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Abstract

Proliferation is an important part of cancer development and progression. This is manifest by 

altered expression and/or activity of cell cycle related proteins. Constitutive activation of many 

signal transduction pathways also stimulates cell growth. Early steps in tumor development are 

associated with a fibrogenic response and the development of a hypoxic environment which favors 

the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells 

may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may 

be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by 

promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering 

autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds 

(e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, 

genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways 
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that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, 

phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated 

proteins, as well as androgen and estrogen receptor signaling). This data, in combination with 

bioinformatics analyses, will be very important for identifying signaling pathways and molecular 

targets that may provide early diagnostic markers and/or critical targets for the development of 

new drugs or drug combinations that block tumor formation and progression.
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1. The centrality of cell proliferation as a target in carcinogenesis

The cancer cell embodies characteristics that permit survival beyond its normal life span and 

to proliferate abnormally. Cancer therapy, involving cytotoxic drugs, kills cells that have a 

high basal level of proliferation and regeneration. While this type of therapy targets tumor 

cells, it affects rapidly proliferating, nontumor cells in the skin, hair, and epithelium of the 

gastrointestinal tract, accounting for the high level of toxicity associated with such 

treatments. Growth of normal tissue is tightly regulated while this regulation is lost in tumor 

cells. Lack of normal growth control is not only operative in early tumorigenesis but also 

during tumor metastasis. Thus, there is much to be learned from studies that address how 

and when abnormal growth begins, and then to use this knowledge to identify novel 

therapeutic targets and approaches that would more specifically treat cancer cells without 

damaging the normal host cells.

Carcinogenesis is a multistep process in which changes in tissue architecture and the 

formation of preneoplastic nodules precede the appearance of cancer. These alterations are 

associated with changes in cell phenotype that include epithelial to mesenchymal transition 

(EMT) and cell migration, resulting in local regions of hypoxia that promote the survival and 

growth of tissue stem cells [1-5], as well as angiogenesis [6-9] (Table 1). Autophagy also 

promotes the survival of preneoplastic and tumor cells under stressful conditions. While the 

growth and survival of normal cells are under partial control from growth factors and 

hormones, alterations in signaling pathways, resulting from mutations and/or epigenetic 

changes, renders cells resistant and independent of these pathways. Such changes promote 

survival and growth both by constitutively stimulating pathways that favor proliferation [10], 

and by inhibiting and/or overriding apoptotic pathways. Initially, altered signaling pathways, 

as well as changes in the metabolomics profile, epigenetically modify the patterns of gene 

expression in the cell, and as such are therapeutically reversible (Table 1). In contrast, tumor 

progression proceeds by “driver” mutations that are more difficult to target 

pharmacologically. Thus, elucidation of the underlying epigenetic mechanisms responsible 

for these alterations will provide meaningful targets for the development of novel 

therapeutics prior to or at the earliest stages of malignant transformation.

To facilitate a better understanding of the early changes seen in carcinogenesis, this review 

presents discussion of the major pathways, disruption of which promote unregulated 
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proliferation of cancer cells. This review focuses on changes in tissue architecture (EMT and 

migration), formation of preneoplastic nodules, development of hypoxia, survival and 

growth of cancer stem cells, autophagy and growth factor independent proliferation (Table 
1). Each section attempts to identify the “best” molecular targets (e.g., receptors, signaling 

molecules, etc.) that might be exploited therapeutically. The “best” targets were chosen 

based upon their altered expression/function that promoted proliferation in many different 

human cancers. Additional questions include: Does loss of a target prevent tumor initiation 

or block tumor maintenance? What is the effect of global loss of a target in other tissues? 

Will there be off target effects due to additional functions and/or because of a high degree of 

homology with other proteins? Many of these targets are pleotropic, regulating different 

pathways and as such their targeting might abrogate additional required hallmarks. At the 

end of this review, there is a discussion of natural products that are likely to be effective 

against these molecular targets and pathways, which may be useful in delaying the onset of 

cancer and/or reversing cancer cell proliferation, with reduced associated toxicity. Many 

natural products have much lower toxicity than compounds or derivatives obtained from 

chemical libraries, suggesting that their further development could provide distinct 

advantages.

2. How does EMT contribute to tumor proliferation?

When EMT occurs in adult tissues in response to injury or during tumorigenesis, epithelial 

cells change morphological appearance, from an ordered structure with apical and basal 

polarity to a less ordered, migratory fibroblastic shape. The Snail family of transcription 

factors (Snail1/Snail and Snail2/Slug) is closely associated with EMT [11], because they 

suppress epithelial cadherin (E-cadherin) expression [12-14], which normally facilitates cell-

cell interactions, providing polarity cues and preventing dissemination. Snail associated 

EMT is normally under stringent regulation [15-17], but when that is lost, cancer may 

appear [17-19]. Increased expression of Snail and Slug protects cells from death induced by 

the loss of survival factors or by apoptotic stimuli [15,20-24]. Elevated Snail1/2 results in 

increased protection from DNA damage [17,20,21], increased resistance to 

chemotherapeutic agents [25] and radiation therapy. Snail and Slug may also affect a cell's 

response to genotoxic stress, increasing DNA damage, which then may contribute to cancer 

development (Fig. 1).

Snail1 induced E-cadherin depletion is associated with the acquisition of invasive properties 

in several epithelial cell lines [12,26,27] and in tumors [18,19]. Snail expression also 

correlates with poor survival in human cancer [30-33]. Cells expressing Snail1 typically 

have an undifferentiated phenotype [18], suggesting a potential role in “stemness” and the 

genesis of cancer stem cells (CSC) (described below). CSCs are resistant to cell cycle arrest 

or senescence thereby accumulating oncogene induced DNA damage and mutations that 

guide malignant transformation. Cells undergoing EMT, and cells with properties of CSCs 

are resistant to typical cancer intervention strategies, tumor relapse following therapy, and 

metastasis. However, the expression of selected microRNAs (miRNA) that regulate gene 

expression in these cells can be altered by natural products, such as curcumin and 

epigallocatechin-3-gallate (EGCG) [34] (see below), suggesting a fresh therapeutic approach 

that needs to be developed in the future. EMT may occur prior to tumor appearance, 
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resulting in aberrant tissue architecture and the development of hypoxia. In addition, CSCs 

drive tumor formation. These events further suggest the importance of these targets in cancer 

chemoprevention.

3. How does hypoxia contribute to tumor proliferation?

3.1 Hypoxia inducible factors [HIFs]

Cancer development results from the selection of cells with mutation(s) that provide survival 

and proliferative advantages. Normal barriers to proliferation are overcome as clones adapt 

to an ever changing hostile microenvironment, where low oxygen tension, low glucose 

levels, and an acidic extracellular pH (all of which increase genetic instability) are found. 

The hypoxia inducible factors, HIF-1 and HIF-2, are upregulated in response to these 

conditions. This could occur by constitutive activation of PI3K signaling or inactivating 

mutations in, for example, the von Hippel–Lindau tumor suppressor, VHL [35-37], which 

normally deacetylates HIF-1α, leading to HIF-1α polyubiquitination and proteasomal 

degradation [38]. HIFs trans activate genes mediating proliferation, angiogenesis, 

intermediate metabolism (glycolysis) and pH regulation, which promote tumor development 

[39].

HIF-1α stimulates production of growth factors, such as transforming growth factor β (TGF-

β), insulin-like growth factor 2, interleukin-6 (IL-6), interleukin-8, macrophage migration 

inhibitory factor (MIF), and growth factor receptors, such as the epidermal growth factor 

receptor (EGFR), resulting in continuous proliferative signaling. In the hypoxic 

environment, constitutive activation of these signaling pathways (e.g., Ras [1] and PI3K [2]) 

stabilizes HIF-1 and may result in “oncogene addiction” that persists through the transition 

from adenoma to carcinoma. In the case of PI3K, constitutive activation may result from the 

appearance of mutations in tumor suppressor genes (e.g., the phosphatase and tensin 

homolog [PTEN]), from activating mutations in the PI3K complex itself, or from aberrant 

signaling in receptor tyrosine kinases [40]. Elevated PI3K stimulates the mechanistic target 

of rapamycin (mTOR) [35], and ATP production [41,42], both of which support cell 

proliferation. Strategies to block the proliferative effects of hypoxia include the design of 

small molecule HIF inhibitors, by enhanced degradation of HIF-1 via inhibition of heat 

shock protein 90 (Hsp90), or by inhibiting mTOR [43].

The Warburg effect describes the ability of tumor cells to switch from oxidative 

phosphorylation to glycolytic metabolism as their primary energy source. HIF-1 increases 

the expression of glycolytic enzymes and glucose transporters 1 and 3 [1], which facilitate 

glucose uptake necessitated by inefficient glycolysis. HIF-1 channels glucose towards 

glycolysis, and represses mitochondrial respiration, protecting cells from oxidative damage. 

Increased glycolytic metabolism promotes ATP production to sustain cell proliferation in the 

absence of oxygen. The development of glycolytic inhibitors has shown promising results in 
vitro [43]. Energy depletion and hypoxia also suppress mTOR signaling through activation 

of Ataxia telangiectasia mutated (ATM, involved in cell cycle arrest and DNA repair), saving 

on energy consuming protein synthesis and DNA damage responses. Thus, ATM or 

checkpoint 1 inhibitors may also abrogate metabolic adaptation of cells to hypoxia and 

subsequent survival [6,43].

Feitelson et al. Page 5

Semin Cancer Biol. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HIF-1α also promotes autophagy, which is a mechanism whereby cells degrade 

macromolecules and organelles, and then reutilize the products for energy production and 

biosynthesis, thereby promoting cell survival. Thus, blocking autophagy via inhibition of 

IRE1 (a serine/threonine protein kinase/endoribonuclease that alters host cell gene 

expression under ER stress) may increase the sensitivity of cells to apoptosis in hypoxic 

environments [43]. Elevated HIF-1 levels may also increase de novo fatty acid synthesis 

[44,45] by upregulation of fatty acid synthase (FAS) transcription. This is mediated through 

sterol regulatory element binding protein 1 via Akt1 activation. Thus, inhibition of FAS or 

HIF-1 might block fatty acid synthesis mediated growth as well.

Despite the acidic pH due to accumulation of lactic acid during hypoxia, intracellular pH is 

maintained near neutral as a result of HIF-mediated up regulation/activation of membrane 

located transporters, exchangers, pumps and ectoenzymes. These include the amiloride 

sensitive Na+/H+ Exchanger, the H+/lactate cotransporter (monocarboxylate transporter, 

MCT4), and carbonic anhydrase (CA) IX and XII [6]. Although specific inhibitors of MCT4 

are not available, disrupting pH homeostasis is justified by the antitumor and antimetastatic 

activity of CA inhibitors in xenografts [43]. Bioreductive agents may also be therapeutically 

useful as long as strategies are applied to increase their extravascular penetration [45]. Thus, 

while HIF-1/2 up regulation is a natural cellular response to hypoxia, this epigenetically 

fuels pathways that promote proliferation, creating an environment where mutation becomes 

more likely. Blocking hypoxia is attractive because it represents a predriver mutation state, 

where reversibility may be more feasible.

3.2 How does hypoxia promote growth in preneoplastic tissues?

Premalignant nodules are mostly devoid of blood vessels which limits the diffusion of 

substrates across the basement membrane from the local blood supply. Adaptation to these 

conditions is critical in the transition from a benign nodule to malignancy. As such, 

carcinoma in situ (CIS) becomes malignant following rupture of the basement membrane 

and invasion into the surrounding tissue, which may be facilitated by increased acid 

production [7]. Hypoxia may promote CIS progression by selecting for cells that are 

resistant to extracellular acidosis and those with upregulated glycolysis. Thus, the transition 

from preinvasive to invasive tumor may be closely linked to the CIS microenvironment [7,8].

In inflammation related carcinogenesis, altered tissue architecture due to necrosis and the 

development of hypoxia attracts inflammatory responses [46]. The latter usually includes 

tumor associated macrophages (TAM) that stimulate tumor proliferation (by promoting 

angiogenesis) and progression (by promoting invasion and metastasis) through the secretion 

of growth factors and cytokines [47,48]. HIF-1α is activated by these proinflammatory 

cytokines, which include tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). 

Proinflammatory cyclooxygenase 2 (COX2) also mediates IL-1β-induced HIF-1α expression 

through production of prostaglandin E2 (PGE2). This leads to activation of the ras-mitogen 

activated protein kinase (MAPK) pathway, which maintains the prosurvival COX2/PGE2 

pathway. Src is another key factor in hypoxia induced vascular endothelial growth factor 

(VEGF) and PGE2-mediated transactivation of EGFR. In addition, β-catenin-HIF-1 

interaction results in the enhancement of HIF-1 transcriptional activity [8,49]. Importantly, 
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HIF-1 is also activated in TAMs under hypoxic conditions [50,51], resulting in the 

stimulation of nuclear factor kappa B (NF-κB), and further inflammatory cytokine 

production, including sustained elevations in HIF-1. This feedback promotes tumor 

progression [52]. Thus, HIFs link hypoxia, chronic inflammation, and tumor progression by 

reprogramming tumor cells, macrophages and other cells during cancer development. 

Therefore, introducing natural compounds that target hypoxia in general, and NF-κB in 

particular, might delay or prevent the onset of dysplasia or/and neoplastic transformation, 

particularly in cell types where HIF promotes early steps of carcinogenesis. In this context, 

the antiinflammatory properties of many natural compounds may be able to attenuate the 

induction of HIF-1 (see below), thereby potentially preventing tumor development.

4. Autophagy and tumor cell proliferation

In normal cells, basal autophagy is a mechanism that maintains cellular homeostasis by 

removing protein aggregates and damaged organelles, whereas starvation induced autophagy 

prolongs cell survival by recycling amino acids and energy, which are both important for 

cellular fitness and preserving viability [53,54]. The basal level of autophagy increases in 

cancer cells to withstand stresses due to dysregulated signaling mediated proliferation [55], 

enhanced glycolysis [56], hypoxia [57], and to maintain cancer cells in a state of quiescence 

[58]. However, autophagy can promote tumor cell survival [59] or cell death [60] depending 

upon the tumor type, and thus, the implications of induced autophagy are not completely 

understood. It can be modulated therapeutically, either promoting survival or death [61,62].

4.1 Autophagy inducers

mTOR, which is part of a larger mechanistic target of rapamycin complex 1 (mTORC1), 

normally inhibits autophagy. When mTOR is inhibited by stress signals (e.g., HIF, 

dysregulated PI3K/Akt and elevated p53) [63,64], the Beclin 1/class III PI3K complex is 

activated [65], which promotes autophagy [66]. Alternatively, antiapoptotic B cell leukemia/

lymphoma-2 (Bcl-2) family proteins, overexpressed in multiple tumor types, inhibit 

apoptosis and autophagy [67], suggesting that small molecule antagonists of Bcl-2 and 

related molecules (e.g., Bcl-2 larger isoform, Bcl-XL), known as BH3 mimetics 

(ABT-737/263, obatoclax), can competitively disrupt the Beclin 1-Bcl-2/Bcl-xL interaction 

to trigger autophagy [67] and apoptosis. A variety of mTORC1 inhibitors have been 

considered as antitumor agents that block proliferation. These include rapamycin, 

temsirolimus, deforolimus, metformin [68,69], the dual PI3K-mTOR inhibitors NVP-

BEZ235 [70] and PI-103 [71], as well as combinations of these and other agents that induce 

autophagy [72,73] (Fig. 2). Interestingly, several polyphenolic compounds, such as 

resveratrol [74], curcumin [75], rottlerin, genistein, and quercetin [76], were reported to 

induce autophagy and cancer cell death, suggesting that these compounds may be clinically 

valuable in cancer treatment and/or chemoprevention.

4.2 Autophagy inhibitors

Knockdown of genes mediating autophagy [77,78] may contribute to tumor regression, as 

has been seen in human pancreatic cancer [79]. Human cancer cell lines harboring activating 

mutations in H-ras or K-ras have high basal levels of autophagy that promotes survival. 
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Inhibition of autophagy in these lines reduces tumorigenicity [79,80]. Inhibition of 

autophagy also sensitizes tumor cells to alkylating agents and cetuximab [81]. In apoptosis 

defective leukemic and colon cancer cell lines, inhibition of autophagy sensitized resistant 

cells to TNF related apoptosis inducing ligand (TRAIL)-mediated apoptosis [82]. The 

natural compound, matrine, is a novel autophagy inhibitor that modulates the maturation of 

lysosomal proteases [82]. Combination therapies involving drugs that modulate autophagy 

are being classified as early or late stage inhibitors. Early inhibitors include 3-

methyladenine, wortmannin and LY294022, which target the class III PI3K [83]. Late stage 

inhibitors include the antimalarial drugs bafilomycin A1 (which targets a vacuolar adenosine 

triphosphatase) [84], as well as monensin and chloroquine, both of which prevent the 

acidification of lysosomes [85]. Microtubule disrupting agents (e.g. taxanes, nocodizole, 

colchicine and vinca alkaloids) inhibit fusion of autophagosomes to lysosomes, thereby 

preventing steps in the formation of vacuoles that mediate autophagy. In addition, 

clomipramine (an anti-depressant) and lucanthone (an antischistome drug) block 

autophagosome degradation [86,87], suggesting new indications for existing drugs (Fig. 2). 

These observations imply that the modulation of autophagy may be an important therapeutic 

target in fighting cancer.

Similar to hypoxia, autophagy represents a viable way to treat cancer independent of 

targeting individual driver mutations. However, the main issue is that blocking or inducing 

autophagy appears to have opposite effects in different tumor types. Thus, markers to 

indicate which outcome would result must be identified before this line of targeting can be 

considered. Recently, a number of natural products were shown to be modulators of 

autophagy, such as bafilomycin A1 [88,89], feroniellin A [90] and oblongifolin C [91].

5. Survival and Growth of Cancer Stem Cells (CSCs)

5.1 Distinguishing features of adult and cancer stem cells

Stem cells (SCs) and CSCs share similar characteristics of “stemness,” quiescence, self 

renewal, the ability to produce differentialed progeny, resistance to apoptosis, and 

chemoresistance [92-103]. What distinguishes CSCs from adult SCs is the aberrant 

regulation of these processes in the former, resulting in altered cell fate and unregulated cell 

growth [94]. Aberrant Hedgehog (Hh), Notch and Wnt pathways, either through 

overexpression of wild type signaling molecules, or by activating mutations in these 

signaling pathways, contribute to the malignant conversion of adult stem cells to CSCs 

[103]. Further, the PTEN tumor suppressor maintains adult stem cells in quiescence, while 

in CSCs, PTEN is often mutated or deleted, resulting in increased expression of genes that 

promote the cell cycle and DNA replication.

The tumor mass contains a small proportion of CSCs that initiate/maintain malignant growth 

and differentiated progeny of these CSCs that do not [104,105]. Adult SCs divide 

asymmetrically, giving rise to a differentiated daughter cell and progenitor cell capable of a 

limited number of additional cell divisions [106]. In contrast, CSCs divide symmetrically 

into progenitor cells that possess an unlimited replicative potential that allows them to 

undergo an indefinite number of cell divisions. The latter may explain tumor relapse after 

initial therapy, where most of mature tumor cells are eliminated, while therapy resistant 
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CSCs become reactivated and proliferate. Initial tumor responses might mean little if CSCs 

determine outcome [107], suggesting that CSCs are the cells that must be effectively 

targeted to achieve a definitive cure [107,108].

5.2 Stem cells and cancer initiation

Since the pathogenesis of cancer involves the appearance of driver mutations in long lived 

adult SC [109], only cells with self renewal capacity, especially in tissues with high cellular 

turnover (e.g., skin, intestine [109], breast [110-112] and hematopoetic cells [104,113]), 

should be most susceptible to malignant transformation. In chronic myelogenous leukemia 

(CML) [90], for example, the breakpoint cluster region/Abelson (Bcr-Abl) translocation 

appears at the beginning of the hematopoietic differentiation tree [114], implying an intimate 

relationship between SC, mutation, and tumor development. In some cancers, germline 

mutations in tissue SC (e.g., in colon cancer and medulloblastoma) also suggest a central 

role for these cells in tumor pathogenesis [115,116]. In other cancer types, including solid 

tumors [117,118], dedifferentiation and the reacquisition of the stem-like phenotype in 

mature cells may also be involved (e.g., observed in the pathogenesis of melanoma, breast 

and pancreatic cancers) [119-122]. This will influence the choice of cell target and the 

timing at which therapeutic intervention will have the greatest impact. However, phenotypic 

plasticity in tumors may preclude a simple approach to therapeutic intervention, since 

selected cell types in a tissue may have acquired the “stemness” phenotype in a given 

microenvironment.

Constitutively expressed oncogenes also contribute to cancer development, not just by 

inducing proliferation, but also because of their capacity to reprogram the epigenome of the 

target cell [123]. Reprogramming of differentiated cells can be achieved by the transient 

expression of the transcription factors octamer binding transcription factor 4 (Oct4), 

Kruppel-like factor 4, Nanog, and myc that “reset” the epigenetic status of cells and allow 

them to adopt a plethora of fates, including extended proliferation [123] (Fig. 3). If CSCs 

arise through a reprogramming like mechanism, then early intervention that target CSCs 

may be critical for the development and success of therapeutics.

5.3 What regulates quiescence in stem cells?

If stem cell activation is important to the pathogenesis of cancer, maintaining stem cell 

quiescence and inhibiting their proliferation may have therapeutic value. This may prevent 

or delay the onset of primary tumors (e.g., in CML, melanoma, breast cancer, non small cell 

lung cancer, and osteosarcoma) [124-128], and help to prevent metastasis or relapse 

[129,130]. Micrometastases are quiescent for lengthy periods, and during this time, are 

resistant to most therapeutic approaches that target cell proliferation. This is why it is 

important to understand dormancy and growth regulation in stem cells.

Quiescence is most likely controlled by a combination of cell intrinsic and cell extrinsic 

(niche) interactions. The intracellular or “cell intrinsic” signals resemble normal processes 

that control cell cycle progression and survival. Thus, therapies that target G1 regulators 

(such as cyclin D), cyclin dependent kinase 4 (cdk4) or p27, or apoptotic regulators (such as 

Bcl-2), might be effective. Two canonical developmental pathways, Wnt/β-catenin and Hh, 
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appear important in the self renewing potential of CSC [131,132]. Wnt and Hh are generally 

inactive in somatic adult cells, but are reactivated in adult SCs and CSC. The metastasis 

suppressor gene, mitogen activated protein kinase kinase 4, is part of a growing lists of 

genes that block proliferation through the activation of MAPK p38 [133-135], suggesting 

they may become therapeutic targets.

On the cell extrinsic side, the chemokine ligand 12 (CXC-12) and corresponding receptor 

(CXCR-4) interaction is required for breast, prostate, and multiple myeloma (MM) CSC 

colonization and subsequent quiescence [136]. In CML and MM, CSC can be mobilized 

from quiescence into the cell cycle by the addition of granulocyte colony stimulating factor 

(G-CSF), which degrades CXCL-12, or by an antagonist of CXCR-4 [137]. In the clinic, 

however, G-CSF has had mixed results, since it impacts both CSCs and adult SCs [137]. 

Thus, caution must be applied, as therapies should not affect or deplete adult SCs.

As the CSC fate decision is most likely controlled epigenetically, various transcription 

factors have been implicated in these processes. For example, CCAAT/enhancer binding 

protein alpha (C/EBPα) appears to regulate myeloid differentiation and self renewal of fetal 

liver hepatic SCs. Myeloid Elf-1-like factor is a transcriptional activator [138,139] that 

promotes the G1- to S-phase transition and enhances the movement of hepatic SCs out of a 

quiescent state (Go-phase) into the cell cycle [140,141]. The proangiogenic factor, 

angiopoietin-1, inactivates glycogen synthase kinase 3β (GSK3β) via phosphorylation, 

thereby releasing active β-catenin, which then migrates to the nucleus and upregulates the 

expression of genes that promote cell survival (by blocking apoptosis) and cell proliferation 

[142]. However, caution must be exercised in pursuing any of these as putative therapeutic 

targets, since the development of corresponding drugs would probably be associated with the 

appearance of considerable toxicity.

6. Targeting cell cycle proteins in sustained proliferative signaling

Cell cycle progression is controlled by cyclin-cdk complexes, that include cdk interacting 

protein p21CIP1, kinase inhibitory proteins (Kips) (p27KIP1, p57KIP2), and INhibitors of 

CDK4 (INK4s: p16INK4a, p15INK4b, p18INK4c, p19INK4d), which activate and inhibit these 

complexes, respectively [143]. The G1 phase of the cell cycle is the only time that a cell can 

respond to extracellular cues, and progression depends on the balance of proliferative and 

antiproliferative signals. In the presence of “go” signals, progression into S phase occurs; in 

the presence of “stop” signals, the cell arrests in G1. Thus, cancer can be thought of as a 

disease of the cell cycle: where a cancer cell ignores the “stop” signals and does not wait for 

the “go” signals. The result is excessive DNA replication, which increases the likelihood of 

replication induced mutations and telomere degeneration, further disabling other hallmark 

pathways.

6.1 Retinoblastoma (Rb) pathway

The Rb pathway (INK4-cyclin D-cdk4/6-Rb), which controls the G1-S phase transition, is 

universaly disrupted in human cancer. Cyclin D-cdk4/6 complexes initiate G1 progression by 

phosphorylating (inactivating) Rb, thus relieving transcriptional repression by the Rb-E2F 

complex (Fig. 4). Following Rb phosphorylation, E2F is released, inducing transcription of 
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genes necessary for S-phase entry. Although Rb loss occurs in some tumor types, most 

cancers retain wild type Rb, and instead have mutated or activated cell cycle proteins that 

regulate Rb. In other tumor types, cell cycle proteins downstream of oncogenic pathways are 

frequently altered posttranslationally, demonstrating that these represent targets in cancer 

therapy [144].

6.2 Cyclins D and E

The gene encoding cyclin D is the second most amplified locus in human cancer, and is 

directly downstream from many oncogenic pathways, suggesting it may be a good 

therapeutic target. In cancer, cyclin D-cdk4/6 activity may be increased by cdk4 and cdk6 

amplification, mutation of cdk4 to an inhibitor resistant form, or loss of the INK4 inhibitors. 

Perhaps the best justification for targeting these molecules comes from clinical trials for the 

treatment of breast cancer, where palbociclib, a cdk4/6 specific inhibitor, delayed disease 

progression in human epidermal growth factor receptor 2 (HER2)+, estrogen receptor (ER)+ 

postmenopausal women. In addition, since cyclin D is transcriptionally linked to mitogenic 

signaling pathways, is expressed throughout the cell cycle, is degraded by GSK3β (which 

itself is a therapeutic target), and showed managable toxicity in clinical trials, suggests that 

cyclin D may be an important target for continued drug development [144].

Amplification of cyclin E or cdk2 is detected in some tumor types, but this is rare compared 

to cyclin D-cdk4/6 [145]. Cyclin E-cdk2 may be a good target, as its activation is a major 

consequence of Rb dependent phosphorylation. However, cdk2 activates origins of DNA 

replication, explaining its infrequent deregulation in tumors. Inactivation of the Rb 

checkpoint may also trigger cyclin E-cdk2 independent functions, such as the ability to 

overcome senescence. Moreover, several cdk2 inhibitors have failed in clinical trials for 

unknown reasons.

6.3 Cdk inhbitors

The cdk inhibitors of the INK4 class block cyclin D-cdk4/6 activity. They do not have 

additional targets, suggesting that therapeutic intervention could be highly specific. 

However, therapeutic restoration of INK4s presented problems, in that these loci are 

frequently deleted or mutated, which would preclude reactivation. For many cancers, 

frequent epigenetic inactivation of INK4 is due to extensive CpG methylation [146] raising 

the possibility that natural products capable of modulating DNA methylation such as EGCG, 

folate, and genistein are potential agents capable of reactivating INK4 genes [147].

The tumor suppressor, p27Kip1, inhibits cyclin E-cdk2, which would potentially block tumor 

growth. p27 levels are reduced posttranslationally with increasing tumor grade, resulting in 

increased cdk2 activity [148]. Re-expression of p27 could be achieved by interfering with 

protein turnover. The S-phase kinase associated protein 2 (Skp2) is the E3 ubiquitin ligase 

responsible for p27 degradation. Thus, Skp2 and p27 expression is inversely correlated 

[149,150]. Bortezomib-mediated proteosomal inhibition in multiple myeloma and mantle 

cell lymphoma [151,152] resulted in significant side effects, suggesting that more specific 

targets upstream from the proteasome might be less toxic. However, p27 inhibits cdk1 and 
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proliferation of cdk2−/− mouse embryo fibroblasts, and also stabilizes the cyclin D-cdk4 

complex, suggesting that targeting p27 may have global, deleterious effects.

7. Molecular pathways regulating tumor proliferation

Most clinically available targeted therapies focus on blocking the constitutive activation of 

signal transduction pathways (Bcr-Abl, EGFR, HER2, c-Met, and Raf). While these have 

initially been effective at blocking tumor proliferation, the emergence of resistant clones is a 

frequent clinical observation, suggesting that alternate therapeutic pathways should be 

investigated. Therefore, this part of the review will briefly introduce some of the major 

pathways that impact cell proliferation and fate, and that are targets for one or more natural 

compounds.

7.1 Wnt/β-catenin signaling

Wnt/β-catenin signaling is a developmental signaling pathway that regulates cell 

proliferation, differentiation, migration, polarity and asymmetric cell division [153,154]. It 

plays critical roles in embryonic stem cells [155], and can improve reprogramming of 

somatic cells towards induced pluripotent stem cells, highlighting the importance of this 

pathway for self renewal and pluripotency [156,157].

Aberrant Wnt/β-catenin signaling is implicated in numerous cancers (e.g., colorectal and 

breast cancers) [158-162]. Most involve stabilization of β-catenin by mutation which is often 

associated with tumor aggressiveness. Alternatively, aberrant Wnt signaling is due to either 

the inactivation of negative regulators of the Wnt signaling pathway, such as Frizzled related 

protein [161], or overexpression of positive regulators, such as disheveled [162]. In Wnt-1 

transgenic mice, expanded mammary stem/progenitor cell populations are associated with 

the development of preneoplastic lesions or tumors [163,164]. Thus, constitutive activation 

of β-catenin appears to promote the survival and growth of stem cells in the early stages of 

tumor formation, suggesting it is an important target. Fortunately, there are many natural 

compounds that block Wnt signaling (see below).

7.2 Notch signaling

Notch is a family of mammalian transmembrane receptors (Notch 1-4) for membrane bound 

ligands (JAG1, JAG2, delta-like 1-4). Upon binding, Notch receptors undergo cleavage, 

releasing a Notch intracellular domain, which migrates to the nucleus, where it targets genes 

such as cyclin D [165], p21CIP1 [166], NF-κB [167], and c-myc [168-170]. Notch proteins 

contribute to angiogenesis, proliferation, differentiation, and apoptosis [171,172]. Notch 

signaling also contributes to cell fate in embryonic development, tissue homeostasis in adult 

tissues, and regulates stem cell maintenance and differentiation [173,174].

Notch signaling is detected in CSCs in breast cancer [175-177], embryonal brain tumors 

[178], gliomas [179], T cell leukemias, ovarian, cervical, colorectal, pancreatic, salivary 

gland, and lung carcinomas [93,94,178,180-182]. In breast cancer, constitutive activation of 

Notch prevented differentiation of mammary epithelial cells in vitro and resulted in the 

appearance of poorly differentiated adenocarcinomas [183-187]. Further, HER2 [188-190], 

Akt [191], signal tansducer and activator of transcription (STAT3) [101], NF-κB [192] were 
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found to cross talk with Notch in breast CSCs [172], suggesting that Notch could impact 

breast cancer development and proliferation through these signals. In the hypoxic 

environment, HIFs activate Notch [3] and the expression of transcription factors such as 

Oct4 that control stem cell self renewal and pluripotency [4,193]. Thus, elevated Notch 

signaling permits CSCs to survive and proliferate in a hypoxic microenvironment. Natural 

compounds, such as resveratrol (see below) [194], down regulate transcription of the Notch 

and PI3K/Akt pathways and may prevent tumor appearance.

7.3 Insulin-like growth factor (IGF) signaling

The IGF-1 receptor/ligand system is implicated in self renewal/pluripotency in 

hematopoietic and embryonic stem cells and supports cell growth/survival by activation of 

PI3K/Akt and Ras/Raf/extracellular signal regulated kinase [195-197]. Recently, Nanog was 

shown to have a crucial role in maintaining the self renewal of CSCs through the IGF-1 

signaling in hepatocellular carcinoma [198]. IGF-1 signaling could also crosstalk with other 

pathways, such as Notch, EGFR, leptin and promotes the transition of adult SC to CSCs 

[172,199,200].

7.4 PI3K/Akt/mTOR signaling

The PI3K/Akt/mTOR pathway plays a central role in growth, proliferation, motility, survival 

and angiogenesis in tumor cells [201,202]. mTOR is a ser/thr kinase that is a downstream 

target of PI3K/Akt in many types of cancer. Aberrant activation of mTOR by mutations or 

gene amplification [203], promotes cancer cell proliferation, EMT [204], and resistance to 

anticancer drugs [205,206].

PI3K/Akt/mTOR signaling plays a key role in CSC biology because this pathway is more 

sensitive to inhibition compared to healthy stem cells [191,207]. mTOR inhibition also 

suppresses EMT and CSC-like characteristics in colorectal cancer [208]. However, 

inhibition of mTOR is complex because several downstream targets in this pathway [e.g., 

mTORC1, S6 kinase 1 and eukaryotic translation initiation factor 4E binding protein 1 may 

be regulated in an mTOR independent manner [209-214]. Another challenge is to identify 

pharmacological profiles for mutations in these pathways. This could be aided using 

biomathematical algroithms like the COeXpression ExtrapolatioN (COXEN) model 

[215-217].

7.5 NF-κB signaling

NF-κB transcription factors regulate the expression of key genes for innate and adaptive 

immunity, cell proliferation and survival, and lymphoid organ development. NF-κB is 

activated in many cancers [218-220] by many divergent stimuli, including proinflammatory 

cytokines such as IL-1β, epidermal growth factor (EGF), T- and B-cell mitogens, bacteria 

and lipopolysaccharides, viruses, viral proteins, double stranded RNA, and physical and 

chemical stressors [220-222]. These events contribute to the link between inflammation and 

carcinogenesis. For example, NF-κB activation may be required for human ovarian CSC 

metastases [223], in human cervical CSC growth and migration [224], and in keeping 

differentiating glioblastoma CSCs from acquiring a mature post mitotic phenotype [225]. 
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Mammary epithelial NF-κB also regulates the self-renewal of breast CSCs [226]. Thus, NF-

κB is an important therapeutic target in carcinogenesis.

7.6 Hedgehog signaling

Hh signaling controls tissue polarity, patterning, and stem cells maintenance in a variety of 

tissues [227-230]. In vertebrates, three Hh ligands [Sonic Hedgehog (Shh), Desert 

Hedgehog, and Indian Hedgehog] bind to trans-membrane receptors [Patched (Ptch1 or 

Ptch2)]. Upon ligand binding, the complex containing Ptch and its inhibitor Smoothened 

(Smo) dissociates. Smo activates Gli transcription factor which translocates into the nucleus 

and initiates transcription of target genes that regulate the properties of stem cells [231,232].

Regulation of CSC proliferation in various human tumors including glioblastoma, breast 

cancer, pancreatic adenocarcinoma, MM and CML is through Hh signaling [97,233-241]. 

Use of the SMO antagonist cyclopamine or the Hh ligand neutralizing antibody 5E1 induced 

terminal differentiation and loss of clonogenic growth in gastric CSCs from primary tumors 

[242,243]. Mouse models of CML also suggest that Hh regulates the self renewal property 

of the tumor cells [240], providing an important preclinical model for intervention studies 

with natural compounds. Thus, Hh affects CSCs self renewal and differentiation [244]. IL-6 

stimulated the growth of acute myeloid leukemia cells through Hh, and this effect was 

blocked by the natural compound resveratrol. Shh-Gli signaling controls the characteristics 

of pancreatic CSCs, and these are inhibited by the use of sulforaphane [132,245].

8. Is there a relationship between altered cellular metabolism and 

proliferation?

The contribution of altered cellular metabolism to cancer is exemplified by nonalcoholic 

fatty liver disease (NAFLD) [246], which includes alterations that range from triglyceride 

accumulation in hepatocytes (steatosis) to steatosis with inflammation (nonalcoholic 

steatohepatitis or NASH), with or without fibrosis [247,248]. NASH patients with liver 

fibrosis are at risk for the development of cirrhosis [249] and hepatocellular carcinoma 

(HCC). At the molecular level, altered methionine metabolism plays an essential role in the 

molecular bases of NAFLD related HCC.

Chronic liver disease among patients with cirrhosis is partially characterized by elevated 

serum levels of methionine [250,251]. The latter is associated with decreased methionine 

adenosyltransferase (MAT), and the product of its reaction, S-adenosylmethionine (SAM) 

[252,253]. MAT deficient mice developed chronic hepatic SAM deficiency, display 

increased proliferation, and spontaneously develop HCC [254]. SAM is a major methyl 

donor, where it mediates up to 85% of the methylation reactions in the liver, thereby 

promoting homeostasis [255]. Since SAM is also a precursor of the antioxidant glutathione 

(GSH), both are decreased in patients with cirrhosis. Treatment of these patients with SAM 

increased GSH levels and improved survival [255,256], suggesting the therapeutic use of 

SAM to treat liver diseases [257]. Conversely, mice deficient in the glycine N-

methyltransferase gene, which encodes the enzyme responsible for SAM catabolism, 

developed elevated SAM, methionine, serum transaminase levels [258], hepatic steatosis, 
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fibrosis and HCC [258-261]. Therefore, altered methionine metabolism resulted in increased 

proliferation through decreased levels of MAT and GSH.

In cancer, proliferating cells require rapid ATP generation, increased biosynthesis of 

macromolecules, and maintenance of an appropriate cellular redox status [262]. For 

example, the tumor suppressor, p53, stimulates glycolytic enzymes and the pentose 

phosphate pathway, which provide substrates for macromolecular synthesis. In addition, the 

M2 isoform of pyruvate kinase (PKM2), which converts phosphoenolpyruvate to pyruvate, 

attenuates glycolysis, thereby providing precursors for macromolecular synthesis and cell 

proliferation [263]. In these same reactions, PKM2 also promotes the development of 

nicotinamine adenine dinucleotide phosphate (NADPH) which provides reducing power for 

macromolecular synthesis as well as quenches free radicals. NADPH also contributes 

importantly to controlling the redox state of cells. At low levels, free radicals promote cell 

proliferation by activating signaling pathways [264,265]. At moderate levels, free radicals 

promote stress responsive genes (e.g., HIF-1α) and cell survival [266,267], while at high 

levels, free radicals cause macromolecular and organelle damage, triggering senescence or 

apoptosis, and in surviving cells, activating antioxidant pathways [268,269]. Thus, the 

control of free radical levels by cancer cells promotes proliferation but not the appearance of 

detrimental mutations. In this context, many natural polyphenols (see below) alter cancer 

cell metabolism by reducing intracellular free radicals to very low levels, thereby inhibiting 

the appearance of mutations and unwanted proliferation.

9. The role of estrogen and androgen receptors in cancer cell proliferation

Hormones are signaling molecules secreted by cells that modulate the function(s) of target 

tissues. This encompasses paracrine, autocrine, and intracrine hormonal actions. As one of 

the main functions of hormone stimulation is cell cycle regulation, it is not surprising that 

hormonal disregulation is involved in cancer progression. Hormone related cancers [270] 

make up almost 30% of all cancer cases, and include cancers of the breast, ovary, 

endometrium, prostate, and testis [271].

As cancer initiators, steroid hormones could cause irreversible damage to the genotype of 

the cell. For example, high doses and long term treatment with 17β-estradiol (E2) results in 

DNA damage among rodents [272,273]. However, it is unlikely that at physiological levels, 

estrogens and other hormones are carcinogens, and instead stimulate mitosis by shortening 

G1 and promoting entry into S phase [274]. For example, steroid hormones stimulate the 

proliferation of normal cells, increasing the chances of a cell acquiring DNA damage and 

oncogenic mutation as well as cells mutated by an initiator. Thus, deranged hormone 

signalling pathways can promote cancer. However, there is a lack of translational 

applications of this information, due to the complicated signals activated by hormones 

through their different receptors [275].

Two estrogen receptors (i.e., ERα and ERβ) and one androgen receptor (AR) mediate the 

mitogenic effects of estrogens and androgens, respectively. After ligand binding, the ligand-

receptor complexes translocate to the nucleus where they recruit cofactor proteins and the 
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basal transcription machinery onto estrogen or androgen responsive elements, respectively 

[274], impacting proliferation at the level of transcription.

Sex steroid hormones also signal through plasma membrane bound forms of AR and ER 

[276]. For some cancers, this occurs through activation of extracellular signal regulated 

kinase 1 in the MAPK family and via Akt in the PI3K pathway. These ERα-dependent 

pathways transduce proliferative, antiapoptotic and migration signals [277-279]. In this 

context, membranous ERα staining was observed in up to 1/3 of the cases in which the 

tumor was classified as ERα negative on the basis of ERα nuclear expression. Membrane 

ERα expressing breast cancers also show a strong positive correlation with phosphorylated 

Akt and HER2 overexpression [280], the latter of which is characteristic of ‘invasive 

carcinoma’ [281]. In addition, ERα plasma membrane localization and its interactions with 

IGFR1 and EGFR/ErbB2 may be one of the mechanisms underlying the development of 

drug resistance in breast cancer cells [282,283]. Androgen independent prostate cancer is 

also mediated by IGFR-1/IGF-1 [284] and elevated EGFR/ErbB-2 [285], combined with 

downstream Akt [286,287] and Janus kinase (JAK)/STAT [288] and MAPK signaling. These 

pathways activate AR, which translocates to the nucleus, where it alters host gene expression 

that promotes cell survival, proliferation, and metastasis. As indicated below, there are a 

number of natural compounds which target one or more of these pathways. While the 

success of surgical or medical castration has been demonstrated in androgen dependent 

tumors, the utility of natural compounds in andogen independent tumors will depend upon 

the mechanisms whereby andogen independence is achieved. This may include AR 

overexpression, AR mutations, altered recruitment of transcription cofactors, and/or 

sustained intratumoral synthesis of dihydrotestosterone, which binds to and activates the AR 

in the androgen dependent phase of prostate cancer [289].

Deregulation of ERα- and ERβ-mediated signal transduction, together with the deregulation 

of nuclear receptor activities, may explain the role of estrogen in promoting breast cancer 

[275]. In this respect, ERα positive breast tumors are treated with drugs that interfere with 

the availability of endogenous E2 (e.g., aromatase inhibitors) or ERα transcriptional activity 

(e.g., 4OH-tamoxifen) [290]. The same drugs could act on ERβ signaling, even if the 

expression of this receptor subtype is inversely correlated with the development of several 

cancers [291]. Thus, a selective agonist for ERβ could promote strong antiproliferative 

intracellular signals in breast, colon, and prostate tissues, where ERβ functions as a growth 

repressor and a dominant negative inhibitor of ERα-mediated proliferation [292,293]. In 

spite of these data, the role of the membrane initiated ER signaling in tumors has been 

underestimated. Nuclear localization of ERs [294,295] is now considered to have prognostic 

significance. Very few drugs for breast cancer have been shown to target ERs extranuclear 

mechanisms [283].

Anticancer drug development has been characterized by two different approaches: the 

chemical modification of preexisting therapeutics and the selection of new molecular targets. 

The latter approach better overcomes the limitations of available clinical treatments and 

could provide an opportunity to expand antihormonal treatments in new directions. A further 

promising strategy would rely on targeting ER membrane proliferative actions, but this 

remains to be explored.
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10. The impact of stromal cells on tumor growth

Stromal components in tumor microenvironment contribute centrally to tumor progression 

and metastasis. Reciprocal interactions occur between neoplastic cells and stromal 

components leading to coevolution. In this context, either stromal cells support 

transformation of epithelial cells, or transformed tumor cells engage stromal cells, and the 

altered environment can influence the metastatic, dormancy related, and stem-like potential 

of tumor cells [296]. The stromal compartment of the tumor is complex, consisting of 

inflammatory/immune cells, endothelial cells (vascular), pericytes, fibroblasts, adipocytes 

and extracellular matrix components (e.g., collagen, fibronectin, laminin and proteoglycan 

complex). Tumor infiltrating inflammatory cells release EGF, VEGF, fibroblast growth 

factor-2 (FGF-2), chemokines, cytokines, and proinvasive matrix degrading enzymes to 

promote tumorigenesis [297-299]. Continued tumor growth and progression is mediated by 

the “angiogenic switch,” which occurs in response to VEGF and FGF-2 secreted from tumor 

cells, resulting in angiogenesis [300-302]. Adipocytes in the tumor microenvironment 

produce ‘adipokines’ [303,304] such as leptin, adiponectin, hepatocyte growth factor, 

collagen VI, IL-6 and TNF-α, which are important for tumor growth. Fibroblasts in the 

tumor microenvironment provide the structural framework of the stroma [305]. Fibroblasts 

remain quiescent, but they proliferate during wound healing, inflammation and cancer. 

Paracrine factors from tumor cells activate fibroblasts to become “cancer associated 

fibroblasts” (CAF) [306,307]. CAFs secrete factors that modulate tumor growth and modify 

the stroma to facilitate metastasis [308,309] and attenuate responses to anticancer therapies 

[310,311]. Thus, tumor stromal crosstalk is important when developing therapeutic options, 

since tumor centric approaches may not work in a stroma rich tumor microenvironment.

11. Natural and dietary substances that block cancer proliferation and 

augment anticancer therapy

More than half of current drugs originally came from natural products. Plant derived 

anticancer agents that block proliferation, resulting in cell cycle arrest and apoptosis, include 

vinblastine, etoposide, teniposide, homoharringtonine and camptothecin derivatives [312]. 

Epidemiological studies have shown that natural products and nutritional substances may be 

active in cancer chemoprevention. These have been most extensively described in colon, 

prostate and breast cancers.

Contrary to conventional chemotherapy, which exhibits cytotoxic effects against all dividing 

cells, targeted therapeutic drugs are active against proliferating cells involved in tumor 

progression. Targets of these therapeutic approaches include Bcr-Abl kinase (e.g., imatinib 

[313], nilotinib [314], and ponatinib [315]), EGFR (gefitinib [316] and erlotinib [317]), 

HER2/ErbB2 (lapatinib [318]), and c-Met (crizotinib [319]). Although intially effective, 

relapse is common, resulting in the appearance of drug resistance, the activation of 

alternative signaling pathways, and/or the generation of chemoresistant CSCs [320,321]. 

Given that cancer is multistep, targeting multiple pathways may yeild stronger antitumor 

activities. Accordingly, some of the leading natural compounds used in cancer therapy and in 
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chemoprevention are presented below as examples of their potential utility in the 

pathogenesis of cancer.

11.1 Curcumin

Curcumin (diferuloylmethane), a yellow spice and phenolic compound derived from the 

plant Curcuma longa, is one of the most powerful and promising chemopreventive and 

anticancer agents [322] (Fig. 5). The consumption of a curcumin rich diet is inversely 

correlated with several human malignancies [323]. Curcumin blocks cancer cell proliferation 

by targeting Wnt (Table 2), NF-κB, STAT3, PI3K/Akt [324] (Fig. 6) and mTOR [325]. 

Curcumin also has fewer side effects than conventional therapy [326,327]. Curcumin 

indirectly affects tumor proliferation by altering the expression miRNAs, which regulate 

cellular signaling implicated in tumor cell proliferation. For example, the antiproliferative 

activity of curcumin against pancreatic cancer cells has been shown to be mediated by 

modulating the miR-200 family, which in turn regulates EMT [328]. Further, curcumin and 

its synthetic analog, diflourinated curcumin, downregulate miR-21 expression [329] and 

reduced the expression of Bcl-2 by upregulating miR-15a and miR-15b [330], indicating that 

curcumin impacts upon proliferation, in part, by epigenetic mechanisms. A major problem 

with curcumin is its low bioavailability, prompting the development and evaluation of 

structural analogs of curcumin, stabilization of curcumin with adjuvants (e.g., piperine), 

liposomal and nanoparticle associated curcumin, and the development of curcumin 

phospholipid complexes, aimed at increasing bioavailability while antitumor properties are 

maintained [331].

11.2 Indole-3-carbinol, 3,3-diindolylmethane, sulforaphane and brassinin

Indole-3-carbinol, a natural hydrolysis product of glucobrassicin in cruciferous vegetables 

(Fig. 5), blocks tumor cell proliferation by modulating expression of the IGFR1, the insulin 

receptor substrate-1, and by triggering degradation of the ERα [332]. Such vegetables also 

contain sulforaphane, a naturally occurring organosulfur compound formed by the 

hydrolysis of glucosinolates. Sulforaphane may lower the risk of colon, prostate, and 

perhaps other cancers [333]. sulforaphane blocks proliferation, induces cell cycle arrest in 
vitro, and has anticancer activity in animal models [334]. Sulforaphane also suppresses NF-

κB and the Wnt/β-catenin self renewal pathways in CSCs [335,336] (Fig. 6). Sulforaphane 

appears to synergize with sorafenib in shrinking pancreatic cancer by blocking proliferation, 

angiogenesis, and EMT [337]. Another indole compound derived from cruciferous 

vegetables, brassinin, arrests cancer cells in G1 via blocking PI3K signaling and 

upregulating p21 and p27 [338]. In comparison, 3,3-diindolylmethane increased the 

expression of miR-21 which reduced the expression of its target gene, cell division cycle 25 

homolog A [339]. Moreover, 3,3-diindolylmethane has been shown to increase the level of 

the miR-200 family in pancreatic cancer cells, which impacts EMT [328].

11.3 Resveratrol

Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a polyphenolic compound found in the skin 

of grapes, in red wine, peanuts and mulberries (Fig. 5). Resveratrol appears to have 

antiaging properties, cardiovascular protective and cancer prevention activities [340-342]. In 
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cancer prevention, resveratrol blocks proliferation, promotes cell cycle arrest, and induces 

apoptosis by suppressing extracellular signal regulated kinase signaling, p53, Rb/E2F, 

cyclins and cdks. It sensitizes cells to extrinsic (Fas and TNF related apoptosis inducing 

ligand mediated) apoptosis by facilitating death receptor localization into membrane lipid 

rafts [243] and promotes intrinsic (mitochondrial) apoptosis, in part, by inhibiting survivin 

and Bcl-XL [344]. Resveratrol suppresses the activity of transcription factors involved in 

proliferation (e.g., NF-κB, activating protein 1 and the early growth response protein 1), 

MAPKs and tyrosine kinases (e.g., Src) [345,346] (Fig. 6). Resveratrol also inhibits the 

proliferation of prostate cancer cells by inhibiting AR transcriptional activity, stimulating 

PTEN expression, and by blocking Akt phosphorylation [347]. Resveratrol blocks the 

activity of β-catenin by preventing its accumulation in the nucleus as well as binding to 

transcription factor 3 [347] (Table 2). Resveratrol suppresses IGFR1 and Wnt pathways in 

colon cancer cells [348]. Thus, in vitro studies strongly support a role for resveratrol in 

mediating cell cycle arrest or triggering apoptosis.

Ingestion of resveratrol rich grape powder in humans suppressed expression of the Wnt 

target genes, cyclin D1 and axin in normal colonic mucosa, suggesting that Wnt pathway 

inhibition may contribute to resveratrol-mediated colon cancer prevention [349]. 

Constitutively activated Wnt is also proinflammatory [350]. Since many cancers are 

associated with prolonged inflammation and chronic tissue damage, resveratrol may also 

prevent tumor onset by attenuating the regenerative responses that accompany prolonged 

inflammation.

Resveratrol blocks PI3K and Akt signaling, which strongly promote growth [351], by 

downregulating cdk2, cyclin D1 and proliferative cell nuclear antigen. In ovarian cancer, 

resveratrol downregulates Akt and ERK signaling [352] (Fig. 6) and may inhibit prostate 

cancer growth via the Akt/miR-21 pathway [353]. Resveratrol also suppresses 

phosphorylation of the NF-κB inhibitor, IκB [354], thereby inhibiting NF-κB [355]. 

Resveratrol also inhibits Hh [356] and Jak2/STAT3 signaling [357], which contribute to cell 

proliferation and cancer progression (Fig. 6, Table 3), suggesting that it may be useful in 
vivo.

Resveratrol was shown to inhibit proliferation and NF-κB signaling in chemically induced 

rat liver carcinogenesis [358,359]. In addition, resveratrol affected the expression TGF-β and 

forkhead box protein C2 by regulating miR-520h [360], suggesting that resveratrol, like 

cucumin, mediates its effects via epigenetic mechanisms. Although most in vivo studies 

show that resveratrol has antitumor activity, its antiaging properties are paradoxical in that 

they promote cell survival [361,362]. These differences may depend upon bioavailability and 

serum concentrations and underscore the need to conduct carefully crafted clinical trials in 

the future. For example, the doses of natural compound(s) used for chemoprevention in 

“healthy” patients may be different than the generally higher pharmacologic doses given to 

patients already diagnosed with cancer, since in the former group, toxicity should be low, 

while in the latter group, the risk vs. benefit ratio would be more important.
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11.4 Flavonoids

Flavonoids are polyphenolic herbal constituents with a wide range of antiallergic, 

antiinflammatory, antioxidant, antimicrobial and anticancer activities. Flavonoids inhibit 

hormone related cancers by modulating the activities of sex steroid hormone receptors 

[283,363,364]. Upon receptor binding, flavonoids reduce ERα association with the plasma 

membrane, impair ERα dependent proliferative signaling cascades, and promote apoptosis 

through the activation of ERα-mediated p38/MAPK [365-367]. This may explain the inverse 

correlation between the dietary consumption of flavonoids and the incidence of hormone 

related breast, prostate, testicular, and colorectal cancers [368,369]. While data support the 

potential medicinal use of flavonoids for the treatment of ER related cancers, their low 

bioavailability [370], combined with the length of time it takes to run human clinical tirals, 

has limited their use. Flavonoids were reported to exhibit a comparable activity to that of 

well known P-glycoprotein [P-gp] inhibitors (e.g., verapamil and cyclosporine), without 

toxicity to normal cells [371]. Thus, flavonoids have the potential of being useful as 

chemotherapeutic agents, through derivatives with increased bioavailability, as is the case 

with paclitaxel and vincristine in multidrug resistant tumor cells [372,373].

11.5 EGCG

Green tea is associated with decreased frequency of cancer development due to the presence 

of EGCG and other polyphenols (Fig. 5). EGCG suppresses AR expression and signaling. 

EGCG also blocks the nuclear translocation of NF-κB as a result of decreased inhibitor of 

NF-κB kinase activity, thereby blocking cancer cell proliferation. Green tea polyphenols 

also downregulate MAPK activity and VEGF production leading to a block in proliferation 

[374]. In addition, EGCG inhibits β-catenin nuclear accumulation and subsequent 

transcription of target genes (Fig. 6, Table 2). EGCG also exerts part of its anticancer 

activity through epigenetic mechanisms. For example, EGCG can reverse CpG island 

hypermethylation of various methylation silenced genes and reactivate their expression 

[375]. EGCG also upregulates such miRNAs as miR-16, let-7c, miR-18, miR-25, and 

miR-92 and downregulates miR-129, miR-196, miR-200, miR-342, and miR-526 [376]. 

Furtheremore, EGCG affects the expression of HIF-1α through the regulation of miR-210 

[377]. EGCG protects against oxidative damage of DNA, proteins and lipids by acting as a 

chaperone, and by downregulating multiple signaling pathways (e.g., VEGFR1/R2, EGFR/

HER2, PI3K/Akt, IGF/IGFR1, and MAPK) [378], and strongly inhibits the antiapoptotic 

proteins Bcl-XL and Bcl-2 [379]. However, EGCG promoted DNA damage in mouse 

leukaemic monocyte macrophage RAW 264.7 and human promyelocytic leukemia HL-60 

cell lines in a dose dependent manner [380]. EGCG has also been associated with liver 

damage, perhaps because it triggers oxidative stress [381]. In light of these results, it is 

likely that the multiple properties and targets of EGCG and many other natural compounds 

(Fig. 6, Table 5) impact the outcome of treatment, depending upon dose, duration, and 

combinations with other therapeutic approaches. In this context, careful consideration must 

be given to the use of these compounds in the development of novel therapeutics.
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11.6 Genistein

Genistein is an isoflavone in soy that inhibits proliferation of breast cancer cells and has 

colon cancer prevention activity [382,383] (Fig. 5). Genistein blocks NF-κB [384], promotes 

apoptosis and alters polyamine metabolism [385]. It exerts antiproliferative activity by 

blocking EGF signaling through forkhead box O3 activity [386,387], has antitumor effects 

in a non small cell lung cancer cell line [388], regulates the expression of miRNA implicated 

in controlling proliferation [389], and exhibits additive effects when combined with 

trastuzumab and cetuximab in breast and oral squamous cell carcinoma cells, respectively 

[390,391]. Genistein suppresses prostate carcinogenesis in the transgenic adenocarcinoma of 

the mouse prostate model via inhibition of β-catenin signaling [392]. Treatment also reduced 

Wnt signaling in mammary epithelial cells [393] and in a colon cancer cell line [394] (Fig. 
6, Table 2). Genistein inhibits β-catenin/TCF transcriptional activity, promotes GSK3-β 

activation (which phosphorylates and promotes degradation of β-catenin), and upregulates 

expression of E-cadherin (Fig. 6, Table 2). As a phytoestrogen, genistein acts through 

binding to the ER. ERα activation leads to cell proliferation [395], and ERβ activation 

promotes cellular differentiation [396]. ERβ signaling counteracts ERα related proliferation. 

Genistein preferentially activates ERβ-mediated gene transcription [397] which would 

inhibit proliferation (and tumorigenesis) and promote differentiation. In addition, genistein 

affects the expression of miRNAs [398], such as upregulating miR-200 [328]. However, its 

therapeutic actions in vivo have not been consistent, in that genistein exhibited a cancer 

promoting effect in some tumors [399], suggesting the need for careful selection of patients 

and safer planning in future clinical trials. This may be concentration dependent, because 

genistein inhibited cell proliferation at high concentrations and activated of estrogen 

signaling at low concentrations [331]. In order to better exploit the potential of genistein and 

limit off target effects, it has been coupled to a monoclonal antibody (B43) and then used for 

the treatment of patients with acute lymphocytic leukemia and Non-Hodgkin's lymphoma 

[400]. Genistein has also been coupled to recombinant EGF and then used to treat patients 

with EGFR+ breast cancer [401]. Additional human studies, where genistein is coupled to 

specific ligands, need to be conducted to see whether genistein's antitumor properties can be 

demonstated alone or with cytotoxic or radiation therapy.

11.7 Ellagitannins

Ellagitannins are bioactive polyphenols found in berries and pomegranates that have 

anticancer, antioxidant and antiinflammatory bioactivities (Fig. 5). Ellagitannins are not 

absorbed intact into the blood stream but are hydrolyzed to ellagic acid. They are also 

metabolized by gut flora into urolithins that are bioactive and inhibit prostate cancer cell 

proliferation by interfering with NF-κB activity [402]. Ellagitannin rich pomegranate extract 

inhibited proliferation of endothelial and prostate cancer cells, and blocked tumor associated 

angiogenesis [403]. Urolithin significantly inhibited testosterone induced MCF-7aro cell 

proliferation most likely by exhibiting antiaromatase activity [404]. In animal studies, 

ellagitannin rich pomegranate fraction has been shown to retard cell proliferation through 

suppression of β-catenin and NF-κB pathways in diethylnitrosamine induced 

hepatocarcinogenesis in rats [405,406]. In clinical studies, pomegranate juice led to a 

decrease in prostate specific antigen (PSA) levels after primary treatment with surgery or 
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radiation [368]. Furthermore, ellagitannins were also active in regulating the expression of 

several miRNAs in HepG2 cells [407].

11.8 Lycopene

Lycopene is a lipid soluble carotenoid molecule found in high concentration in red fruit and 

vegetables. Lycopene has a significant antioxidative activity. Epidemiological studies have 

shown that consumption of lycopene is inversely related to human prostate cancer [408,409]. 

Lycopene blocked cell growth in breast, prostate and endometrial cancer cells by inhibiting 

NF-κB activity [410]. In colon cancer cells, lycopene inhibited Akt signaling. Lycopene 

treatment suppressed Akt activation, increased the phosphorylation (inactivation) of β-

catenin, and stimulated expression of cdk inhibitor p27Kip1 [411]. In addition, lycopene 

inhibited IGF-1-mediated Akt and AR signaling in rat prostate cancer and reduced AR and 

β-catenin nuclear localization [412]. Independent evidence, however, failed to show that 

lycopene altered cell proliferation for a variety of cell types [413]. Given these 

circumstances, lycopene and many other natural products are currently available as herb and 

vitamin supplements that are not regulated by the Federal Drug Administration. Although 

these supplements have no serious side effects, future work will be needed to clarify the use 

of lycopene in cancer therapy.

11.9 Quercetin

Quercetin, a natural protective bioflavonoid, possesses diverse pharmacologic effects, such 

as antioxidant, antiinflammatory, antiproliferative, and antiangiogenic activities. Quercetin, 

at nontoxic concentrations, significantly inhibited Akt and mTOR. Moreover, quercetin 

exhibited antitumor activity that was manifested by a significant reduction of tumor size in a 

xenograft mouse model [414]. Quercetin inhibited P-gp function and consequently enhanced 

the bioavailability of chemotherapeutic agents [415]. Furthermore, tamoxifen underwent 

extensive hepatic metabolism as a substrate for the efflux of P-gp, breast cancer resistance 

protein, and multidrug resistance protein 2. As a dual inhibitor of the metabolizing enzyme 

cytochrome P450, family 3, subfamily A and the multidrug resistance transporter, quercetin 

increased the absorption and the bioavailability of tamoxifen [416].

11.10 Additional natural products

Additional natural products were also reported to affect tumor proliferation such as 13-cis-

retinoic acid which significantly interferes with the activity of NF-κB, c-Fos, activated 

transcription factor-2, and cyclic adenosine monophosphate response element binding 

protein that directly or indirectly modulate tumor proliferation [417]. Other natural products, 

such as parthenolide, the active component in Feverfew (Tanacetum parthenium), also 

showed strong anticancer and antiinflammatory activities. Parthenolide exhibited strong NF-

κB- and STAT-inhibition mediated transcriptional suppression of proapoptotic genes [418]. 

In addition to the antiproliferative activity of pure natural products, there are many 

promising medicinal plants and mushrooms [419]. For example, bitter melon (Momordica 
charantia), which is used as functional food to prevent and treat diabetes and associated 

complications, exhibited antitumor activity against a number of cancer cell lines without 

affecting normal cell growth [420]. Moreover, organic extracts of medicinal mushrooms, 

such as Ganoderma lucidum and Comatus caprinus, exhibited strong and promising 
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antiproliferative activities against a variety of cancer cell lines [421-424]. To appreciate their 

full potential for future clinical use, isolation and elucidation of active chemical entities will 

be required, followed by preclinical and clinical evaluation.

11.11 Natural compounds in clinical trials

Although clinical data on natural products in cancer appears efficacious, most studies have 

not been conducted as randomized clinical trials. Appropriate clinical trials have begun with 

some natural compounds (Table 4), and these will be important for the development of stand 

alone or combination therapies. The goal of natural products or herbs is not to replace 

current cancer therapeutics but rather to augment their activity as adjuvants or to reduce side 

effects. Existing studies suggest synergistic interactions between cancer chemotherapeutics 

and natural products, especially when these two approaches act on cancer by different 

mechanisms. For example, lycopene supplements reduced tumor size and PSA levels in 

localized prostate cancer patients [425], which is consistent with the inhibition of AR 

nuclear translocation that was found by in vitro studies. Many of these bioactive natural 

products are consumed in diets, suggesting a need for developing “medicinal foods.” The 

latter will be based on phytochemicals directed against specific molecular targets that might 

be utilized as a diet based combinatorial approach in the prevention and treatment of cancer 

[426]. Table 5 presents a list of priority targets and corresponding natural products discussed 

herein. This could provide a foundation for the future research and development of these 

compounds or their derivatives that would be useful in cancer prevention and/or treatment. 

However, several “best” targets are not listed because so far there is no natural product that 

affects these molecules (e.g., Snail/Slug). In addition, several other phytochemicals have 

been evaluated over the past decade against a variety of different tumor types [331]. In some 

cases, plant extracts were used, even though the active phytochemical(s) were not known. 

Further, when purified compounds were used, they often potentially blocked the activities of 

multiple molecules or pathways, making it difficult to assess their relevant targets [331]. 

While the compounds in Table 5 have been selected for their activities against proliferation, 

many of them may also impact upon other hallmarks of cancer. For example, many of these 

chemicals have additional antiinflammatory and antioxidant effects, including their ability to 

scavenge free radicals. In generating a single “prototypical” approach for the treatment of 

preneoplastic and early tumor nodules with natural compounds, a combination of curcumin, 

genistein and resveratrol is suggested because they each have broad activities against many 

of the key signaling pathways and targets that drive proliferation. However, the 

concentration of these phytochemicals used experimentally in in vitro studies vastly exceeds 

the concentration detected in humans following vegetable and fruit intake. Thus, more 

stable, absorbable variants will have to be derived in order for these to be considered as 

chemopreventative or chemotherapeutic agents. The bioavailability, pharmacokinetics 

(especially when complex mixtures are being evaluated), isolation without copurifying 

contaminants (e.g., heavy metals), degradation profiles in human tissues, favorable drug-

drug interactions in preclinical and clinical trials, and off target effects when used at doses 

that will probably exceed those found in the dietary sources will need to be determined. In 

addition, reproducible isolation of active compounds from natural sources is likely to be 

challenging. This is because activity may depend upon combinations of compounds that may 

be present in mixtures but separated during isolation, and because the amounts of these 
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natural compounds produced by the plant or other host organism are likely to vary 

depending upon the environmental conditions in which these hosts grow. Thus, climate 

changes could greatly effect the reproducible isolation and characterization of compounds 

from natural sources. An alternative approach would involve chemical synthesis of active 

natural compounds, but the complex chemical structure of many compounds make them 

difficult or impossible to synthesize by conventional means. In this case, the key enzymes or 

metabolic pathways responsible for their synthesis could be isolated and transferred to easily 

manipulated bacteria or yeast to achieve synthesis of enough material for therapeutic 

applications. However, as the mechanism(s) whereby these natural products operate are 

elucidated, better complementation with other drugs (natural or synthetic) may provide 

opportunities to target proliferation at the appropriate time in the right cell type. Overcoming 

these limitations will provide an even broader base for their utility in cancer 

chemoprevention and in blocking tumor progression. Even if natural products are not 

suitable alone or in combination for cancer chemoprevention, they may be useful as an 

adjuvant to chemotherapy, radiation therapy, and/or small molecule inhibitors of key 

signaling molecules. This would prompt the design of clinical trials in which one or multiple 

natural products (or their derivatives) will be added to standard care therapy for individual 

tumor types, to see if they are active in reducing tumor burden and/or decreasing the 

frequency of relapse. Among tumor types where clear risk factors of cancer development are 

known, natural products could be evaluated to see whether they reduce the risk factors for 

tumor development.

12. Emerging genomic and bioinformatic tools to facilitate application of 

natural compounds to cancer

The “genomics revolution” is transforming the understanding of cellular processes involved 

in cancer such as cell proliferation, differentiation, and apoptosis. The Human Genome 

Project [427] provided the groundwork by generating human and model organism genome 

assemblies [428-431], new genome based technologies [432,433], and advanced 

computational infrastructure to handle newly generated massive datasets. New sequencing 

technologies are now outfitting researchers with unprecedented volumes of data to explore 

the etiology of cancer. For the first time, biologists are able to characterize how entire 

genomes, transcriptomes, proteomes, and epigenomes can respond to specific changes in 

genes and their cellular environments, including insights into underlying mechanisms of 

proliferation. By applying an integrative systems approach, cancer biologists are beginning 

to employ an enormously powerful perspective with important translational consequences. 

These tools will be critical in assessing the impact of natural compounds, alone or in 

combination, for cancer prevention and treatment.

Novel genomic data are accumulating at an ever increasing rate. Massive genome wide 

surveys of tumor and nontumor genomes from the Cancer Genome Project are providing 

new opportunities to track how cancers develop over time [434] and find common molecular 

mechanisms that could be therapeutically targeted. The ENCODE project has functionally 

annotated genomes with great precision [435]. Perhaps, the single most important feature of 

these data is that they are freely available via publicly accessible and expertly curated 
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databases (e.g., NCBI's GenBank, Sanger Institute, University of California, Santa Cruz 

Genome Browser) allowing for greater opportunities to transform cancer research from 

single genomic phenomena to systems wide analyses (Fig. 7). As a result, bioinformatics 

has become a critical interdisciplinary tool enabling researchers to handle, analyze, mine, 

and explore high throughput data. Bioinformatics will become even more important as new 

genomic technologies increase the super exponential rate at which tumor based data of all 

sorts are generated.

In the postgenomics era, there is a transformational shift in the understanding of gene 

regulation, mutational changes, and epigenomic consequences in cell proliferation at the 

genomic level. While the study of cancer represents a difficult challenge due to the sheer 

diversity and complexity of its multiple genetic factors, the good news is that remarkable 

resources are rapidly accumulating in the public domain that will help to translate these 

recent advances in genomics and bioinformatics to the clinical setting through such 

approaches as the identification of biomarkers involved in tumor proliferation (Fig. 7). The 

challenge is to train researchers who can interpret the molecular data and are able to handle 

and integrate massive and diverse datasets. The ability to integrate these data types into 

comprehensive dynamic models using genetic pathways, protein-protein interaction 

networks, and genetic regulatory networks will ultimately connect changes at the molecular 

level to the phenotypic level, with potential clinical outcomes in arresting tumor progression.

13. Conclusions and prospects

Targeting mechanisms involved in uncontrolled cancer cell proliferation will increasingly 

become the standard of care for cancer patients, and this review has highlighted some the the 

“best” targets in several pathways that regulate proliferation. For example, in preneoplastic 

tissue the expression of Snail1/2 will need to be blocked in order to maintain E-cadherin 

expression and tissue integrity and to prevent EMT. Once E-cadherin is lost, and hypoxia 

develops, it will be important to block HIF-1 either directly or indirectly by utilizing 

inhibitors of Hsp90, topoisomerase, or mTOR. Targeting the generation and growth of CSCs 

will be a major challenge, due to the overlap of currently identified pathways between CSCs 

and SCs. Maintaining CSC dormancy may prevent reactivation of disease once the mature 

tumor cells have been eliminated by conventional therapies and remission has been 

achieved, but it is not clear how this can be done. Antagonists of Wnt, Hh and MAPK p38 

signaling may be of some value in this, while increasing C/EBPα expression, which 

promotes differentiation, might push CSC into a therapy sensitive state. In addition to β-

catenin, there is rationale to seek antagonists of Notch, HER2/ErbB2 and the IGF-1/IGFR1 

signaling pathways, since these are central to cell fate decisions and are often reactivated in 

cancer. In the context of the cell cycle, it will be important to target cyclin D and cdk4/6. 

Among hormone sensitive cancers, ER and AR are prime targets for the continued 

development of antagonists. Thus, there are a number of putative targets in sustained 

proliferative signaling that may be considered for future drug development and evaluation.

Table 6 lists the target molecules and pathways that seem to be the most important in 

promoting sustained proliferation and enabling cells to acquire other hallmarks of cancer. As 

shown, there are 10 hallmarks listed, and an eleventh category, “tumor microenvironment,” 
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which is not a hallmark but is being evaluated here as well. For example, HIF-1 signaling is 

an important therapeutic target for all the cancer hallmarks with the probable exception of 

evasion of growth suppression and the immune system evasion. Since HIF-1 promotes 

survival and growth under hypoxic conditions, it may be a therapeutic target in 8 out of the 

10 cancer hallmarks where data is reported (which includes sustained proliferative 

signaling). Thus, it is likely that drugs that block HIF-1 signaling will be effective against 

multiple tumor types in their very early stages. Among other pathways, inhibiting PI3K/Akt 

signaling would block all of the hallmarks, while inhibiting Wnt signaling would block at 

least 6 of the 10 hallmarks (Table 6). Since blocking NF-κB or Wnt signaling promote or 

suppress replicative immortality, corresponding inhibitors will have to be evaluated more 

carefully for each tumor type. Likewise, drugs that would block development of some 

hallmarks actually promote the growth of androgen and estrogen dependent tumors (Table 
6). When considering which hallmarks would make the best targets for therapeutic 

intervention, resistance to apoptosis, deregulated cell metabolism, evasion of growth 

suppression, the development of genomic instability, in addition to sustained proliferative 

signaling, would rank high. These hallmarks seem to be sensitive to inhibition from many 

signaling pathways, although which pathways are most important remains to be determined. 

Importantly, tissue/tumor interactions in the microenvironment would also be an excellent 

target for therapeutic intervention.

To determine which natural compounds are likely to be most effective against multiple 

cancer hallmarks, a literature search was performed. Table 7 shows that curcumin, which 

targets HIF-1, NF-κB, and PI3K/Akt signaling (Table 5), is also active against all of the 

cancer hallmarks, as well as the tumor microenvironment. Genistein is effective against at 

least 6 of the 10 hallmarks while resveratrol is effective in 8 of 10. However, in some cases 

the, appropriate studies comparing a compound and a particular hallmark have not been 

performed, so that “no relationship” between these drugs and some of the hallmarks has 

been reported. In the case of genistein, it is not clear whether it promotes or inhibits the 

deregulation of cell metabolism, evasion of growth suppression, immune system evasion, 

and tumor promoting inflammation. For resveratrol, different reports document a positive or 

negative effect of this compound upon immune system evasion and angiogenesis. 

Importantly, all three of these compounds block the development of other hallmarks, which 

are critical steps in carcinogenesis. Importantly, all of these compounds also appear to be 

effective against the tumor microenvironment. Thus, combination therapy with curcumin, 

genistein and resveratrol may be effective against multiple targets (and cancer hallmarks) in 

many tumor types, suggesting that they would be very good choices for further clinical 

development and widespread application.
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Fig. 1. 
Senescence-resistant stem cells (SCs) are targets of Snail induced tumors. Tumor-associated 

Snail1/2 contribute to metastasis, but are also involved in early stages of cancer. In this 

model, cells expressing oncogenic Snail1/2 undergo EMT or senescence. However, SCs are 

resistant to this fate. Snail1/2 increases resistance to DNA damage, allowing those cells to 

accumulate mutations that fuel malignant transformation and uncontrolled cell growth.
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Fig. 2. 
Major pathways of autophagy and natural compounds that inhibit these pathways. 

Autophagy inducers such as starvation (which may occur during hypoxic conditions) 

modulate the activity of the phagophore, consisting of the Atg1/unc-51-like kinase (ULK) 

complex, Beclin 1/PI3K complex, ubiquitin-like proteins (several Atg proteins), and proteins 

that mediate fusion between autophagosomes and lysosomes. Phagophore formation could 

be blocked with PI3K inhibitors. Autophagy induction involves budding of autophagosomes 

from the ER membranes, and inhibits interaction of TORC1 with the ULK1/2 complex. The 

latter regulates the activity of Beclin 1/class III PI3K complex. Beclin 1 interacts with 

factors that modulate its binding to Vps34, the catalytic unit of the PI3K, whose lipid kinase 

activity is essential for autophagy. This step could also be pharmacologically blocked. Fully 

mature autophagosomes can fuse with endosomes to form amphisomes. Autophagosomes or 

amphisomes fuse their external membranes with those from acidic lysosomes to acquire 

hydrolytic activity, degrade their cargo, and recycle essential biomolecules to the cytoplasm. 

Both fusion and degradation could also be inhibited by a variety of compounds, suggesting 

that autophagy would be a viable target in early stages of carcinogenesis [705].
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Fig. 3. 
Cancer stem cells (CSCs) arise from tissue specific stem or progenitor cells that have 

undergone changes in gene expression (reprogramming) as a result of epigenetic 

mechanisms and/or oncogenic mutations. These CSCs undergo proliferation and 

differentiation into tumor cells. Standard therapeutic approaches target mostly the 

differentiated tumor cells, which reduce the bulk of the tumor, but CSCs are resistant to most 

therapies that are effective against the bulk of the tumor cells. In this model of 

carcinogenesis, it will be important to target key alterations in gene expression that drive 

reprogramming, be they natural compounds that epigenetically downregulate the expression 

of genes that contribute to reprogramming, and/or drugs that are effective against molecules 

that acquire driver mutations. Thus, blocking the reprogramming and proliferation of stem 

cells is likely to contribute importantly to cancer chemoprevention.
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Fig. 4. 
Selected natural products that block cell cycle progression. Receptor activation, via Raf, 

MEK, ERK, and AP1, increases cyclin D1 transcription. Cyclin D1 binds to cdk4 and the 

assembly factor, p27Kip1 to create an active ternary complex. This complex can be 

inactivated by association with Ink4A or loss of cyclin D1 via GSK-3β-mediated 

proteasomal degradation. Active cyclin D-cdk4-p27 complexes phosphorylate (inactivate) 

Rb, causing limited transcriptional activation of cyclin E. Increased cyclin E levels shifts the 

balance of inactive cyclin E-cdk2 complexes to active cyclin E-cdk2 complexes, which in 

turn phosphorylates its associated p27, targeting it for proteasomal degradation. p27-free 

cyclin E-cdk2 complexes now fully phosphorylate Rb, causing S phase gene transcription, 

and progression into S phase, where the cell cycle proceeds independently of extracellular 

signals. As shown in red, many natural compounds cause G1 arrest in several cancer cell 

culture models, due to effects on cyclin D1, p21, p27 or cyclin E. Some of these act via 

altered expresson of microRNAs. Modified from reference [650].
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Fig. 5. 
Examples of anti-proliferative compounds obtained from natural sources.
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Fig. 6. 
Impact of various natural compounds upon selected growth promoting signaling pathways. 

When proliferation is triggered by growth factor signaling, there are a number of natural 

compounds that could inhibit growth. For example, vitamin A, which promotes 

differentiation, downregulates ras signaling. Resveratrol could block downstream signaling 

components such as ERK, AP-1, and alternative pathways, such as Hedgehog. Other 

signaling pathways that promote growth, such as Wnt, cytokine triggered STAT signaling, 

and receptor mediated activation of NF-κB, could be blocked, in part, by a variety of natural 

compounds. This suggests that a combination of natural compounds could have a significant 

impact upon proliferation, even at early stages of carcinogenesis, by inhibiting normal 

signaling pathways.
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Fig. 7. 
Evolution of genomic resources aimed at identification of cancer targets. There are a 

growing number of accessible genomic resources that provide an empirical foundation to 

identify genome-wide targets of tumor cell proliferation.
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