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Abstract

Advances in synthetic biology to build microbes with defined and controllable properties are 

enabling new approaches to design and program multispecies communities. This emerging field of 

synthetic ecology will be important for many areas of biotechnology, bioenergy and 

bioremediation. This endeavor draws upon knowledge from synthetic biology, systems biology, 

microbial ecology and evolution. Fully realizing the potential of this discipline requires the 

development of new strategies to control the intercellular interactions, spatiotemporal 

coordination, robustness, stability and biocontainment of synthetic microbial communities. Here, 

we review recent experimental, analytical and computational advances to study and build 

multispecies microbial communities with defined functions and behavior for various applications. 

We also highlight outstanding challenges and future directions to advance this field.

Introduction

Genetically modified microbial organisms are used in many applications in industrial and 

environmental biotechnology, from synthesis of materials, chemicals medicines, and fuels, 

to remediation of waste products and toxins. Recent advances in synthetic biology have 

substantially improved our ability to program these microbes quickly and cheaply on a large 

scale with greater control [1,2]. While many successes are documented for single-step 

microbial bioconversion reactions [3], potential applications that involve complex substrates 

may require the use of multiple pathways and processes, which may be difficult or 

impossible to execute efficiently using single strains. These and other complex applications 

may be best tackled by cohorts of different microbes, each programmed with specialized 

sub-functions that synergize towards an overall population-level function. This fact is 

evident in natural systems where single species do not occupy all niches in an environment, 

but rather multiple species coexist and perform complementary roles, creating intricate 

ecological networks [4].
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With a greater understanding of natural microbial interactions, dynamics, and ecology, we 

are poised to expand microbial engineering to mixed consortia in order to perform more 

complex and challenging functions in both closed and defined bioreactors as well as open 

and natural environments. This emerging field of synthetic ecology builds upon gene circuit 

design strategies [5] and further integrates ecological and evolutionary principles [6]. These 

population-scale considerations involve microbial interactions with complex dynamics and 

stability properties manifesting over different time and length scales. In this perspective, we 

explore how these properties can be applied to design and construct microbial communities 

relevant to emerging biotechnology applications (Figure 1). We specifically discuss four key 

considerations for building synthetic microbial communities: engineering various 

interspecies and intraspecies interactions, constructing spatiotemporal dynamics, modeling 

and maintaining community-wide functional robustness, and developing population control 

and biocontainment measures. We discuss recent examples of experimental and quantitative 

modeling advances that have enhanced our foundational capabilities to understand, develop 

and exploit synthetic microbial consortia in different settings.

Engineering Intercellular Interactions

Organisms in nature interact with one another through a variety of modes ranging from 

competitive or predatory behaviors to commensal and mutualistic exchanges that have been 

extensively explored in ecological studies [7]. Microbes living within communities are 

involved in many interactions simultaneously – competing for some resources while 

exchanging others. Over time, these tradeoffs create interspecies dependencies manifested 

by differing specialized phenotypes across various microbes. A key challenge for 

engineering consortia with stable interactions has been to understand how functions can be 

partitioned across a microbial population in productive compartments to achieve desirable 

population-level behaviors (Figure 2a).

Several studies have recently explored strategies to divide metabolic roles across different 

individuals in a consortium toward generation of a desired biochemical product. Minty et al. 
showed that a two-member microbial consortium containing a cellulase-secreting fungi, 

Trichoderma reesei, and an engineered E. coli strain that produced isobutanol could be used 

for the direct conversion of plant biomass into biofuels [8]. Zhou et al. engineered an E. coli 
and S. cerevisiae consortium that can more effectively produce natural products than the 

individual strains alone [9]. In this study, the biosynthetic pathway for oxygenated taxanes, a 

medically valuable diterpene chemotherapeutic, was partitioned into two separate pathways 

in E. coli and S. cerevisiae. A taxadiene intermediate was produced and secreted by E. coli 
and then taken up by the yeast to complete the necessary oxidation steps using more optimal 

eukaryotic cytochromes. Studies like these demonstrate that consortia containing members 

with specialized tasks can succeed in applications where single-strains would struggle.

A number of studies have explored syntrophic interactions using model bacterial and yeast 

systems that exchange essential metabolites [6]. Each strain is engineered to produce some 

but not all essential metabolites (e.g. amino acids). When these different auxotrophic strains 

are grown together, those with complementary metabolic functions are able to support the 

growth of one another as a syntrophic co-culture. These systems have been characterized in 
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synthetic communities of two [10,11], three, and up to 14 members [12]. A key observation 

from these studies is that metabolically costly resources are more likely to be involved in 

syntrophic exchanges. While metabolically-dependent specialist strains may be sensitive to 

some environmental perturbations (e.g. nutrient depletion), they can outcompete generalist 

cells in some environments due to more optimized metabolic configurations [13]. In fact, 

these metabolic dependencies may be prevalent in natural communities, with many 

sequenced genomes missing multiple essential biosynthetic pathways [12,14]. Furthermore, 

the magnitude and direction of metabolic exchange is potentially tunable by modulating 

membrane transporters and intercellular nanotubes [15].

Beyond metabolism, many intercellular interactions in bacterial ecosystems are mediated by 

the secretion, diffusion and exchange of diverse molecules including peptides, small-

molecules and natural products. These compounds are used by bacteria to sense their 

environment and communicate with surrounding cells. Quorum sensing, a general 

mechanism by which bacteria produce and respond to specific signaling molecules in a 

density-dependent fashion, offers a means to program cell-cell communication and 

coordinate population-level behavior. These simple bacterial communication systems 

possess modular and engineerable features that have been exploited extensively for rational 

design [16]. In a recent example, Saeidi et al. engineered an E. coli strain that was able to 

sense naturally produced quorum sensing molecules from P. aeruginosa and respond by 

turning on a self-lysis kill-switch to release a pyocin compound that inhibited the growth of 

the target pathogen [17]. Many opportunities exist to extend these approaches for 

cooperative intercellular interactions.

To model these microbial interactions, computational and genome-scale approaches may be 

used to inform the rational engineering of simple and complex consortia. Constraint-based 

methods such as flux balance analysis (FBA) use in silico metabolic reconstructions of 

cellular metabolism based on a set of known stoichiometrically balanced reactions to assess 

steady-state metabolite fluxes within the cell during growth. When extending these 

approaches to model synthetic or natural communities, each cell can be compartmentalized 

and fluxes between the compartments can be evaluated across the population to predict 

community-wide behaviors [18]. Currently, for most microbial species, incomplete or 

missing information about the metabolic network components and their biochemical 

functions make FBA-based methods challenging. Furthermore, drawing realistic inferences 

from these models requires constraints for maximizing community-wide objective functions 

(e.g. growth), which may be difficult to define or can change on an individual level across a 

dynamic community. Nevertheless, these approaches can be useful for predicting metabolite 

flux and exchange in microbial communities. Nagarajan et al. recently constructed a 

metabolic model of two Geobacter species that parameterized their metabolite exchange and 

direct electron transfer to characterize their syntrophic growth dynamics [19]. Such a model 

system may have useful applications in bioremediation and microbial fuel cells. Beyond 

studying physiology of naturally interacting microbes, computational tools are needed to 

better predict the behavior and impact of engineered genetic pathways on community 

dynamics. McClymont and Soyer developed Metabolic Tinker, a graph-based tool that can 

identify thermodynamically-feasible biochemical routes to a desirable compound [20]. Such 

approaches can help predict and design new metabolic interactions between synthetically 
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engineered microbial consortia. Integration of biochemical, transcriptomic, proteomic, and 

metabolomic data [21] will help to better parameterize these in silico models to improve 

predictions for rationally designed communities [22,23].

An emerging area of quantitative models is the use of economic principles to study 

microbial trade [24]. The vast diversity of microbial metabolic capabilities offers 

opportunities for production and exchange of specific metabolites between two or more 

microbes that can be mutually beneficial. Similar processes underlie modern economic 

markets where businesses and nations produce and consume goods and can improve 

efficiency through trade. Furthermore, economic concepts such as specialization, vertical 

integration, market competition and even farming have analogous processes in the microbial 

world [25]. The extensive literature in economic theories and frameworks can be adapted to 

model trade in microbial communities using analogous parameterizations for productivity, 

utility, import and export rates, and growth maximization. We and others recently applied the 

economic principle of comparative advantage to microbial trade [26,27]. Based on general 

equilibrium theory, we showed that trade in microbial community can be stabilized when 

trading agents benefit from the exchange of resources that they are relatively more efficient 

at producing [26]. These analytical predictions can be experimentally explored using simple 

bacterial models, yielding important insights into the stability, efficiency, and design 

principles of microbial metabolic exchange. A key challenge moving forward will be 

parameterizing these models using data from realistic environmental settings [28]. On the 

other hand, these model microbial communities can offer economists a new tool to test 

economic theories and hypotheses that are difficult to implement in real economic settings 

[29].

Understanding Interactions in Space and Time

While most synthetic microbial communities developed to date have been studied in well-

mixed co-cultures, many microbes in nature exist in spatially defined structures such as 

surface-attached biofilms. Spatial assortment of cells creates locally heterogeneous 

subpopulations with varying resource availabilities that strengthens local interactions, avoids 

global catastrophes such as the tragedy of the commons [30], and improves resilience to 

environmental stresses [31].

Several general approaches have been explored to build spatially defined microbial 

communities by organizing the physical environment, patterning specific community 

structures, or engineering cells with programmed aggregation behaviors (Figure 2b). 

Microfluidic and microwell devices have been used to build microbial communities where 

individual species are grown in separated chambers that allow metabolites to exchange 

freely, but restrict physical contact between cells [32]. Other strategies using micro-contact 

printing techniques allow specific members to be arranged in defined geometric patterns on 

two-dimensional surfaces [33]. Additionally, 3D-printing technologies have recently enabled 

construction of microbial communities with more complex structures [34]. To engineer 

surface attachment interactions, Nguyen et al. developed a nanofiber display platform to 

functionalize the extracellular matrix of microbial biofilms [35]. By fusing metal and 

nanoparticle binding peptides to an amyloid protein, they were able to program E. coli 
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biofilms to adhere to specific abiotic surfaces and particles. Furthermore, programmed 

aggregation behaviors have been demonstrated in a two-member consortium that 

sequentially colonized a surface and could be inducibly dispersed to clear the engineered 

biofilm.

Beyond experimental systems for spatial control of engineered communities, a number of 

computational and in silico methods have emerged to better model communities in 

structured environments. Harcombe et al. recently developed COMETS, a dynamic flux 

balance framework that simulates microbial growth on a two-dimensional surface [36]. This 

approach accurately predicted the steady-state abundances of a three-species consortium 

grown in defined medium. Furthermore, experiments validated predictions that certain 

spatial distributions of competing colonies and crossfeeding partners can lead to counter-

intuitive growth benefits. Other approaches using agent-based modeling frameworks have 

been explored to assess metabolic and population feedbacks in structured environments [37] 

and to model interspecies interactions during biofilm formation [38]. These emerging 

computational and experimental advances will enable more sophisticated design and control 

of consortia across space and time.

Maintaining Community Robustness

An important engineering consideration is the long-term stability of microbial consortia in 

challenging and open environments where engineered populations may experience changing 

conditions and exposure to competitive species. Furthermore, these consortia will change 

over time due to genome evolution and horizontal gene transfer [39]. In individual strains, 

engineered genetic circuits can lose function even on short timescales [40]. Loss of 

engineered function can lead to cheating (i.e. utilization of common goods without 

reciprocal contribution) and nonproductive phenotypes, which decrease population-level 

performance. To mitigate evolutionary decay of genetic circuits, strategies to reduce host 

mutation rates and avoid mutation-prone designs have been suggested [41]. The maintenance 

of community robustness and function over operationally-useful timescales is a key 

challenge for deployment of multispecies consortia in complex settings (Figure 2c).

To engineer stable consortia with defined function, strategies need to be developed for 

surveilling and enforcing cooperative or synergistic community properties at the level of 

individual members. While cheating phenotypes can contribute to population instability and 

reduced consortia performance, various strategies have been explored to undermine their 

emergence. Spatial self-organization can promote cooperative behaviors by excluding 

cheaters and invaders [42,43]. Cooperators can also avoid cheaters by responding to 

environmental cues for advantageous times to produce public goods [44]. Furthermore, 

cooperative interactions can be reinforced when genes encoding these traits are actively 

transferred between cells [45]. Engineering biosensors that monitor the presence of trading 

partners and privatizing metabolic exchange through intercellular nanotubes between cells 

[46] could also be used to enhance cooperative interactions.

Competitive and antagonistic interactions from native species pose another challenge for 

engineered consortia. For relatively simple consortia composed of a small number of 
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species, unoccupied metabolic niches may lead to colonization of invasive species. A recent 

theoretical analysis suggests that competitive interactions are crucial for population stability 

in highly diverse communities [47], posing a challenge for current synthetic consortia of 

limited population diversity. In addition to competition, antagonism (e.g. antibiotic 

production and degradation) also promotes coexistence of competing species [48], 

highlighting the importance of non-metabolic interactions. Furthermore, stochastic events 

can also create population fluctuations in mixed communities that destabilize community 

structure and composition [49]. Further basic research is needed to understand these 

dynamics and to develop engineering solutions to mitigate their adverse effects on desired 

community function.

Biocontainment and Population Control

Deployment of engineered microbial communities in open environments will require precise 

control of population growth. Furthermore, biocontainment of these systems will ensure that 

engineered functions are not released into and do not disrupt natural ecosystems, yielding 

unintended negative consequences [50]. To address these potential concerns, several groups 

have attempted to develop biocontrol and containment strategies to modulate growth rate, 

yield, and function (Figure 2d). For example, E. coli and yeast have been recoded to require 

supplementation of non-natural amino acids [51,52] or defined small molecules for growth 

[53]. By changing the levels of these externally supplied molecules, population growth could 

be precisely controlled. To further prevent the potential for engineered populations and their 

genes to escape into the environment, kill switch gene circuits have been developed to 

contain modular multilayered programmable input logic that can respond to different 

environmental conditions [54]. Ongoing concerns for the dissemination of engineered traits 

to natural populations through horizontal DNA transfer have led to strategies using CRISPR 

systems to precisely target and degrade defined sequences in the genome to prevent their 

possible escape [55].

Beyond biocontainment, precise population control may be desirable for executing cell 

density-dependent functions. To coordinate population-level function across various length 

and time scales, several approaches including the using of quorum sensing have been 

exploited to develop gene circuits that respond to population densities and modulate growth 

and function accordingly [56–58]. Regulation of amino acid export has been used to tune the 

abundance and membership ratios of a crossfeeding microbial consortium to control 

community-wide function [15]. Recent approaches to develop multicellular gene circuits 

enable execution of complex tasks and logic functions across multiple independently tunable 

and modular strains [59,60]. Scale-up and synthesis of these approaches for higher order 

systems and diverse hosts will be a new frontier for engineering precisely controllable 

microbial ecosystems.

Conclusions and Future Outlook

Synthetic ecology presents an exciting opportunity to leverage recent theoretical and 

experimental advances in synthetic biology, ecology, and computational biology to rationally 

engineer useful microbial consortia in a variety of environmental and biotechnological 
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applications. With the recent revolution in genome engineering capabilities to manipulate 

microbes and higher-order organisms [2], the scale up of microbiome engineering to systems 

with more complex functions in dynamic environments is poised to become an exciting and 

fruitful endeavor for synthetic biology. New opportunities to engineer microbial 

communities in open and changing environments will require next-generation in situ 
approaches [61]. The bottom-up study of synthetic communities will likely yield a better 

understanding for natural microbial ecology by systematically evaluating individual 

parameters in a controlled environment in an iterative design-test-learn cycle. In turn, the 

exploration and characterization of new microbial ecosystems will further lend insights into 

the fundamental principles that enable the modeling and engineering of synthetic 

communities in many useful applications.
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Highlights

Synthetic microbial communities have many potential uses in industrial biotechnology.

Defined intercellular and spatiotemporal coordination enable precise consortia 

engineering.

Community robustness and stability should be assessed and designed into synthetic 

systems.

Deployment of biocontainment and population control measures are needed for real-

world applications.
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Figure 1. 
A summary of the design and utility of synthetic microbial communities. In addition to 

principles used in single-strain engineering, community engineering allows for 

diversification of biochemical roles in breaking down complex substrates, and optimized 

compartmentalization of pathways between individuals for simultaneous execution of 

multiple functions with reduced individual burden. Synthetic communities can be further 

engineered with increased robustness through interdependencies and spatiotemporal control.
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Figure 2. 
Key principles for engineering microbial communities. (A) Various metabolic interactions 

can be designed and leveraged for multispecies production of a desired product. (B) 

Communities can be spatially and temporally coordinated through engineered environments 

and programmed aggregation behavior. Quantitative in silico modeling of structured 

environments will improve the design of these consortia. (C) Population robustness can be 

maintained through strategies that enhance cooperation, avoid cheating, and promote non-

metabolic stabilizing interactions, such as antibiotic antagonism. Various modeling 
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approaches are need to study the dynamics and stability of the systems. (D) Biocontainment 

methods use synthetic auxotrophies or kill switches to control growth and function of 

engineered microbial communities.
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