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Abstract: Specially designed optoelectronic and data postprocessing methods are described that permit elec-
tromyography (EMG) of muscle activity simultaneous with functional MRI (fMRI). Hardware characteriza-
tion and validation included simultaneous EMG and event-related fMRI in 17 healthy participants during ei-
ther ankle (n¼ 12), index finger (n¼ 3), or wrist (n¼ 2) contractions cued by visual stimuli. Principal compo-
nent analysis (PCA) and independent component analysis (ICA) were evaluated for their ability to remove
residual fMRI gradient-induced signal contamination in EMG data. Contractions of ankle tibialis anterior
and index finger abductor were clearly distinguishable, although observing contractions from the wrist flex-
ors proved more challenging. To demonstrate the potential utility of simultaneous EMG and fMRI, data from
the ankle experiments were analyzed using two approaches: 1) assuming contractions coincided precisely
with visual cues, and 2) using EMG to time the onset and offset of muscle contraction precisely for each par-
ticipant. Both methods produced complementary activation maps, although the EMG-guided approach
recovered more active brain voxels and revealed activity better in the basal ganglia and cerebellum. Further-
more, numerical simulations confirmed that precise knowledge of behavioral responses, such as those pro-
vided by EMG, are much more important for event-related experimental designs compared to block designs.
This simultaneous EMG and fMRI methodology has important applications where the amplitude or timing
of motor output is impaired, such as after stroke.Hum BrainMapp 28:835–845, 2007. VVC 2006Wiley-Liss, Inc.
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INTRODUCTION

Functional MRI (fMRI) using blood oxygenation level-
dependent (BOLD) contrast is a noninvasive tool that relies
on neurovascular coupling to detect neural activity. Its
invention �15 years ago has dramatically altered and
accelerated neuroscience research. Despite this success, an
aspect of fMRI that requires ongoing development is the
quantification of behavior that underlies brain activity. In
particular, recent clinically focused fMRI studies that
investigate mechanisms of stroke recovery [Johansen-Berg
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et al., 2002; Staines et al., 2002; Ward et al., 2003] have
motivated the need for measurement of motor and other
behavior during scanning, beyond what can be derived
from the simple ‘‘on-off’’ timing of task patterns. This
motivates the need to perform noninvasive surface electro-
myography (EMG), the measurement of biopotentials due
to muscle contraction, during fMRI studies. The EMG sig-
nal provides timing and amplitude information from indi-
vidual muscles during dynamic or isometric contractions,
making it more versatile than kinematic data. In addition,
EMG is a useful clinical tool suitable for diagnosis of
impaired motor performance by providing precise timing
information across different muscle groups [Kautz and
Brown, 1998].
Few studies have focused on combining EMG and fMRI

[Dimitrova et al., 2003; Liu et al., 2000; Toma et al., 1999;
van Duinen et al., 2005]. With one exception [van Duinen
et al., 2005], these studies have been qualitative or have
employed interleaved acquisitions that separate EMG and
fMRI signal collection in time. This strategy has been
adopted because time-varying gradient fields throughout
an fMRI experiment induce signals that typically saturate
EMG preamplifiers and introduce a predominating source
of structured noise in the EMG data [Allen et al., 2000].
One example of an interleaved technique provided 200 ms
of dead time for EMG during fMRI conducted with a 2.5-s
repetition time [Liu et al., 2000]. This strategy is useful but
suboptimal because it reduces fMRI temporal resolution
and significantly reduces the duty cycle available for EMG.
It has recently been demonstrated that EMG measure-

ments can be made continuously during fMRI [van Duinen
et al., 2005], a methodological development that borrows
from the successes of simultaneous electroencephalography
(EEG) and fMRI [Allen et al., 2000]. The EMG signals are of-
ten larger in amplitude than EEG (0.1–2 mV compared to 5–
200 mV, respectively), but the two signals have different
spectral and temporal characteristics. Whereas time-locked
evoked potentials from the brain exhibit frequencies ranging
from �0–50 Hz, the predominant EMG frequency band-
width is wider (10–160 Hz). The EMG signal is intrinsically
stochastic, attributed to transient ionic potentials that occur
among activated motor units, and their firing frequency
[Clancy et al., 2002]. The standard deviation of this stochas-
tic signal is a function of the number of active motor units.
Consequently, the separation of EMG signals from a con-
taminating fMRI-induced signal is analogous to the separa-
tion of a random signal of interest from a structured noise
component. Compared to the brief (�1 s) muscle activity
bursts, structured noise due to fMRI is expected to be the
dominant source of variance in the data, whereas residual
electronic noise can be minimized through careful hardware
design. Signal separation is consequently amenable both to
filtering at the hardware level and established signal detec-
tion techniques at the postprocessing level.
At the hardware level, one approach is to develop si-

multaneous EMG and fMRI by modifying and optimizing
customized electronics designed for EEG, such as slew-rate

and bandwidth limited nonmagnetic preamplifiers [Ives
et al., 1993]. The slew-rate is the ability of an EMG ampli-
fier to track changes in voltage that occur on a rapid time
scale. Hence, slew-rate limited amplifiers suppress high-
frequency voltage changes. At the postprocessing level,
although adaptive noise canceling, artifact subtraction
methods [Allen et al., 1998], and filtering techniques [Hoff-
mann et al., 2000] have been used to improve EEG data
acquired during fMRI, the increasing applications of com-
ponent analysis techniques suggest that they may be use-
ful for EMG data. Principal component analysis (PCA) is a
data-driven feature extraction and data reduction tech-
nique that has been used to reduce fMRI-induced signal
contamination in EEG data [Negishi et al., 2004], but not
yet in EMG data. Data are decomposed into orthogonal
principal components (PCs), ranked according to the
amount they explain the total variance. A further data-
driven processing step is independent component analysis
(ICA) [McKeown and Radtke, 2001], which attempts to
represent data as linearly independent components (ICs)
for the purpose of feature extraction, sometimes referred
to as blind source separation. Both PCA and ICA rely on
redundancy across trials or across sampling sources to sep-
arate signals. It is hypothesized that both PCA and ICA
can be used separate the stochastic EMG muscle signals
from the structured fMRI-induced signal contamination.
Developing simultaneous EMG and fMRI capability is of

critical importance for investigation of impaired motor
behavior in patient studies, such as those that aim to
improve understanding of deficits due to stroke and stroke
recovery [Ward et al., 2003; Zemke et al., 2003]. The addi-
tion of a simultaneous EMG measurement to fMRI studies
of stroke would provide unambiguous, individualized,
task-relevant information about the specific abnormal mus-
cle activation patterns. One obvious application is in longi-
tudinal stroke studies [Ward et al., 2003] where recovery
and brain reorganization are expected to occur. EMG can
be used to quantify differences in muscle contraction pat-
terns, both in timing and amplitude, within the same
patient as a function of time. Compared to kinematic
measurements or visual observation, EMG is the most suit-
able technique to screen for disturbed motor control, such
as mirror movements with the opposite limb during a uni-
lateral task. Another example is co-contraction, a well-
established clinical phenomenon in hemiparetic stroke
patients [Knutsson and Richards, 1979], whereby firing
from the antagonist muscle impedes voluntary movement
[Lamontagne et al., 2000]. Co-contraction exists when
patients have difficulty engaging a weak agonist muscle
while inhibiting the antagonist muscle at the same time
[Hammond et al., 1988]. A recent study of chronic stroke
survivors involving EMG outside the MRI scanner and
subsequent fMRI experiments found that movement disor-
ders are likely to confound interpretation of clinical fMRI
[Luft et al., 2005].
Preliminary to such clinical fMRI applications, the cur-

rent work describes initial implementation and validation
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of prototypical simultaneous EMG and fMRI. Data were
acquired for three different muscles (ankle, wrist, and fin-
ger) and different postprocessing strategies were eval-
uated. An additional representative demonstration of si-
multaneous EMG and fMRI during ankle dorsiflexion
among a cohort of healthy participants was used to illus-
trate how EMG data can help to inform interpretation of
brain activity. These improved fMRI results are supported
by numerical simulations that help to characterize the
influence of onset and duration of the motor task on fMRI
statistics over a range of experimental designs.

MATERIALS AND METHODS

Aspects of the methodology were tested in three parts.
1) Components were assembled to enable EMG recording
from within an MRI scanner using optoelectronics. It was
identified that the most critical component within this ap-
paratus was the preamplifier. Therefore, experiments using
a phantom were performed to test performance character-
istics of three different preamplifiers. 2) Simple visually
cued, motor event-related fMRI experiments of the human
ankle (n ¼ 12), hand (n ¼ 3), and wrist (n ¼ 3) were per-
formed to assess the quality of EMG during fMRI, and to
determine the best EMG postprocessing strategy. Using
the ankle EMG and fMRI data, an analysis was performed
to determine whether timing information provided by
EMG was useful for augmenting fMRI analysis. 3) Simula-
tions were performed to determine the effect of i) task
onset and ii) task duration on the statistical significance of
an fMRI voxel time series. The simulations were per-
formed to investigate the importance of characterizing the
timing of behavioral responses for a variety of task dura-
tions, and particularly to provide broader context on the
usefulness of EMG-derived timing information for event-
related fMRI experiments involving motor function.

Experiments

Part 1: Preamplifier characterization

Surface EMG electrodes (active, ground, and reference)
were connected to a preamplifier, multiplexer, and electro-
optic conversion unit positioned inside the MRI room. The
unit was positioned on foam to minimize the effects of
vibration on the internal electronics at high magnetic field.
Fiber optic signals passed through a waveguide out of the
magnet room, where secondary amplification and low-pass
filtering occurred (high-frequency cut-off: 80 Hz). Three
slew-rate and band-limited preamplifiers (INA126EA,
Texas Instruments, Dallas, TX) were designed by an engi-
neer experienced with fMRI-compatible EEG equipment
fabrication (J.R.I.) and subsequently tested within the over-
all apparatus (preamplifier #1, bandwidth 0.5–80 Hz, gain
1440; preamplifier #2, bandwidth 15–80 Hz, gain 880; and
preamplifier #3, bandwidth 33–80 Hz, gain 780). These
bandwidth characteristics were altered by changing the ca-

pacitance values for a second stage operational amplifier
(LT2079CS, Linear Technology, Milpitas, CA; 0.33 mF, 0.01 mF,
0.0047 mF, for preamplifiers 1, 2, and 3, respectively). Out-
side the magnet room the optical signals were de-multi-
plexed and converted back to voltage values and digitized
at 1,000 Hz, using custom LabVIEW software (National
Instruments, Austin, TX) capable of 333 kilo-samples/s
(16 bit) and absolute accuracy of 0.8 mV for 5 V range.
Although the current work focuses on ‘‘single-channel
EMG’’ based on three electrodes, the entire system was
configured for 8-channel recording.
To characterize the preamplifier designs, the EMG elec-

trodes were placed in a phantom (saline bath) and posi-
tioned along the midline of the MRI scanner bed. Baseline
EMG signal contamination due to the fMRI acquisition
was measured at sequential z distances along the scanner
bed away from the isocenter position, z ¼ 0 cm. During
preliminary testing, changing the lateral placement of elec-
trodes (i.e., in the x direction) had no effect on signal con-
tamination levels. Standard deviations of the signal record-
ings were calculated based on four repeated measurements
at z ¼ 75, 85, 95, 105, 115, and 125 cm from the isocenter,
representing the approximate range of locations for meas-
uring EMG from muscles of the hand, finger, or foot.
Because all three preamplifiers inherently had different
gain and bandwidth ranges, standard deviation values
were normalized for gain as measured from a reference
40 Hz sine wave. Scan parameters were the same as those
for ankle dorsiflexion fMRI (see below).

Part 2: Simultaneous EMG and fMRI experiments

Ankle dorsiflexion. Using an established event-related par-
adigm [MacIntosh et al., 2004], 12 volunteer participants
(seven men, five women, age range: 21–35 years, mean: 26
years) performed right ankle dorsiflexion, during which
surface EMG was measured with a pair of electrodes
located over the tibialis anterior (TA) and the ground elec-
trode located over the tibia bone. The preamplifier was
positioned between the legs. Participants received a visual
cue that instructed them to perform a unilateral dynamic
contraction for 1 s at �50% of their maximum voluntary
contraction. The experiment was 310 s in duration and
consisted of 15 muscle contractions occurring at intervals
of 20 s. Three participants were tested twice using two
preamplifiers, whereas the remaining participants were
tested only once, for a total of 15 fMRI sessions involving
the 12 participants. Prior to fMRI scanning the quality of
the EMG signal was assessed; participants practiced mak-
ing brief contractions and performed a maximum volun-
tary contraction for reference. To ensure data synchroniza-
tion, EMG acquisition software triggered the scanner.

Index finger abduction. Using the same paradigm and
method as above, three participants performed abduction
of the right index finger for 1 s while EMG signals were
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measured from the first dorsal interosseous, labeled here
as index abductor (IA).

Wrist maximum flexion. Using the analogous paradigm
and method, two participants (two men, ages: 25, 27) per-
formed a maximum (100%) right wrist flexion for 1 s while
EMG measured muscle activity from the flexor digitorum
(FD). One participant was tested twice using different pre-
amplifier configurations for a total of three fMRI sessions
involving these participants. During IA and FD sessions
the preamplifier unit was placed on the patient bed on the
right side of each participant.
In all cases fMRI experiments involving humans were

performed with approval from the research ethics board at
Sunnybrook Health Sciences Centre and with the informed
consent of the participants.

EMG Postprocessing: Component Analysis

Denoising Techniques

A major contribution to contamination in EEG signals
arising from fMRI occurs at frequencies that correspond to
the imaging repetition time (TR) and its harmonics [Hoff-
mann et al., 2000]. Bandpass or notch filtering techniques
are insufficient to remove these frequency components
from the data. Guided by this insight and with the goal of
maximizing EMG muscle signals, two alternative compo-
nent analysis techniques were investigated to separate
fMRI-induced contamination from EMG muscle signals of
interest: 1) PCA, and 2) ICA ‘‘seeded’’ by PCA, as is per-
formed customarily.
Component analysis on EMG data was performed after

separating the recording into its constituent 15 trials of 20
s duration, time-locked to the fMRI acquisition. The multi-
ple trials were treated as repeated measures, creating the
redundancy requirement essential for feature extraction
techniques. Using a PCA-equivalent singular value decom-
position (Matlab, MathWorks, Natick, MA), 15 ranked PCs
were generated. From visual inspection of the PCs it was
clear that either the first two or three PCs contained the
highly structured fMRI-induced signal contamination that
explained a significant portion of the data variance. EMG
data were reconstructed after using an automated power
spectrum calculation to select those PCs that reflected the
signal contamination (see below). A fast ICA algorithm
[Hyvarinen and Oja, 2000] was subsequently used to rep-
resent the data as 15 linearly independent components,
using the PCA result as the starting input.
In either case, PCs or ICs associated with EMG signal

content were selected automatically. The mean power and
standard deviation were calculated for each component
and expressed as a ratio. If this ratio was less than the av-
erage across all the components by an amount greater than
1 SD, then the component was removed. The remaining
components were then used to reconstruct the EMG data.
This technique is suitable for separation of highly periodic
components from the muscle EMG signals of interest,

because muscle EMG signals are stochastic and have much
broader power spectra compared to highly repetitive and
structured fMRI-induced signal contamination, which
resembles a comb-function in frequency space.
Subsequent to component analysis (ICA or PCA), EMG

data were rectified and filtered using a second-order low-
pass Butterworth filter (5 Hz). The effectiveness of PCA
and ICA was evaluated by computing the contrast ratio
(CR) for each participant, defined as the average EMG sig-
nal during the movement period divided by the average
value during the rest period. Raw CR values for unpro-
cessed data provided a means to characterize the potential
improvements associated with using either component
analysis technique. Larger CR values indicated better dif-
ferentiation between task and baseline periods.

MRI Acquisitions and Analysis

The MRI data were collected using a research-dedicated
3.0 T whole-body scanner (3T94 hardware, VH3/M4 soft-
ware, General Electric Healthcare, Waukesha, WI). For
ankle fMRI, coronal anatomical images were collected
using a T1-weighted gradient echo acquisition with the
following imaging parameters: TR/TE/FA/bandwidth ¼
7.1 ms/3.1 ms/158/31.5 kHz. Coronal T2

*-weighted func-
tional images were collected using single-shot spiral-in,
spiral-out k-space trajectories (spiral IO). As is described
elsewhere [Glover and Thomason, 2004], spiral IO data
with signal-weighted averaging increases the signal-to-
noise ratio appreciably compared to conventional spiral-
out sequences without sacrificing temporal resolution. The
prescribed functional volume consisted of 14 slices, cen-
tered about the central sulcus, with a 5 mm slice thickness
in the coronal plane with the following imaging parame-
ters: TR/TE/FA ¼ 1000 ms/30 ms/508, 64 � 64 matrix
size after regridding, field-of-view (FOV) ¼ 20 cm. Identi-
cal scan parameters were used for finger and wrist fMRI
experiments, although in these cases axial slices were pre-
scribed.
Reconstructed fMRI data were coregistered and inspected

for excessive head motion using freely available software,
AFNI [Cox, 1996]. Plots of estimated head motion sug-
gested that no participants moved more than 1 mm during
the course of data collection. Images were filtered in time
using a 3-point median filter followed by spatial smooth-
ing using a Gaussian kernel with a full-width at half-maxi-
mum of 4 mm.
For the ankle dorsiflexion experiment, activation maps

were generated using two similar methods. The first method,
referred to as Visual cue-guided analysis, involved creat-
ing a hemodynamic reference waveform that was opti-
mized for the maximum detection of neuronal activity (see
Fig. 7A for gamma variate function; based on visual cue
and one TR interval). The second method, referred to as
EMG-guided analysis, used a similar waveform but incor-
porated the average filtered EMG waveform to set the sub-
TR time values for the task onset and cessation, with tem-
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poral precision on the order of a tenth of a second. There-
fore, the brain activity for each participant was modeled
using personalized hemodynamic responses as specified
by their average EMG burst information. Both waveform
models were fitted separately to the fMRI time series data,
on a voxel-by-voxel basis, with activation expressed as a t-
statistic. An activation threshold was set at t . 4.0 produc-
ing an uncorrected P-value of 10�4. Based on Monte Carlo
simulations provided within AFNI, the statistical threshold
utilized corresponds to an estimated corrected P-value of
0.002 with a cluster size of 4 voxels. The number and dis-
tribution, expressed as z-scores, of voxels that reached sig-
nificance was used to compare the two fMRI analysis
methods.
To provide additional support for this methodology, the

two reference waveforms were orthogonalized for each
ankle dorsiflexion participant by means of singular value
decomposition. This yielded first a ‘‘parallel’’ component
waveform representing common features between the Vis-
ual cue and EMG-guided model time series, and secondly
an ‘‘orthogonal’’ component waveform representing their
distinct features. As has been described elsewhere [Buchel
et al., 1998], a general linear test was then used to charac-
terize the effects of using the two different models.
Activation maps were transformed to Talairach coordi-

nate space, then blurred to 6 mm and normalized to facili-
tate a mixed-effects analysis of variance (ANOVA) group
analysis. Group-wise activation maps were generated
using 1) Visual cue-guided analysis; 2) EMG-guided analy-
sis; and 3) a contrast map to determine statistical differen-
ces between 1) and 2). A similar ANOVA was performed
using the maps generated from the orthogonalized wave-
forms.

Numerical simulation

Using Matlab, simulated fMRI signals (see Fig. 7A) were
generated by adding white and low-frequency noise to a
series of waveforms created from two-parameter gamma-
variate hemodynamic responses (h(t) ¼ t8.6exp(-t/0.547))
[Cohen, 1997] and task durations of 1, 2, 5, 10, and 20 s.
The simulated data were generated to be of similar quality
as observed in the fMRI experiments described above. The
time series were 310 s in duration with percent signal
change of 1.2% on average (range: 0.85–2.23). Reference
waveforms were first made by varying the Model Shift, d
(0–3 s) with respect to the fMRI signals generated, and
then by varying the Model Duration, D, from 1 to 20 s. One
thousand iterations were used to produce an average cor-
relation coefficient, r, between the simulated voxel time se-
ries and the reference waveforms, with noise levels that
ranged between 0.263–0.724%. Tests were performed to
evaluate the influence of d on r, for each D, to characterize
the sensitivity of the model onset times for each of the task
durations. Next, to evaluate the effect of delays in both
task onset and offset, D was increased by 10% and the cor-
relation curves, r vs. d, were generated anew.

RESULTS

Part 1: Preamplifier Characterization

The EMG data measured from a saline bath during fMRI
acquisition demonstrated that the signal contamination in
each preamplifier strongly depended on z-position. Figure
1 shows standard deviation values (normalized for gain)
of the signal contamination as a function of z-position. At
z ¼ 115 cm, an approximate location of the lower limb
during TA EMG, all three preamplifiers showed minimal
fMRI-induced signal contamination. A marked difference
was observed at locations that approximated wrist posi-
tions (75–85 cm away from isocenter): in particular, data
from preamplifier 1 show an �260% increase in signal con-
tamination compared to preamplifiers 2 and 3. Recording
from multiple channels did not influence the EMG data
quality (data not shown).

Part 2: Simultaneous EMG and fMRI Experiments

For all subsequent simultaneous EMG and fMRI experi-
ments involving humans, the EMG data were processed
using the methods previously described and average EMG
burst onset and offset times, relative to the visual cue,
were generated for each participant (Table I). The average
EMG burst from all the participants and muscles began
1.0 6 0.28 s after the visual cue and ceased 2.6 6 0.58 s
after the visual cue. Figure 2A shows excerpts of raw
ankle, index finger, and wrist EMG muscle bursts during
fMRI for one participant. The DC-offset and EMG burst
asymmetry reflects bias voltage of the preamplifier in the
MRI environment. Structured fMRI-induced noise is reduced

Figure 1.

Preamplifier characterization. Gain-normalized amplitude of

fMRI-induced signal contamination in EMG data as a function of

distance from the magnet iso-center (z ¼ 0 cm) for the three

preamplifier configurations. Error bars show the variance associ-

ated with four repeated measurements in a saline bath.
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significantly by postprocessing (Fig. 2B). For the ankle and
wrist, average EMG data after ICA and rectification clearly
illustrate the removal of fMRI-induced signal contamina-
tion and the onset and cessation of the contraction. Data
quality for the wrist was poorer in this example.
Considering the ankle EMG data, Figure 3 shows a sig-

nificant improvement in the CR across participants
between raw CR and PCA CR values (P , 0.0002). The
next processing step from PCA to ICA produced a small
but still significant difference in CR values (P , 0.02). The
PCA method removed 88 6 9.0% of the variance and kept
12 6 0.38%, whereas ICA removed an additional 2.2 6
0.60% after PCA and kept 9.8 6 0.77%. Although fewer
participants performed index abduction, both PCA and
ICA methods appear to provide an analogous improve-
ment in CR value. In agreement with Figure 2, EMG data
for the wrist were not salvageable over three measure-
ments.
The TA EMG and fMRI data were used to perform a

more extensive fMRI analysis examining the utility of the
EMG data for improving interpretation of brain activity. In
agreement with previous studies [MacIntosh et al., 2004;
Sahyoun et al., 2004], areas of activation observed by fMRI
included M1/S1, SMA, SII, as well as contralateral thala-
mus, putamen, and ipsilateral cerebellum. For example,
Figure 4 shows an activation map and the corresponding
EMG data for a single participant. For comparison with

the EMG data, BOLD percent signal change time series
data are also shown for the contralateral SMA, SII, M1,
and ipsilateral cerebellum. The hemodynamic responses
for these regions vary in their peak amplitudes, but are
coupled tightly with EMG muscle bursts.
T-statistic activation maps from all the TA ankle fMRI

sessions were converted to Z-score using AFNI. Figure 5
shows the average, significant whole-brain Z-score histo-
grams. The two curves illustrate the difference between
the Visual cue-guided and the EMG-guided methods of
fMRI analysis. The 95% confidence intervals for each curve
demonstrate the overall benefit of incorporating behavioral
information into the fMRI analysis, namely, that the voxel
count increases significantly. In more detail, Figure 6 shows
the results of a mixed-effect ANOVA contrast between the
two fMRI analysis methods. The EMG-guided analysis
recovered more of the underlying brain activity in several
regions: ipsilateral cerebellum, bilateral secondary somato-
sensory cortex (SII), supplementary motor area (SMA),
ipsilateral thalamus (P , 0.0002), and bilateral insula (P ,
0.002). Conversely, there were no regions identified with
the Visual cue-guided . EMG-guided contrast. Group
results from the orthogonal waveform activation maps

TABLE I. Average electromyography (EMG) burst onset

and offset after the visual cue for each participant,

session, and muscle measurement

EMG Burst On (s) Off (s)

TA1 0.5 2.5
TA2 1.0 3.0
TA3-1 1.2 2.0
TA3-2 1.0 3.0
TA4-1 1.0 3.0
TA4-2 1.0 2.6
TA5-1 0.8 1.6
TA5-2 0.8 2.2
TA6 1.1 3.1
TA7 1.0 2.2
TA8 1.4 2.8
TA9 1.5 3.2
TA10 1.4 3.2
TA11 1.0 2.4
TA12 0.8 2.0
IA1 0.5 2.3
IA2 1.0 2.1
IA3 0.8 1.7
FD1 1.5 4.0
FD2-1 1.0 2.6
FD2-2 1.1 2.8
Mean 1.0 2.6
Std 0.28 0.58

TA, tibialis anterior; IA, index abductor; FD, flexor digitorum. The
average task duration was 1.6 6 0.64 s. Some participants partici-
pated in two fMRI sessions.

Figure 2.

EMG during fMRI. A: Sample EMG time series excerpt from

three muscle groups: right tibialis anterior (TA, top), right index

abductor (IA, middle), right flexor digitorum (FD, bottom). fMRI-

induced noise is evident in all three traces to varying amounts,

and is a function of multiple parameters including distance of the

leads from the isocenter, electrode placement, and skin imped-

ance. B: Processed EMG data for the same three muscles after

PCA, rectification, and low-pass filtering clearly delineates mus-

cle burst for TA and IA, whereas results for FD are poorer. Each

row represents data from a different participant. The arrows

represent the timing for the visual cue.
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produced significant regions that were comparable to those
shown in Figure 6, namely: bilateral SII, right thalamus,
and right insula (P , 0.01; data not shown). The implica-
tion is that these brain regions are more sensitive to small
timing issues that are not captured in the Visual cue-
guided approach.

Numerical Simulation

To place the observed voxel count improvements associ-
ated with the EMG-guided analysis method in better con-
text, the results of numerical simulations are shown in Fig-
ure 7. The family of curves in Figure 7B shows the average
correlation coefficient, r, calculated between the simulated
fMRI time series data and a model of the hemodynamic

response (Fig. 7A) for Model Duration D ranging from
event-related design to block design. Black curves show
how r varies if the Model Shift, d of the behavioral response
is estimated incorrectly. Within error, each of these curves
exhibit maxima for d ¼ 1 s, the true task onset reflected in
the simulated fMRI data. Due to the presence of noise, the
maximal r value increases as D increases. An additional
feature of these curves is that the dependence of r on d is
much more ‘‘peaked’’ for short duration tasks, whereas for
D ¼ 20 s, varying d has no influence on the correlation
coefficient, within error. Next, the gray curves show the
combined effect of a mismatch in both d and D, for a 10%
discrepancy between the duration of the modeled behav-
ioral response and that reflected in the simulated fMRI
data. The mismatch in D results primarily in a shift of the
local maximum in r to smaller values of d. This effect
occurs because the modeled hemodynamic response (Fig.
7A) has an asymmetric shape, with a faster rise time and a
slower decay. In Figure 7C, the black symbols and error
bars indicate the improvement in r that is obtained with
increasing D for the case where both Model Shift and Model
Duration are estimated appropriately. The gray symbols
and error bars show the effect of 1-s error in Model Shift
coupled with a 10% error in Model Duration. In particular,
the datum shown for D ¼ 1 s approximates the situation
observed experimentally when analyzing the ankle dorsi-
flexion fMRI data using the visual cue-guided approach.
In Figure 7B,C there are marked differences in the black
and gray curves and symbols, respectively, for D less than
�2 s (event-related designs), whereas there are no differen-
ces within error for larger D values (including block
designs).

DISCUSSION

Methods have been designed, developed, and validated
for performing EMG and fMRI simultaneously. A careful,

Figure 3.

Contrast ratio (CR) for raw and processed EMG signals. Signifi-

cant incremental improvement in EMG signal contrast was

observed when the raw EMG signals were processed with both

principal component analysis (PCA) and independent component

analysis (ICA). Data points represent individual participants

(symbols: circle ¼ TA, square ¼ FD, x ¼ IA; **P < 0.0002, *P <
0.02).

Figure 4.

EMG and fMRI results from a representative participant. Left: fMRI results show areas activated

as a result of brief ankle dorsiflexion movements. Right: associated BOLD fMRI time series data

from four regions of interest. Processed EMG data (ICA + rectification + low-pass filter) are

shown below in gray. SMA: supplementary motor area; SII: secondary somatosensory cortex;

M1: primary motor cortex.

r Simultaneous EMG and fMRI r

r 841 r



multifaceted approach was undertaken to address the diffi-
cult problem of fMRI-induced signal contamination in
EMG data. First, optoelectronic hardware was assembled
to enable effective signal transmission without generating
radiofrequency interference during fMRI. Second, appro-
priate preamplifiers were selected to minimize fMRI-
induced signal contamination, with the EMG system’s
highpass cut-off providing the most effective means to
reduce contamination. Third, it was shown that the signal
contamination is positional and depends on the longitudi-
nal (z) distance from the magnet isocenter. Fourth, compo-
nent analysis approaches were shown to improve the qual-
ity of the EMG data for ankle and index finger movement,
providing further evidence of diverse applications of either
PCA [Benar et al., 2003; Negishi et al., 2004] or ICA [Sri-
vastava et al., 2005] for denoising biopotential signals dur-
ing fMRI. Finally, this work adds to the emerging technol-
ogy, recently described by others [van Duinen et al., 2005],
that attempts to use EMG to improve motor fMRI experi-
ments. Research that is pertinent includes the evaluation of
the relaxation phases in dynamic motor tasks [Toma et al.,
1999] and muscle fatigue [Liu et al., 2003].
Regarding postprocessing of the EMG data, the use of

component analysis techniques as reported in this work is
relatively novel. Typically, component analysis techniques
attempt to isolate structured features in the data from
noise sources [Martel et al., 2001; Thomas et al., 2002].
Here, it was recognized that stochastic EMG muscle sig-
nals could be isolated from fMRI-induced structured noise
(i.e., the opposite goal). This is achievable with the current
fMRI-compatible EMG system because it operates with
low background white noise. The preamplifier was posi-
tioned close to the muscle of interest (�15 cm). The short
lead wires reduced fMRI-induced signal EMG contamina-
tion and minimized motion artifact in the EMG data. Dur-
ing ankle dorsiflexion fMRI, the fast PCA algorithm

removed the majority of the structured noise in the EMG
time series variance (89%) effectively. ICA removed an
additional 2% of the overall variance.
EMG CR values increased incrementally in all partici-

pants through the use of PCA and then ICA. However, we
did observe variability in performance across muscle
groups and participants. This is likely explained by the rel-

Figure 5.

Average Z-score histograms across participants and sessions

during ankle dorsiflexion fMRI (Z > 3.951, P < 0.01; EMG-guided,

solid black; Visual cue-guided, solid gray). Dark and light gray fills

correspond to the 95% confidence intervals for EMG-guided and

Visual cue-guided analysis, respectively.

Figure 6.

Mixed-effect ANOVA group contrast map between EMG-guided

and Visual cue-guided fMRI analysis (P < 0.0002). Regions such as

bilateral secondary somatosensory cortices (SII), cerebellum

(cereb), and right thalamus (thal) were detected more readily

using EMG-derived information. No significant voxels were found

for the reverse contrast.
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ative contribution of muscle activity and fMRI-induced sig-
nal contamination in the EMG recordings. Both component
analysis techniques are less effective at low values of CR
(when the structured noise component is very large).
Across muscle groups, variability in CR is explained pri-
marily by the z-positional dependence of the EMG mea-
surement. Across participants, the variability is a reflection

of differences in limb lengths, electrode placement, and
impedance differences between participants.
Our automated component analysis EMG denoising

technique is comparable to the average subtraction method
first presented by Allen et al. [2000]. The PCA method
transforms the EMG data matrix into ranked orthogonal
time series vectors. In the current work, removing the first
few PCs that are dominated by fMRI-induced signal con-
tamination likely has a similar effect as removing the aver-
age artifact signal, a procedure that works for both EEG
[Allen et al., 2000] and EMG data [van Duinen et al., 2005].
Unfortunately, in the current work imaging acquisition
triggers were not collected, but are necessary to time-lock
the EMG data to the fMRI and remove the average artifact
signal. In addition, the Allen et al. method relies on elec-
trophysiological data collection at a high sampling rate
(i.e., 5 kHz). The EMG sampling rate of 1 kHz used in the
current work is not likely to sample the complex fMRI-
induced signal contamination with sufficient precision to
provide a useful subtraction.
The EMG signal provides a reasonably direct measure-

ment of muscle motor units as part of the peripheral nerv-
ous system. It is considered the gold standard for assess-
ment of movement disorders, which explains why others
have used EMG prior to fMRI of stroke patients to charac-
terize better patient behavior [Loubinoux et al., 2003], such
as mirror movements or co-contraction. EMG muscle tim-
ing can also be used in fMRI analysis to improve detection
of neuronal activity. Activation shown in Figure 5 reflects
an overall increase in sensitivity to the motor network for
voluntary unilateral ankle dorsiflexion. This observation is
complementary to a primate study in which primary
motor cortex (M1) EEG signals were found to be strongly
correlated with that which would be predicted post-hoc by
the EMG output [Morrow and Miller, 2003].
We observed that the detection of neural activity in the

ipsilateral cerebellum was significantly improved by use of
EMG timing information. One possibility to explain this
result lies in the idea that cerebellum activity is tightly
coupled to movement timing. Complementary findings
come from a study that demonstrated that firing rates from
populations of Purkinje cells were coupled to movement
durations during eye movements in monkeys [Thier et al.,
2000]. Furthermore, another region of interest that was bet-
ter revealed when making use of EMG information was
the secondary somatosensory cortex, SII. Others have
found that SII is sensitive to attention [Steinmetz et al.,
2000] and this is a potential explanation for why precise
knowledge of movement execution increases the level of
significance of SII activation.
Results from numerical simulations investigating the

influence of Model Shift and Model Duration provided addi-
tional insight regarding how knowledge of behavior is
likely to influence event-related fMRI designs, such as
those described here, compared to the more common block
fMRI designs. Although the simulations involve calcula-
tion of the average correlation coefficient, a statistical pa-

Figure 7.

Part 3–fMRI simulation on effects of model shift and duration.

A: A library of reference hemodynamic waveforms was gener-

ated by altering two model parameters, the model shift, d, and

the Model Duration, D, and convolving the task waveform with a

hemodynamic response function. Model Shifts varied between 0–

3 s while Model Durations were 1, 2, 5, 10, and 20 s. B: Correla-

tion coefficient, r, curves are plotted as a function Model Shift, d
(error bars denote standard deviation). The maximum r is de-

pendent on the optimal onset time, doptimal, and the curvature of

the r curves illustrates the variability in sensitivity for the differ-

ent Model Durations. Mismatch conditions, whereby the Model

Duration is overestimated by 10% of the true duration are shown

in gray. C: Evaluating r under the optimal condition (black) and

under the mismatch condition (gray), i.e., 10% D mismatch and

d ¼ doptimal + 1 s, shows a reduction in the expected correlation

coefficient for brief tasks, but no effect within error for longer,

block-design tasks.
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rameter that does not entirely reflect the observed differen-
ces in voxel counts for Visual cue-guided and EMG-guided
analysis (Figs. 5, 6), the simulations are nevertheless in-
formative. The combined effect of a 1-s discrepancy
between the actual onset of motor behavior and the Model
Shift time, and a 10% discrepancy between the actual dura-
tion of motor behavior and the Model Duration produced a
sizable drop in the correlation value for brief tasks, i.e., 1
or 2 s, but showed no effect for longer task durations.
These effects are expected, given that modeling errors aris-
ing from failing to account for reaction time are significant
on the time scale of hemodynamic responses generated in
event-related experiments, but are much less important for
the more lengthy elevations in fMRI signal generated in
block designs. EMG is a useful independent measurement
to quantify such behavior, especially during movements
that may be complicated and involve coordination of mul-
tiple muscles.
It is also worth noting that the use of EMG measure-

ments to refine fMRI analysis does not ‘‘create brain activ-
ity where none existed’’ but rather helps to reveal more
aspects of the underlying neuronal activity contained within
the fMRI signals. Furthermore, methods used to refine the
fMRI design matrix are not restricted to EMG. Other inde-
pendent measurements have been used to help character-
ize behavior and improve interpretation of fMRI results,
such as measuring eye motion [Connolly et al., 2002], limb
position [MacIntosh et al., 2004], or reaction time. Differen-
ces in reaction times on the order of just 100 ms were used
to modify the hemodynamic reference waveform for a deci-
sion task and to improve fMRI activation maps [Bellgowan
et al., 2003].
The developed system has the capability to provide

additional behavioral measures by making use of all 8 par-
allel channels for multiple muscle readings or other biopo-
tentials. Indeed, some preliminary work has been con-
ducted to augment the current system with the addition of
a skin conductance response (SCR) channel, since this psy-
cho-physiological correlate of attention, arousal, and effort
may be relevant in motor-learning studies [Mraz et al.,
2005] or in studies of impaired motor behavior involving
stroke patients with hemiparesis.
Future applications of this system include addressing

basic science questions as well as questions that are clini-
cally motivated. For instance, making use of the multiple
muscle measurement capability there is the potential to
refine somatotopic mapping by using the EMG informa-
tion to set the temporal boundaries in tasks that involve
sequential movements, such as initiating flexion then exten-
sion about a joint. Second, EMG can be used potentially as
a form of biofeedback to the participant to affect the tem-
poral and spatial features of the fMRI signal.
Finally, this system will be particularly useful in stroke

recovery fMRI studies [Johansen-Berg et al., 2002; Staines
et al., 2001; Ward et al., 2003]. Although the present study
focused primarily on the benefits of timing information
obtained from EMG in event-related fMRI, EMG ampli-

tude information can also assist in the interpretation of
fMRI signals generated in the presence of stroke-related
symptoms such as mirror movements, co-contraction, and
excessive muscle tone. The fMRI-compatible EMG system
described in this work is likely to be feasible for stroke
patients that are able to generate a sizeable EMG burst.
However, the ability to detect smaller amplitude muscle
signals during fMRI is important since weakness also char-
acterizes many hemiparetic patients. Further work to
assess the range of EMG activity is warranted both to
investigate stroke patients and issues of intersubject vari-
ability.
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