exponential

distribution and normalizing; (B) real genomes, chosen among diverse

model organisms: Homo sapiens (blue), Arabidopsis thaliana (orange),

and Escherichia coli (red).
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Results

In the first part we describe the INFER model and its stationary

distribution. Then in the second part we show with simula-

tions how it can be used with fixed known solid regions and

breakage probabilities. In the third and last part, we show

that on real genomes we have to assume that solid regions

and breakage probabilities are unknown. We give estimates

of some genomic distances, which are coherent with parsi-

mony solutions (that is, higher or equal than the inversion

distance), though the estimator theoretically allows for

incoherence.

INFER, An Evolutionary Model Accounting for the
Diversity of Fragile Regions, and Its Stationary Distribution

We model a genome by a signed permutation evolving by

inversions. This captures a single linear chromosome but can

be extended to genomes with several chromosomes or to

circular chromosomes; however, this requires technical addi-

tions that we only develop in the supplementary material,

Supplementary Material online, to keep the description

clearer.

A genome G ¼ ðp;pÞ is made up of two components:

. a signed permutation � over f1; . . . ;ng, that is, an ordering
of the elements of f1; . . . ; ngwhere each element is given a
sign, + or � (+ usually omitted), representing the reading
direction of an element. The elements of the permutation
are “solid regions,” which can be considered known (iden-
tified with coding genes for example) or not. Two additional
fixed solid regions p0 ¼ 0 and pnþ1 ¼ nþ 1 are added to
any permutation �. An “adjacency” is a pair of two con-
secutive regions, read in either directions pipiþ1 or
�piþ1 � pi .

. a vector p of ~n ¼ nþ 1 breakage probabilities,
pi > 0; 0 � i � n, with

P
i pi ¼ 1. Each number pi de-

notes the probability to break in the “fragile region” be-
tween �i and piþ1 in the permutation �. Breakage
probabilities can also be considered known (proportional
to intergene sizes for example) or not.

Solid regions have no thickness, because solid region sizes

have no importance for the calculations. However, when we

compare the model with data, we suppose that they encom-

pass genomic regions of diverse sizes. We suppose a homo-

geneity of breakage probability inside a fragile region, so

fragile regions should not be too large.

An “inversion” on a genome breaks two fragile regions

according to their breakage probabilities, reverses the seg-

ment between them, and updates the breakage probabilities.

More precisely, choose two fragile regions k and l with prob-

ability pk and pl. If k is equal to l, nothing is changed to the

genome. Otherwise, suppose k < l then pick two numbers

rk and rl uniformly at random respectively in �0; pk½ and

�0; pl ½. Reverse the segment pkþ1; . . . ; pl in the permutation,

flip all signs inside this segment, reverse the order of breakage

probabilities between k + 1 and l� 1, and define new break-

age probabilities pk ¼ rk þ rl and pl ¼ pk þ pl � rk � rl

(fig. 1B). Through such an operation, n and
P

i pi ¼ 1 are

invariant. A nonzero pi cannot become zero, which prevents

any absorbing state. This way of redistributing breakage prob-

abilities is chosen to generalize the exchange of genetic ma-

terial by intergenes if breakage probabilities are proportional

to intergene sizes.

The evolutionary model INFER is defined as a Markov chain

in which states are genomes and transitions are inversions. It is

a symmetric Markov chain: The probability density from

genome G to genome G0 is the same as the probability density

of the reverse step (see supplementary material,

Supplementary Material online, for the proofs). Hence it has

a stationary distribution, which is a uniform distribution “over

all genomes.” Thus, regardless of an initial genome, after a

long evolutionary time, all possible genomes are equally prob-

able, for all possible orderings of the solid regions and all

possible breakage probability vectors for the fragile regions.

This uniform distribution restricted to the breakage proba-

bilities corresponds to a flat Dirichlet distribution (the symmet-

ric Dirichlet law with a single parameter a = 1). Importantly,

this does not mean that all fragile regions have the same

probability to break, as traditionally assumed in the

pseudouniform model: Under the evolutionary process con-

sidered here, where breakage probabilities coevolve with

genome organization, the vector where p1 ¼ p2 ¼ . . . ¼ p ~n
is a very special improbable and unstable state. Neither does it

mean that individually breakage probabilities can be assumed

to be taken from a uniform law. Sampling uniformly a vector

p ¼ fpig of breakage probabilities (verifying
P

i pi ¼ 1) can be

done by picking independently every pi from an exponential

law, and normalizing by the sum of all picked values.

We define the “uniform” model as the particular case of

INFER where breakage probabilities are uniform at the nucle-

otide level, and thus proportional to the sizes of fragile regions

at the region level. If ni � 0 is the number of nucleotides be-

tween solid region �i and solid region piþ1, then

pi ¼ ðni þ 1Þ=
Pn

j¼0ðnj þ 1Þ, so that it is possible to break be-

tween any two pairs of nucleotides. In that case, the inversion

breaks between two nucleotides and two fragile regions ex-

change part of their material (fig. 1A).

Note, as a curiosity, that in this particular case, the restric-

tion of INFER to the set of breakage probabilities (or intergene

sizes) is a generalized Sankoff–Ferretti (Sankoff and Ferretti,

1996) model of chromosome size evolution (De et al. 2001). It

is also identical to the so-called top-swap Markov chain

(Bhatnagar et al. 2007), which has been proved to converge

fast. This means that sampling can either be achieved with the

exponential law as described in the previous paragraph, or by

letting the Markov chain run for a while from any starting

point and sampling from its last steps. Figure 2A shows the

distribution obtained with both sampling methods, which

yield highly similar results. Rather than being concentrated

Biller et al. GBE

1430 Genome Biol. Evol. 8(5):1427–1439. doi:10.1093/gbe/evw083 Advance Access publication May 10, 2016

Deleted Text: a
Deleted Text: a
Deleted Text: a
Deleted Text: 1. 
Deleted Text: a
Deleted Text: e
Deleted Text: m
Deleted Text: a
Deleted Text: d
Deleted Text: f
Deleted Text: r
Deleted Text: i
Deleted Text: s
Deleted Text: d
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw083/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw083/-/DC1
Deleted Text: --
Deleted Text:  
Deleted Text: to
Deleted Text: and
Deleted Text:  --
Deleted Text: see F
Deleted Text: )
Deleted Text:  
Deleted Text: ,
Deleted Text: t
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw083/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evw083/-/DC1
Deleted Text:  
Deleted Text: &thinsp;
Deleted Text: -
Deleted Text: u
Deleted Text: -
Deleted Text: ,
Deleted Text: see F
Deleted Text: )
Deleted Text: -
Deleted Text: )


on a single intergene size, this distribution spans a wide range

of intergene sizes. This means that once the inversion process

has reached its equilibrium, the genome is likely to encompass

a diversity of intergene sizes, and thus a diversity of breakage

probabilities. In other words, at any step of the process, some

fragile regions are more fragile than others.

In contrast, in the pseudouniform model all pi are equal to
1
~n
, and stay equal all along the scenario, rather than being

updated at each rearrangement.

Figure 2 compares an intergene size distribution sampled

from the equilibrium distribution of the uniform model and

some real intergene size distributions, chosen among diverse

model organisms. The similarity between all curves (with scale

differences due to genome sizes and gene numbers) suggests

that inversions could participate in shaping intergene sizes.

However, other major factors are duplications, insertions, de-

letions, regulation, recombination, and dispersion of insertion

sequences or transposable elements. Providing a full explana-

tion of whole distributions is out of the scope here, so

we intentionally do not fit the real curves or estimate param-

eters from them. But the equilibrium obtained under our

simple neutral inversion process is sufficiently close to real

distributions from diverse organisms to serve our purpose

here: It provides a mathematically grounded and realistic

basis for estimating the rearrangement distance between

two genomes.

Distance Estimators for Simulated Genomes with Known
Fragile Regions

In this section, we use simulations and statistical estimators

supposing that solid and fragile regions are given. On biolog-

ical data this situation is theoretically possible if we consider

that genes are solid and intergenes are fragile, or if fragility

data along genomes are available.

The Behavior of Pseudouniform-based Distance
Estimators

Because most statistical estimators are developed under a

pseudouniform model, we first test whether they can be con-

sidered a good approximation under the uniform model. We

use three standard estimators of the number of inversions

between two genomes, given the relative order of ortholo-

gous loci, that were proposed in the literature (we tested sev-

eral others—Caprara and Lancia 2000; Berestycki and Durrett

2006; Lin and Moret 2008; Alexeev and Alekseyev 2015—and

none has a significantly different behavior). Their aim is, given

two genomes, one evolved from the other by applying k in-

versions, to recover k. One tested estimator is the “inversion

distance,” that is, the minimum number of inversions neces-

sary to transform one genome into another (Hannenhalli and

Pevzner 1999), noted ID. We also call it the estimator based on

parsimony. A second is ~DCJ (Biller et al. 2015), a statistical

estimator based on the expected number of common

adjacencies between two genomes under a pseudouniform

model. A “common adjacency” of two genomes G and G0

defined on the same elements is an adjacency present in both,

in one reading direction or the other. The last estimator, which

we call EH (Eriksen and Hultman, 2004), is a statistical estima-

tor of the number of inversions based on the expected

number of cycles of the so-called breakpoint graph (see sup-

plementary material, Supplementary Material online), under

the pseudouniform model.

In figure 3, we can see the average result of evolving 100

times a genome with n = 1000 solid regions by k inversions (k

is on the x-axis), and computing the three estimates (values are

on the y-axis). In figure 3A, the genomes are evolved using the

pseudouniform model. We can see three phases in this graph,

which correspond to well-known results (Berestycki and

Durrett 2006)): From k = 0 to k ¼ n=2, the three methods

follow y = x and thus correctly recover k. Between n=2 and

Oðnlog nÞ, the inversion distance ID leaves the diagonal while

the two statistical methods ~DCJ and EH give a rather good

estimate. For k > Oðnlog nÞ, the three methods saturate, that

is, the final genome no longer depends on the initial genome

and it becomes impossible to guess k.

In figure 3B, genomes are evolved according to the uniform

model, where an initial intergene size distribution is sampled

from its equilibrium distribution. Now the behaviors are radi-

cally different: ~DCJ saturates very quickly, whereas EH and ID

follow the y = x diagonal a bit longer but do not give the right

answer as soon as k > n=2. Interestingly, EH is not estimating

better than ID, while ~DCJ is worse for a large part of the

simulation. Therefore, in that case, the parsimony estimation,

which was the worst in figure 3A simulation, has the best

position, although with low performance.

Thus, the pseudouniform model, under which almost

all combinatorial and statistical rearrangement studies

have been developed up to now, is not an adequate

framework to build methods to recover the number of rear-

rangements from real data, even if they are assumed to occur

under a neutral process without any additional biological

constraints.

An INFER-based Distance Estimator: ER1

We now describe a first INFER-based estimator of the number

of inversions separating two genomes. Similarly to several

other studies (Berestycki and Durrett 2006; Alexeev and

Alekseyev 2015), this estimator is based on expected values

for some parameters of dynamic random graphs. Indeed, the

INFER model of genome evolution is analogous to a model of

random graph evolution. Identify ~n ¼ nþ 1 fragile regions of

a genome with the ~n vertices of a graph: Each vertex has a

weight, which is the region breakage probability. Each time an

inversion between fragile regions i and j is applied on a

genome, an edge between vertices i and j is added to the

graph. This yields a Markov chain close to the standard

Breaking Good GBE
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Erdös–Rényi (Erdös and Rényi 1960) random graph evolution.

The difference is that, in the Erdös–Rényi model, edges are

taken uniformly at random, like in the pseudouniform model,

whereas an edge ij is here added with probability pipj, and pi

and pj are updated as in the INFER model. Loops and multiple

edges are allowed (see supplementary material,

Supplementary Material online, for a full description of this

analogy with a proof of good approximation).

Berestycki and Durrett (2006) remarked that the number of

vertices minus the number of components of the graph ap-

proximates well the minimum number of inversions, and de-

duced an estimator under the pseudouniform model.

Unfortunately, their method used the pseudouniform model

and is hardly generalizable if fragile regions have different

breakage probabilities. Indeed, although random graphs

with prescribed degree distributions have been much studied

(Chatterjee et al. 2011), there is no tractable general formula

for the number of connected components of any random

graph with k edges if they are not drawn from a uniform

distribution.

There is, however, a way to compute an expected value for

the number U of isolated vertices in a random graph with k

edges, and it can be proven that this U is a good approxima-

tion of the number C of common adjacencies of genomes

separated by k inversions (see supplementary material,

Supplementary Material online). The expected number of iso-

lated vertices in a random graph with ~n vertices where k edges

have been successively added is given by

EðUÞ ¼ f ~n;pðkÞ with f ~n;pðkÞ ¼
P~n
i¼0

ðp2
i þ ð1� piÞ

2
Þ
k; ð1Þ

where the term inside the sum depicts both cases in which

one vertex remains isolated after adding k edges: p2
i is the

probability of creating a loop, and ð1� piÞ
2 is the probability

of adding an edge between any other two vertices. This for-

mula is valid for any vector p ¼ fpig of breakage probabilities

and can be used if p is given.

Our estimator of k as a function of the observed number C

of common adjacencies consists in inverting the function f in

Equation 1, as in a method of moments. We call it ER1, which

stands for “Erdös–Rényi” with one observation (there is an

ER2 in the sequel of the article):

k̂ ¼ f�1
~n;pðCÞ: ðER1Þ

We do not know how to analytically invert f, but f is mo-

notonous, twice derivable in k, so the equation can be effi-

ciently solved numerically.

The practical behavior of this estimator can be observed

in figure 3A and B. In figure 3A, where p was set to fpi ¼
1
~n
g

(pseudouniform model), we see a similar performance

compared to gDCJ and EH. In figure 3B, the breakage prob-

abilities in the initial genome were randomly drawn from a

flat Dirichlet distribution (equilibrium of the uniform model)

and used in the estimation. We see that the estimator is

keeping its accuracy up to values of k which are far above

the saturation points of all other methods. Note that, as

expected, ER1 performs better on simulations with the truly

uniform model than on simulations with the pseudouni-

form model. Indeed, the truly uniform model implies a

diversity of breakage probabilities (as long as there is a

diversity in the lengths of fragile regions), which ER1 is de-

signed to exploit. When there is a diversity of fragility levels

across regions, some regions are not so prone to rearrange-

ments and behave as slow evolving sites that keep the

signal for a longer time. ER1 can thus exploit this signal

to correctly infer the evolutionary distance even if k is

large. On the contrary, in the pseudouniform model, all

sites evolve at the same speed and the signal is lost more

quickly.

A

B

FIG. 3.—Behavior of rearrangement distance estimators on 100 sim-

ulations from a permutation of n = 1,000 elements evolved by inversions

using (A) a pseudouniform model, and (B) a uniform model, with initial

breakage probabilities drawn from a flat Dirichlet distribution. The real

number k of inversions is on the x-axis, and the estimated number of

inversions k̂, according to several methods, is on the y-axis. It emphasizes

that pseudouniform and uniform models are very different.
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A Distance Estimator for Real Genomes, with Unknown
Fragile Regions

In this section, we suppose that fragility data are not available,

which is the case for all real genome comparisons so far.

Indeed, we first show that the identification of genes with

solid regions and intergenes with fragile regions yields inco-

herent results on a uniform model. If fragile regions are not

given, then their lengths are not given as well, and breakage

probabilities are not known. So we leave the uniform model,

and assume the INFER equilibrium distribution for breakage

probabilities, independently of the size of fragile regions. Note

that we do not estimate the positions of the fragile regions,

but only their number. Anchors in the genome, which can be

orthologous genes or synteny blocks, are still used as an input.

Broken regions, which are a subset of regions between an-

chors, are necessarily fragile. But the estimated number of

fragile regions can be higher or lower than the number of

regions between anchors. Indeed, some segments may be

hypothesized solid (anchors) whereas they are estimated (at

least partly) fragile, and some segments may be hypothesized

fragile, whereas they are estimated solid.

Why the Number of Solid and Fragile Regions Is
Unknown

As inversion distance (ID) is the length of the most parsimoni-

ous scenarios to transform the initial genome into the final

one, a necessary condition for an estimator to be valid is that

the estimated number of inversions is equal to or higher than

the inversion distance. For instance, in simulations of the uni-

form process (fig. 3B), it is always the case for our estimator,

but not for ~DCJ . This shows that estimation under a model on

data generated with a different model can lead to incoher-

ence. This feature can be used to test the model on data: If

inversion distance is always higher than the estimator built

under a certain model, this is a sign that this model and/or

its parameters do not explain the data well.

We used this criterion to evaluate the behavior of the ER1

estimator on amniote genomes. Specifically, we computed

the inversion distance and the ER1 distance estimations for

all 21 pairs from 7 amniote genomes, at different evolutionary

distances (human, chimp, macaca, mouse, horse, opossum

and chicken, see Methods). This implies generalizing the

model and the estimators to multiple chromosomes (see sup-

plementary material, Supplementary Material online), and re-

trieving and filtering sets of pairs of orthologous genes for

each pairwise comparison (see Methods). Results are summa-

rized in figure 4. We identify coding genes with solid regions,

and set the breakage probabilities either all equal (pseudouni-

form model) or proportional to the intergene sizes (uniform

model)—that is, the number of nucleotides between the

genes that are outside any gene, as detailed in Methods. All

pairwise comparisons yield estimated distances which are

smaller than the inversion distance. Estimations under the

pseudouniform model systematically give impossible solutions,

whereas the uniform model is already a decisive improvement.

It emphasizes again that both models are not equivalent to

explain the organizations of extant genomes. However, esti-

mations under the uniform model still output values lower

than the inversion distance. This tends to reject the particular

case of the uniform model where fragile regions are exactly

identified with intergenic regions, as accounting for amniote

genome evolution, in agreement with several earlier results

(among others Pevzner and Tesler (2003); Peng et al. 2006;

Alekseyev and Pevzner 2007; Lemaitre et al. 2009; Mongin

et al. 2009; Berthelot et al. 2015; Naville et al. 2015), although

sometimes it is not clear whether the uniform or the

pseudouniform model was rejected, or on which fragile re-

gions a uniform or pseudouniform model should act.

There are several possible explanations for the incoherence

of ER1–pseudouniform and ER1–uniform. For example, it is

possible that we do not model the right rearrangements. The

inclusion of nonreciprocal translocations (sometimes called

transpositions or block transpositions) of large genomic seg-

ments could modify the estimations (Alexeev et al. 2015).

These rearrangements have rarely been reported for large

segments (Schubert and Lysák 2011) and their prevalence is

FIG. 4.—Difference between the estimation of the genomic distance

and the inversion distance (y-axis), for statistical estimators with different

parameters (number of solid regions and breakage probabilities) (x-axis).

The points represent 21 pairwise amniote genome comparisons. Distance

estimates are obtained from (ER1—pseudouniform), if solid regions

are genes and intergene breakage probabilities pis are all equal; (ER1—

uniform), if solid regions are genes and pis proportional to intergene sizes;

(ER2), with a parameterized number ~n of fragile regions, and breakage

probabilities distributed in fragile regions according to a flat Dirichlet law.

The difference should be nonnegative if the scenario is likely, given the

parameters ~n and pi .
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debated (Alexeev et al. 2015). Here we choose to ignore their

effect. Also, it is possible that we do not define well the fragile

regions by identifying them with intergenic regions. A uniform

breakage model is still possible on a set of fragile regions

taking other genetic or epigenetic factors into account. For

example, we tried to define fragile regions as intergenic re-

gions with open chromatin but this made the results worse

(see supplementary material, Supplementary Material online).

It is also possible that ER1 has some flaw that is visible on

amniote genomes but not on simulations. We tested simula-

tions on multichromosomal genomes, applying the same fil-

ters as in real genomes (see supplementary material,

Supplementary Material online) to address possible differences

as much as possible, and did not find any qualitative differ-

ence. The incoherence of ER1–pseudouniform and ER1–uni-

form can be finally explained and repaired by parameterizing n

and fitting it to the data, as detailed below.

Coestimating the Distance and the Number of Fragile
Regions: ER2

The number ~n ¼ nþ 1 of fragile regions is a parameter of the

model and it is not necessarily known in practice. If ~n is not

known, neither are the breakage probabilities. We cannot

estimate all of them with only the observation of two ge-

nomes. Thus, in the following, we assume that breakage

probabilities are distributed along the unknown ~n fragile re-

gions according to a flat Dirichlet distribution, because it is the

stable distribution of the model. In this way, the distribution of

breakage probabilities is the equilibrium of the model, but can

deviate from the fragile region sizes, so it allows deviations

from a uniform model. We then have to estimate both ~n and

the rearrangement distance k.

The ER2 estimator is based on two observations. The first is

the number of broken regions ~n � C , where C is the number

of common adjacencies. For this we need the estimation of C.

In Equation 1, we have the expression of E(U) as a function of
~n, k, and {pi}, which approximates E(C). If we suppose that the

breakage probabilities are distributed according to a flat

Dirichlet law, we get rid of the pis using estimations of the

moments of a flat Dirichlet distribution, and approximate E(U)

by the following expression depending only on k and ~n (see

supplementary material, Supplementary Material online, for

the algebraic transformations and computational issues).

C & EðUÞ ¼ f ~n;Dirichletð ~nÞ

& f
0

~n
ðkÞ ¼ ~n

P1
l¼0

ð�2kÞl

�l�1
u¼0ð ~n þ uÞ

ð2Þ

This function alone is not sufficient to estimate two param-

eters k and ~n. So we make a second observation and compute

its expected value: Let C2 be the random variable which

counts the number of “squares of adjacencies.” Comparing

genomes G and G0 on the same elements, recall that an

adjacency is a pair ab of consecutive signed elements, and

that adjacency ab is considered the same as adjacency

�b� a. A square of adjacencies consists of adjacencies ab

and cd in G such that adjacencies a – c and – bd are observed

in G0. It means that the breakpoint graph (see supplementary

material, Supplementary Material online) forms a cycle with

four vertices. This is the probable trace of one inversion on

these adjacencies, while no other inversion used them.

Recall that the common adjacencies of G and G0 are iden-

tified with the number of isolated vertices in a random graph.

Similarly, squares of adjacencies are often isolated edges in the

same random graph (see supplementary material,

Supplementary Material online), where an isolated edge is

an edge xy whose extremities are different and not involved

in another nonloop edge. The expected number of isolated

edges in a random graph with ~n vertices, when k edges are

successively added, is given by

g ~n;pðkÞ ¼ k �
P~n
i¼0

P~n
j¼0

pipj � ðp
2
i þ p2

j þ ð1� pi � pjÞ
2
Þ
k�1

ð3Þ

which sums, over all possible edges, the probability that any

edge is added once and its vertices never touched otherwise,

allowing loops (i.e., edges whose two extremities are the same

vertex).

By using this equation to approximate EðC2Þ, performing a

series of algebraic calculations, approximations, that are de-

tailed in the supplementary material, Supplementary Material

online, we obtain:

g ~n;Dirichletð ~nÞðkÞ &g
0

~n
ðkÞ

¼ k ~n
2
X1
l¼0

X1
m¼0

ð�2ðk�1ÞÞlþm
ðlþ1Þðmþ1Þ

�lþmþ1
u¼0 ð ~nþuÞ

ð4Þ

Equations (2) and (4) describe E(C) and EðC2Þ as two func-

tions of ~n and k. Successive terms of the infinite sum can be

computed iteratively, avoiding the linear products and allow-

ing fast computations (see supplementary material,

Supplementary Material online). The infinite sum has to be

interrupted at some point for the computations.

With the observation of ~n � C and C2, we can estimate k

and ~n by numerically inverting the two functions f 0 and g0. We

call this the ER2 estimator, standing for Erdös–Rényi with two

observations. Figure 5A shows the ability to estimate a close

value for ~n on simulations. Results obtained on the amniote

genomes are depicted in figure 4 (ER2). This time, as we can

expect from a plausible model, the estimated distance is larger

or equal to the inversion distance given by the parsimony.

Interestingly, the estimated number of fragile regions ~̂n is sys-

tematically inferred an order of magnitude under the number

of intergenes in the input.

Figure 5B summarizes the obtained results. Although the

number of intergenes, corresponding to the number of found
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one-to-one reliable nonoverlapping orthologs between spe-

cies, is around 104, ~̂n varies from 589 to 1,769 depending

on the compared pair of genomes. We tested the robustness

of the ER2 estimator when the number of orthologous genes

varies in input (see supplementary fig. S3, Supplementary

Material online). We propose an interpretation of the differ-

ence between the number of intergenes and the number of

fragile regions based on the 3D structure of chromosomes in

the following section.

Methods

Mathematical developments are all included in the

Supplementary Material online, including the transition

matrix of INFER, which proves convergence to the equilibrium

distribution, the analogy with random graph evolution, the

estimators of random graph parameters, the description of

breakpoint graphs, and multichromosomal genomes. Here

we only detail how we retrieved real genomic data to test

our estimators.

Intergene Sizes

For figure 2, we retrieved all gene coordinates of the

Escherichia coli genome from Hogenom (Penel et al. 2009),

and of the Arabidopsis thaliana and Homo sapiens genomes

from Ensembl (Vilella et al. 2009). We ignored overlapping

genes and reported only nonnegative intergene sizes. Then

we reported the number of nucleotides between any pair of

consecutive nonoverlapping genes, including centromeres,

and adding telomeres (number of nucleotides from the

extremity of a chromosome and the first gene from this

extremity).

Intergene sizes used in the computation of breakage prob-

abilities for the ER1 estimator are computed as the number of

nucleotides which are not in a gene (according to the Ensembl

coordinates) between two genes taken in the data set. As we

filter the data, it is possible that there are some coding genes

between two consecutive genes in the data set, so it can differ

from the simple computation of the size of the region be-

tween two consecutive genes in the data set. We tried ER1

with both values and it did not make any qualitative difference

in the results.

Anchors in Amniote Genomes

Gene coordinates and one-to-one orthologs were downloaded

from the Ensembl Compara database (Vilella et al. 2009) (using

Biomart). We filtered all genes whose coordinates intersect

another gene in the data set, so all anchors are disjoint.

“Lonely genes”, that is, genes that are not involved in

common adjacencies, are very often annotation artifacts

that blur the inversion signal. Indeed ortholog identification

has a false positive rate which very often results in lonely

genes. We give several arguments for this in the supplemen-

tary material, Supplementary Material online, comparing the

number of lonely genes in simulations and in biological data.

Thus we remove from the data set all lonely genes. The re-

maining pairs of orthologs were used as anchors.

The breakage probabilities for the uniform model were

then defined as the cumulated size of all intergenic regions

A B

FIG. 5.—Estimations of the number of fragile regions ( ~̂n). (A) On simulated data. A genome with n = 1000 genes is evolved 20 times with inversions, and

the number of fragile regions (~n) is estimated from the comparison of the initial and final genomes, using only the values for B and C2. The estimator gets the

right order of magnitude from k ¼ n=10 rearrangements, but constantly slightly overestimates the real number. (B) On real data. Six pairwise amniote

comparisons at different divergence time were used (human with chimpanzee, macaca, mouse, horse, opossum, and chicken). Although the number of

available orthologs for the comparison is expectedly decreasing with divergence time (taken from lower bounds from paleontological studies; Benton and

Donoghue 2007), the estimated number of fragile regions is increasing.
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between two anchors (as genes were filtered, a region be-

tween two genes can contain filtered coding genes). An al-

ternative set of breakage probabilities has been computed as

the quantity of open chromatin between markers.

Software Availability

A Python code for ER1 and ER2 is available upon request to

the corresponding author. It takes as input two genomes in

the form of a multichromosomal permutation, and optionally

a vector p of breakage probabilities, and outputs the esti-

mated rearrangement distance, the parsimony DCJ distance,

and the estimated number of fragile regions.

Discussion

We successively discuss three main results: The construction of

a sound model of evolution by inversions and its equilibrium

distribution, the importance of including intergene sizes in the

construction of a uniform breakage evolutionary model, and

the generalization to nonuniform models, accompanied by

statistical estimators of their parameters.

Slow and Fast Evolving Sites

Our first contribution is the elaboration of a model of genome

evolution by inversions, where 1) the breakable regions of a

genome are allowed to differ in their breakage probabilities

and 2) those breakage probabilities coevolve with the order of

solid regions. This dynamical process has an equilibrium distri-

bution, which is the uniform distribution over all possible ge-

nomes. From the point of view of breakage probability

distribution inside a genome, this is equivalent to a flat

Dirichlet distribution for the probability vector p. Up to a nor-

malization term, this means that under equilibrium, each

breakage probability pi can be considered distributed accord-

ing to an exponential distribution, or a Gamma law with pa-

rameter 1.

We implemented our estimator ER2 with this parameter 1,

because it is the equilibrium distribution of our model, which is

the generalization of the Nadeau–Taylor model. However, this

estimator could very well be implemented with a nonflat sym-

metric Dirichlet distribution for p, with any parameter a. Up to

normalization, this would amount to have each breakage

probability pi follow a Gamma law with parameter a.

It is interesting to note that, concerning evolution of geno-

mic sequences by substitutions, the introduction of a Gamma

law differentiating sites according to their evolutionary rates

has been a great progress in phylogenetic inference (Yang

1996). It allows us to give the adequate relative importance

to different sites for carrying information about the recent (for

fast evolving sites) or deep (for slow evolving sites) evolution.

This opens the path to using rearrangements in phylogeny

with a finer model. Probably this would not go without model-

ing also the evolution of gene contents of genomes, because

in reality, contrary to our simulations, the dynamics of gains

and losses of genes affect the conservation of the gene order

signal.

What Is a Uniform Model of Genomic Breakage?

The first mathematical studies on genome rearrangements

were parsimonious reconstruction of inversion scenarios

(Sturtevant and Novitski 1941; Hannenhalli and Pevzner

1999). In that context only gene orders matter.

Permutations of genes have become a popular object to

depict gene orders, and statisticians first constructed their

models on permutations (Larget et al. 2002; Eriksen and

Hultman 2004). But this was forgetting an important element,

which would impact combinatorial or statistical modeling

approaches.

The formulation by Nadeau and Taylor of the uniformity of

breakage along genomes was that “rearrangement break-

points are randomly distributed in mammalian genomes.”

Genomes were accessible through genetic maps at that

time, so genes were considered as point loci, without thick-

ness, themselves distributed uniformly. Knowing more today

about genome architectures, we have to interpret this hypoth-

esis to formulate mathematical models. Signed permutation

was a strange answer: It gave thickness to genes and removed

it to intergenes. An alternative interpretation is to give a thick-

ness to both: A uniform probability of breakage in intergenic

regions at the nucleotide level.

We showed that forgetting intergene sizes (the pseudouni-

form way) leads to probabilistic models that are unable to

perform better, and often perform worse, than parsimony

on simulations with a truly uniform model in the sense of

Nadeau and Taylor.

We argue for a switch of the null hypothesis, which should

be uniform and not pseudouniform. Standard simulators of

gene order evolution should adopt a uniform hypothesis in the

absence of knowledge on biological constraints.

Towards a General Model for Genome Rearrangements

After clarifying what a uniform model is, our construction also

allows for the exploration of deviations. Indeed, there is now a

diversity of evidence for a complex distribution of rearrange-

ment breakpoints inside genomes. We can summarize some

of them as follows.

1. An excess of density in rearrangement breakpoints in
mammalian genomes has been observed in small inter-
genes (Lemaitre et al. 2009; Mongin et al. 2009;
Berthelot et al. 2015). It has been successively attributed
to positive selection (Roberto et al. 2007), negative selec-
tion in larger intergenes (Peng et al. 2006; Mongin et al.
2009; Naville et al. 2015), fragility due to transcription and
early replication activity (Lemaitre et al. 2009), or low chro-
matin condensation (Berthelot et al. 2015).
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2. Correlations with various genomic elements have been re-
ported, like repeated elements and GC content (Ruiz-
Herrera et al. 2006; Farré et al. 2015). The causal role of
repeated elements is evident is some cases, but in general
it is unclear where these strong correlations come from. It
has been hypothesized that all correlations can be ex-
plained by gene density (Berthelot et al. 2015).

3. Parsimonious estimations of rearrangement distances
imply that some regions should be more often broken
than others (Pevzner and Tesler 2003; Alekseyev and
Pevzner 2007). This argument has been challenged
(Bergeron et al. 2006; Sankoff 2006; Attie et al. 2011),
but our study eventually supports this conclusion. These
regions are supposed to be rearrangement hotspots, and
have been hypothesized to have a limited lifespan
(Alekseyev and Pevzner 2010).

4. Small inversions have been observed to be more frequent
than large ones (McLysaght et al. 2000), which induce a
concentration of couples of breakages.

5. A 3D positional bias of genomic regions has been invoked
(Swenson and Blanchette 2015).

Alternatives to the (pseudo)uniform model are often called

for (Farré et al. 2015), but precise formulations are rare.

Pevzner and Tesler (2003) and Alexeev and Alekseyev (2015)

proposed that a subset of intergenes should be considered

fragile. Mongin et al. (2009) proposed that genomic regions

between genes that are regulatory elements should be con-

sidered solid. Alekseyev and Pevzner (2010) described a birth

and death process for the positions of fragile regions.

Berthelot et al. (2015) observed that the density of breakage

in mammalian genomes in an intergene i is proportional to nc
i ,

where �i is the intergene size and c < 1 is a constant inte-

grating chromatin density. They also proposed that fragility is

assigned to couples of regions rather than, or in addition to,

individual regions, which is also the idea proposed by Swenson

and Blanchette (2015).

As remarked by Farré et al. (2015), none of these models

can explain all the observations on its own. For example,

obervations 1 and 3 are not implied one by another and

models accounting for one do not necessarily account for

the other. We tried to translate the chromatin condensation

parameter of Berthelot et al. (2015) into a probability and to

apply our estimator ER1 to it. It gave incoherent results like the

pseudouniform model. This is not surprising because this

power function nc
i with a number c close to zero has the

effect of uniformizing the breakage probabilities with respect

to intergene sizes. We also tried ER2 on the model proposed

by Alexeev and Alekseyev (2015). Specifically, as in INFER,

fragile regions are unknown, but the individual pis are distrib-

uted according to a uniform law, which means fpig is distrib-

uted according to a symmetric Dirichlet with a high parameter

instead of a flat Dirichlet. In most amniote comparisons the

distance estimation was lower than the parsimony (lower in

47% of the comparisons versus 14% for ER2), leading to im-

possible scenarios. In addition, the estimator proposed by

Alexeev and Alekseyev (2015) does not perform better than

parsimony on simulations from the uniform model. The inter-

genic breakage model (Peng et al. 2006; Becker and Lenhard

2007; Mongin et al. 2009), supposing that solid regions are

long range regulation loci, would imply that a major part of

the genome is under selection, including regions with various

genomic features. This is not yet supported by regulation data

(Farré et al. 2015).

The INFER model can capture both observations 1 and 3:

The number of fragile regions is set to fit observation 3, and

their probabilities are distributed so that inside fragile regions

there is a diversity of breakage probabilities that are possibly

correlated with genomic features. We partially account for

observation 5, because it would explain the solidity of most

of the genome, as it is not in contact regions (fig. 6). All our

results and former observations are in agreement with the

idea of a slowly evolvable colocalization of active genomic

regions in the cell. Indeed, the increase in the number of frag-

ile regions with evolutionary time (fig. 5) is coherent with the

Turnover Fragile Breakage Model of Alekseyev and Pevzner

(2010), supposing a birth and death of fragile regions. Yet

observations 4 and 5 still point one of the most serious limi-

tation to the INFER model.

Limits

INFER does not handle dependency between probabilities,

as a model of 3D conformation would prescribe. Such a

model would consist in drawing the genome as organized

in loops and contact regions as in figure 6 (Bouwman and

de Laat 2015). It would explain most of the observed de-

viations from the uniform model. As contact regions are

regions of high transcriptional activity, it results in higher

FIG. 6.—Chromosomes organized in territories in the cell. We conjec-

ture that rearrangements happen mainly within pairs of breakpoints in

contact zones. Two breakpoints may concern a single chromosome seg-

ment (small rearrangements) or different chromosome segments (large

rearrangements), leading to two different modes of evolution.
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breakage density in gene dense regions (Lemaitre et al.

2009). As close regions in the genome are close also in

3D, small rearrangements are frequent. As most regions

are in loops and are not in contact, the number of fragile

regions is small.

Hence the limit to our approach is the independent choice

of the two breakpoints for each rearrangement. This

independent hypothesis allows for easier computations, but

future work should aim at coupling or grouping adjacencies

and modifying their breakage probabilities in function of their

mates. The work of Berthelot et al. (2015) and Swenson and

Blanchette (2015) provides a first modeling or combinatorial

framework, but the statistical aspects are still to be developed.

Other limitations are that a breakage is often not at the

resolution of a nucleotide, it would be more appropriate to

speak about breakpoint regions (Lemaitre et al. 2009). Other

ways to redistribute breakage probabilities after rearrange-

ments could be considered.

Eventually, the model is dependent on the resolution at

which we consider rearrangements. If the considered loci

are coding genes, the smallest possible rearrangement is the

inversion of one gene. As we filter lonely genes (see Methods),

it has in fact the size of two genes. This can be variable along a

genome and between genomes. For example, the precision

will not be the same for amniote or yeast genomes. This can

be important when the main deviations from the uniform

model concern small rearrangements. The definition of small

can vary with mean gene sizes.

Supplementary Material

Supplementary figures S1–S6 and methods are available at

Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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