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Abstract

Torque Teno viruses (TTVs) are small DNA viruses which are ubiquitous in nature. Recent reports 

indicate that swine torque teno viruses (TTSuVs) can act as primary pathogens or play a role in 

exacerbating co-infections. However, very little is known about the TTSuV host-viral interaction 

or how they so successfully establish chronic infections in the host. To determine whether the 

major viral proteins can modulate host immunity, recombinant TTSuV1 ORF1 and 2 proteins were 

expressed in a swine macrophage cell line (3D4/31). The differential expression of a panel of 

innate, adaptive, regulatory and inflammatory immune genes was studied by quantitative PCR; 

using cDNA samples collected at 6, 12, 24 and 48 hrs post-transfection. The ORF1 protein 

induced an early anti-viral response. However, at 6hrs post-transfection it also upregulated IL-10, 

PD-1 and SOCS-1, the suppressors of T cell mediated immunity. An ensuing diminishment of the 

early protective response was noted. The TTSuV1 ORF2 protein suppressed IFN-β and IL-13 

responses but did not significantly influence anti-viral immunity otherwise. These findings 

indicate that the TTSuV1 ORF1 protein plays a significant but dual role in viral immunity.
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Torque Teno Sus Viruses (TTSuVs) are small, ubiquitous, single stranded DNA viruses, 

which are highly genetically diverse. Their circular genomes vary in length from 3.6 to 

3.8Kb (Okamoto, 2009a). Three known viral proteins namely, ORF1, ORF2 and ORF3 are 

transcribed and translated from the viral genome. In addition, multiple isoforms of the ORF1 

and ORF2 proteins have also been detected (Kakkola et al., 2009; Martinez-Guino et al., 

2011). The ORF1 protein is the largest viral protein and is believed to encode the capsid 

protein. Very little is known about the functions of any of the TTV proteins or their role in 

replication and pathogenesis. The fact that TTVs do not readily replicate in cultured cells is 

a major limitation in studying TTV's at the molecular level (Kekarainen and Segales, 2012). 
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In natural infections, high loads of TTV DNA are detected in immune cells (Lee et al., 2014) 

including macrophages (Lee et al., 2015) while primary cultures of PBMCs support TTV 

replication (Mariscal et al., 2002).

A wide variety of mammals including humans, swine, dogs, chimpanzees and tupais serve as 

hosts for TTVs (Okamoto, 2009b), in a species-specific manner. Sero-prevalence levels are 

reported to range from 50-98% in both humans and swine (Rammohan et al., 2012; 

Spandole et al., 2015). Two major genogroups, TTSuV1 and TTSuV2, are commonly 

detected in swine. We recently found that the prevalence of TTSuV1 in swine with 

manifested clinical signs of the porcine respiratory disease complex (PRDC) is 

approximately 85-90%, while the baseline prevalence rate was only about 55% (Rammohan 

et al., 2012). Others have also reported strong epidemiological associations of TTSuVs with 

pathogens like swine influenza, the porcine reproductive and respiratory disease syndrome 

virus and especially porcine circovirus strain 2 (PCV2) (Aramouni et al., 2013; Aramouni et 

al., 2011; Blomstrom et al., 2010; Lee et al., 2015; Li et al., 2015). In experimental studies, 

infection with TTSuV1 induced lung and kidney lesions in gnotobiotic swine (Krakowka 

and Ellis, 2008), while co-infections with other viruses exacerbated clinical signs (Ellis et 

al., 2008; Krakowka et al., 2008), indicating that TTSuVs can act as primary or co-infecting 

pathogens in swine. A majority of human TTV-related literature are also epidemiological 

studies associating TTV's with a wide spectrum of disease conditions including respiratory, 

hepatic, autoimmune diseases and cancer (Kekarainen and Segales, 2012; Spandole et al., 

2015). Moreover, TTVs are common environmental contaminants and are detected in some 

veterinary vaccines and human drugs (Griffin et al., 2008; Kekarainen et al., 2009).

Despite the high prevalence of TTV's in several mammalian species, their ability to produce 

life-long infections and the well-documented epidemiological association with numerous 

disease conditions in swine and humans, very little is known about the mechanistic basis by 

which TTV's achieve such ubiquity. Based on the logical premise that TTSuVs should be 

able to very successfully suppress host immunity to establish chronic infections, we 

describe, for the first time, the role of two major viral proteins, ORF1 and ORF2, in 

regulating immune gene expression in porcine macrophages. We show that the TTSuV1 

ORF1 protein induces the early expression of the classical markers for chronic viral diseases 

including IL-10, PD-1 and SOCS-1, while the ORF2 protein did not appear to play a major 

role in stimulating anti-viral genes. This study provides an important over-view of the 

immune interaction between two major TTSuV1 proteins and swine macrophages.

Macrophages are key immune cells involved in phagocytosis, stimulating innate immunity 

and antigen presentation (Focosi et al., 2015; Maggi et al., 2001). The immortalized 3D4/31 

cell line is derived from porcine alveolar macrophages and is convenient for the in-vitro 
study of viral immunity (Weingartl et al., 2002) as it obviates the need for primary cultures. 

At a length of about 1900bps, the TTSuV1 ORF1 encodes the putative viral capsid protein 

and occupies approximately 70% of the viral genome. The ORF2 protein is non-structural 

and had been previously implicated as interfering with NFkB activity (Zheng et al., 2007). 

Strong antibody responses to both ORF1 and ORF2 are detected in swine (Huang et al., 

2011; Huang et al., 2012a) and humans (Chen et al., 2013) respectively. Therefore, both 

proteins are produced in natural TTSuV infections and are immunogenic. Hence the 
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TTSuV1 ORF1 and 2 were selected for analysis in the 3D4/31 macrophage cell line in this 

study. Like the polyoma and papilloma viruses, TTV's do not readily replicate in cultured 

cells (Kekarainen and Segales, 2012), and require the use of primary cultures or animal 

passaging for propagation. Therefore, the analysis of the expression of immune genes in 

virally infected 3D4/31 cells was not possible in this study. It was recently shown that 

transfection of the viral genome in mammalian cells results in the production of viral 

particles, although serial infection of cultured cells with the rescued virus was not productive 

after some passages (Huang et al., 2012b). Studying gene expression in the entire viral 

context will be the focus of our future studies.

To clone and express the ORFs 1 and 2, viral DNA was extracted from the bone marrow of a 

pig which was positive for TTSuV1 by PCR (Rammohan et al., 2012), using the QIAamp 

DNA Mini Kit (Qiagen, Valencia, CA). Primers with sequences 

5’AGTCAAGCTTTGGCTCCT ACTCGCCGATGGAG-3’ and 5’- ACGTCTCGAGTT 

TGAAGTCCGTGTCCCACCAGAAC-3’ were used to amplify ORF1 while 5’-

AGTCAAGCT TTGCCGGAACACTGGGAGGAAG-3’ and 5’-

ACGTCTCGAGCCAGCCATCGTCGCCGATAGTC-3’ were used for ORF2. Amplified 

products were directionally cloned into pcDNAV5His A (Thermofisher, Grand Island, NY), 

downstream of a CMV promoter for mammalian expression and in- frame with a V5 epitope 

tag. The integrity of the constructs was verified by restriction digestion and sequencing.

To verify protein expression, the porcine macrophage cell line 3D4/31 (ATCC CRL-2844) 

was transfected with the ORF1 and 2 expression constructs using Lipofectamine® LTX 

(Thermofisher, Grand Island, NY), following the manufacturer's instructions. Protein 

expression was visualized by an immuno-fluorescence assay, 48hrs after transfection, by 

staining with a rabbit, polyclonal, anti-ORF1 TTSuV1b antibody (Huang et al., 2011)

(provided by Dr. X.J. Meng, Virginia Tech) at a 1:100 dilution for ORF1 and a 1:500 

dilution of the anti-V5 tag antibody (ThermoFisher, Grand Island, NY) for ORF2 as an 

ORF2-specific antibody is not available. Cells transfected with the ORF1 and 2 constructs 

were also examined by IFA at 6, 12, 24 and 48hrs to ensure that expression was evident at 

the time points of sample collection for gene expression analysis. The sizes of both proteins 

were also confirmed by western blotting (data not shown). Confirming others findings 

(Martinez-Guino et al., 2011), fluorescence was localized to the nucleus and nucleolus for 

ORF1 while it was both nuclear and cytoplasmic for ORF2 (Fig 1). Strong expression of 

both proteins was detected at the 6, 12, 24 and 48hr time points tested in this study.

To prepare mRNA and cDNA for immune gene expression analysis from transfected cells, 

3D4/31 cells were transfected with 12ug of plasmid DNA expressing the TTSuV1 ORF1 or 

2, as described above. Three biological replicates of each transfection, each consisting of 

technical duplicates (total of 6 values) were analyzed. Cells transfected with the empty 

pcDNA3.1V5 HisA plasmid and untransfected 3D4/31 cells were used to obtain baseline 

values. Cells were harvested at 6, 12, 24 and 48hrs after transfection for RNA extraction by 

the RNeasy Mini Kit (Qiagen, Valencia, CA) and cDNA synthesis with the iScript cDNA 

synthesis kit (Bio-Rad, Hercules, CA) according to the manufacturer's instructions and after 

ensuring purity and absence of genomic DNA. The synthesized cDNA was quantified with a 

nano-spectrophotometer and stored at -80°C in aliquots until further use.
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Quantitative PCR (qPCR) to measure the differential expression of 22 immune genes and 5 

housekeeping genes (B2M, HPRT, GAPDH, HPL-10, TBP-1) (Table 1) was performed 

essentially as previously described (Dobrescu et al., 2014). Additional primer pairs were 

designed to detect programmed death domain 1 (PD-1) transcripts. The primer sequences 

used for PD-1 amplification consisted of 5’-CCCATCGTGGGCATCATT-3’and 5’-

GTCTTCCTCCAGATCACAACT-3’. The qPCR conditions included denaturation at 95°C 

for 3 min followed by 45 cycles of 95°C for 15secs and 60°C for 40secs in 10μl iTaq™ 

universal SYBR® Green Supermix (Biorad, Hercules, CA). Following optimization, a single 

melt peak was obtained, indicating that the reaction was specific. The product was 

appropriately sized on gel electrophoresis. The efficiency of the reaction was 94%.

Quantification of gene expression was achieved using the standard ΔΔ Ct method (Livak and 

Schmittgen, 2001) . The stability of the house keeping genes across experiments was 

assessed as the standard deviation between replicates. As variation was minimal, the mean 

Ct value of all five house - keeping genes were used for analysis. Genes showing a 2-fold 

difference or greater in expression levels when compared to the controls were considered to 

be significantly regulated. Statistical differences were assessed by the Wilcoxson rank sum 

test.

To verify protein expression for selected genes, cell culture supernatants from 3D4/31 cells 

transfected with either the TTSuV1 ORF1 or 2 expression constructs as described above, 

were tested with commercial ELISAs for the detection of IL-10 or TNF-α (Porcine TNF-α 

ELISA Kit, ThermoScientific, Grand Island, NY, Porcine IL-10 ELISA Kit, Invitrogen, 

Carlsbad, CA), according to the manufacturer's instructions. The mean of duplicate values 

for the treatment groups were subtracted from the baseline values of the empty expression 

vector for representation. Statistical significance at p ≤ 0.05 was assessed by a Student's T 

test.

Dampening of the early type I interferon response is a common mechanism by which viruses 

establish chronic infections. The suppression of IFN-α and β, in turn, down regulates 

interferon-induced host restriction factors. Previous studies showed that a TTV-encoded 

miRNA can inhibit type I interferon production (Kincaid et al., 2013). While additional 

studies in a viral context are required to demonstrate this conclusion, our data supports the 

finding that the TTSuV1 ORF1 protein could also potentially contribute to the suppression 

of IFN-α via other mechanisms, because the expression of IFN-α was downregulated by 

ORF1 at 6, 12, 24 and 48hrs post-transfection and by ORF2 at the 24hrs time point (Fig2). 

However, IFN-β was transiently upregulated by ORF1 at 6hrs and corresponded to a 

transient and early upregulation of interferon-induced innate genes such as Mx2, OAS-1, 

RNaseL and PKR, (Fig 3). The interferon induced innate genes, OAS-1, RNaseL and PKR 

act synergistically (Silverman, 2007) and are commonly associated with anti-viral responses 

to RNA viruses. However, they are also known to restrict DNA viruses such as polyoma 

(Hersh et al., 1984), pox (Diaz-Guerra et al., 1997) and herpes viruses (Khabar et al., 2000) 

due to the single and double stranded RNA intermediates which are produced during 

transcription (Sadler and Williams, 2008). The Mx1 and Mx2 proteins are GTPase's which 

prevent early viral replication by binding to viral nucleoproteins and preventing their 

trafficking in vesicles (Sadler and Williams, 2008). Among the DNA viruses, the hepatitis B 
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virus is susceptible to MxA activity (Gordien et al., 2001). The mechanisms by which Mx2 

acts are as yet unclear. Mx1 and Mx2 are believed to function independently due to 

differences in the structural determinants associated with their function and difference in the 

requirement for GTPase activity (Kane et al., 2013), providing a possible explanation for 

why Mx1 was downregulated by ORF1 at 6hrs while Mx2 was upregulated.

IL-10 down-regulates macrophage activity in swine and is an adaptive Th2, as well as anti-

inflammatory cytokine. In a number of chronic viral infections including porcine circovirus 

strain 2 (PCV2) infections, the upregulation of IL-10 results in a diminished antiviral and 

Th1 response (Darwich et al., 2008; Ng and Oldstone, 2014). In this study, the upregulation 

of IL-10 at 6hrs by ORF1 corresponded with a downregulation of IFN-ɣ, a hall-mark Th1 

adaptive cytokine (Table 2). In the cell culture supernatants tested by the commercial 

ELISA, IL-10 was detected at 6 and 12hrs post-transfection but not at statistically significant 

levels (Fig 7). The functions of IL-13 and IL-4 have a considerable overlap in swine; in fact, 

IL-4 is not very strongly expressed in this species (Bautista et al., 2007).In this study, the 

ORF2 protein downregulated IL-13 expression, while ORF1 downregulated IL-4 expression 

at 12hrs (Table 2). The suppression of IL-13 and IL-4 production could have negative 

implications for antibody-mediated immunity and antigen presentation in TTSuV infections.

It was previously reported that TTV ORF2 suppresses IL-6, IL-8 and COX-2 production by 

inhibiting NFĸB (Zheng et al., 2007). In contrast, TTSuV1 ORF2 did not regulate the 

expression of pro-inflammatory cytokines significantly in this study, as detected by both the 

qPCR (Fig 4) and ELISA (Fig 7). However, TTSuV1 ORF1 upregulated IL-1β, IL-6 and 

TNF-α at 6, 12 and 24hrs post-transfection (Fig 4). Expression at the protein level was 

confirmed as TNF-α was detected in cell culture supernatants at 24 and 48hrs post-

transfection (Fig7), although the values were not statistically significant. The NLRP3 

inflammasome pathway, which plays a key role in maintaining pro-inflammatory cytokine 

production (Baroja-Mazo et al., 2014), was suppressed at 12hrs by ORF1 (Fig 4). A 

corresponding lack of expression of IL-1 β and IL-6 beyond this is time point was noted. 

Therefore, it appears that the TTSuV1 ORF1 protein has a transient immuno-stimulatory 

effect in transfected macrophages.

Similar to IL-10, SOCS-1 and PD-1 are negative regulators of the T cell response. 

Upregulation of PD-1 suppresses IL-12 production in monocytes and macrophages and, 

therefore, further development of protective immunity (Ma et al., 2011). Both SOCS1 and 

PD-1 are expressed at high levels in some chronic viral infections and may act 

synergistically. For example, the Hepatitis C virus core protein upregulates both SOCS-1 

and PD-1 to synergistically suppress T cell responses (Yao et al., 2007; Yoshida et al., 2004). 

Both proteins are physically associated in co-immuno-precipitation studies (Zhang et al., 

2011). Similarly, SOCS-1 and PD-1 are simultaneously upregulated in herpes simplex viral 

infections (Channappanavar et al., 2012; Mahller et al., 2008). In our study, the upregulation 

of SOCS-1, PD-1 and IL-10 by ORF1 at 6hrs post-transfection is a likely explanation for the 

sudden decline in anti-viral and pro-inflammatory cytokine production after 6hrs post-

transfection (Fig 5). No significant changes were noted in SOCS-1 and PD-1 expression in 

cells transfected with the ORF2 expression plasmid.

Singh and Ramamoorthy Page 5

Virus Res. Author manuscript; available in PMC 2017 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Toll-like receptor 9 (TLR9) which recognizes unmethlyated CpG motifs in microbial DNA 

(Hemmi et al., 2000) and the DNA-dependent activator of IRFs (DAI/ ZBP-1) (Takaoka et 

al., 2007), are two well-characterized cytosolic DNA sensors which stimulate innate, anti-

viral immunity against DNA viruses (Triantafilou et al., 2014). Their downstream signaling 

cascades involve IRF3 and NFĸb, culminating in the production of IFN-β. In macrophage 

cells expressing the TTSuV1 ORF1 protein, coinciding with the early upregulation patterns 

of IFN-β, the pro-inflammatory cytokines and interferon stimulated genes, TLR9 was 

significantly upregulated at 6hrs but the trend was reversed for other time points (Fig 6). No 

significant changes were noted for ORF2 or DAI-ZBP-1. Indeed, three CpG islands were 

predicted by the MethPrimer prediction tool (Li and Dahiya, 2002) in the ORF1 DNA, while 

only one was predicted in the ORF2 DNA coding sequence. These results provide a 

preliminary indication that TLR9 could play a role in the protective host immune response to 

TTSuV1.

It is known that mRNA transcript and protein expression patterns may not always be highly 

correlated. A recent study found that the correlation between mRNA and protein levels are 

significantly more reliable for differentially expressed genes when compared to genes which 

not affected by the treatment under the same experimental conditions (Koussounadis et al., 

2015). In this study, the pattern of protein expression for IL-10 and TNF-α mimicked the 

patterns of gene expression. The low magnitude of the protein response measured can be 

attributed to assay sensitivity, differences in the protein half-life or a lag in the processing of 

mature mRNA from the preRNA transcripts. A more extensive characterization of protein 

expression is not within the scope of this study.

Overall, the TTSuV1 ORF1 protein stimulated the early expression of anti-viral genes. 

However, the ORF1 protein also strongly stimulated the negative regulators of T cell 

immunity such as IL-10, SOCS-1 and PD-1, at the same time. The structural/ cellular 

elements and the context in which the ORF1 protein can play such a dual role in TTV 

infections remain to be examined. While we acknowledge the limitations of an in vitro 
analysis in generating data which can be directly translated to in vivo infections of the host, 

our study provides an initial over-view of the immune regulation in macrophages, an 

immunologically important cell type, by two of the well-recognized TTSuV1 proteins. 

Contrary to expectations, the TTSuV1 ORF2 protein did not have a major role in modulating 

immune gene expression in transfected macrophages. Its function in viral replication and 

pathogenesis remain to be unraveled.
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Highlights

-The influence of TTSuV1 ORF1 and 2 proteins on host immune gene expression 

was studied

-ORF1 induced the early expression of pro-inflammatory and innate immune genes

-ORF1 upregulated SOCS-1, PD-1 and IL-10, negative regulators of the immune 

response

-ORF2 did not play a major role in immune-suppression.
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Fig 1. 
Immunofluorescent images of the expression of TTSuV1 ORF1 and 2. The swine 

macrophage cell line 3D4/31 was transfected with TTSuV1 ORF1 (left image) or ORF2 

(right image). Protein expression was detected with either a rabbit anti-ORF1 antibody 

(ORF1) or mouse anti-V5 tag monoclonal antibody (ORF2). Apple green fluorescence in the 

nucleus for ORF1 and in both the nucleus and cytoplasm for ORF2 is indicative of 

expression of the relevant protein. Representative images at 24 hrs post-transfection are 

presented. Fluorescence was not detected in untransfected cells (image not shown).
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Fig 2. Differential expression of Type I Interferons
The mean relative fold change values for IFN-α and IFN-β at 6, 12, 24 and 48 hrs post-

transfection of 3D4/31 swine macrophage cells expressing the TTSuV1 ORF1 or ORF2 

proteins is depicted. A mean of 4 values is shown. Values ≥ 2 fold changes are considered 

significant (solid bar). Insignificant changes are not depicted. * p ≤ 0.05.
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Fig 3. Expression of interferon-induced innate genes
The differential expression of Mx1, Mx2, OAS-1, PKR and RNaseL at 6, 12, 24 and 48 hrs 

post-transfection is shown as the mean of four replicates. The swine macrophage cell-line, 

3D4/31, was transfected with constructs expressing the TTSuV1 ORF1 or ORF. Values ≥ 2 

two-fold changes when compared to control cells transfected with the empty vector are 

considered significant (solid line). No significant regulation was detected in cells transfected 

with the TTSuV1 ORF2 expression plasmid (data not shown). * p ≤ 0.05.
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Fig 4. 
Regulation of pro-inflammatory cytokines by the TTSuV1 ORF1: The mean fold change 

values of four replicates at 6, 12, 24 and 48hrs after transfection of the porcine 3D4/31 

macrophage cell line, calculated by the ΔΔ Ct method is shown. Fold change values ≥ 2 in 

comparison to the control cells transfected with the empty vector are considered significant 

(solid line). Insignificant data points are not depicted. No significant changes were noted in 

TTSuV1 ORF2 transfected cells. * p ≤ 0.05.
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Fig 5. 
Differential expression of immune regulatory genes: Fold change values for SOCS-1 and 

PD-1 (calculated by the ΔΔCt method) as the mean of four replicates of 3D4/31 swine 

macrophage cells, transfected with the TTSuV1 ORF1 protein at 6, 12, 24 and 48hrs are 

depicted. Fold change values ≥ 2 are considered significant (solid line). Insignificant values 

are not depicted. No significant changes were noted for cells transfected with the TTSuV1 

ORF2 expression plasmid. * p ≤ 0.05.
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Fig 6. 
Differential expression of pattern recognition receptors: The mean fold change values of the 

cytosolic DNA sensors TLR9 and DAI-ZBP1 calculated by the ΔΔCt method for are shown. 

Swine 3D/4 31 swine macrophage cells were transfected with a TTSuV1 ORF1 or ORF2 

expression construct and samples collected at 6, 12, 24 and 48hrs. Fold change values ≥ 2 

are considered significant (solid bar). No significant changes in expression were noted for 

ORF2. * p ≤ 0.05.
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Fig 7. 
Detection of IL-10 and TNF-α by ELISA: The mean value of two replicates of cell culture 

supernatants from 3D4/31 cells transfected with the TTSuV1 ORF1 is shown. The average 

of the negative control values from cells transfected with the vector alone was subtracted 

from data for the treatment groups. IL-10 or TNF-α were not detected in the supernatants of 

TTSuV1 ORF2 transfected cells (data not shown). * - p ≤ 0.05 (Student T test).
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Table 1

List of immune genes in the qPCR panel

Category Genes

Innate IFN-α, IFN-β, Mx1, Mx2, OAS-1, PKR, RNaseL

Adaptive IFN-Ɣ, IL-10,IL-13, IL-4

Inflammation IL-1β, IL-6, NLRP3, TNF-α, TRAIL

Regulatory SOCS-1, PD-1

DNA Pattern Recognition TLR9, DAI-ZBP-1

House Keeping Genes β2M, HPRT,GAPDH,HPL-19,TBP-1
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Table 2

Regulation of adaptive immune genes

Gene

Time Point

6hrs 12hrs 24hrs 48hrs

ORF1 ORF2 ORF1 ORF2 ORF1 ORF2 ORF1 ORF2

IFN-γ NS −2.08±1.80 −3.55±2.14 NS NS NS NS NS

IL-10
12.47±3.21

* NS NS NS NS NS NS NS

IL-4 NS NS −3.96±2.32 NS NS NS NS NS

IL-13 NS NS NS −6.49±2.98 NS
−7.18±2.41

* NS −7.88±3.33

*
p≤ 0.05
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