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Abstract

Gap junctions are formed from ubiquitously expressed proteins called connexins that allow the 

transfer of small signaling molecules between adjacent cells. Gap junctions are especially 

important for signaling between osteocytes and other bone cell types. The most abundant type of 

connexin in bone is connexin 43 (Cx43). The C-terminal domain of Cx43 is thought to be an 

important modulator of gap junction function but the role that this domain plays in regulating 

tissue-level mechanics is largely unknown. We hypothesized that the lack of the C-terminal 

domain of Cx43 would cause morphological and compositional changes as well as differences in 

how bone responds to reference point indentation (RPI) and fracture toughness testing. The effects 

of the C-terminal domain of Cx43 in osteocytes and other cell types were assessed in a murine 

model (C57BL/6 background). Mice with endogenous Cx43 in their osteocytes removed via a Cre-

loxP system were crossed with knock-in mice which expressed Cx43 that lacked the C-terminal 

domain in all cell types due to the insertion of a truncated allele to produce the four groups used in 

the study. The main effect of removing the C-terminal domain from osteocytic Cx43 increased 

cortical mineral crystallinity (p=0.036) and decreased fracture toughness (p=0.017). The main 

effect of the presence of the C-terminal domain in other cell types increased trabecular thickness 

(p<0.001), cortical thickness (p=0.008), and average RPI unloading slope (p=0.004). Collagen 

morphology was altered when either osteocytes lacked Cx43 (p=0.008) or some truncated Cx43 

was expressed in all cell types (p<0.001) compared to controls but not when only the truncated 

form of Cx43 was expressed in osteocytes (p=0.641). In conclusion, the presence of the C-terminal 
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domain of Cx43 in osteocytes and other cell types is important to maintain normal structure and 

mechanical integrity of bone.

Keywords

type I collagen; reference point indentation; Raman spectroscopy; atomic force microscopy; 
fracture toughness; bone

1. INTRODUCTION

Gap junctions are ubiquitously expressed protein channels that allow for rapid signaling 

between adjacent cells by linking the cells’ cytoplasm and permitting ions and small 

molecules (< 1 kDa) to be transported between the cells.(1) The most common gap junction 

channel in bone is formed from connexin 43 (Cx43) wherein six Cx43 molecules assemble 

into a hemichannel in each cell and the two hemichannels dock to complete the gap 

junction.(2) In bone gap junctions are important for communication within the osteocyte 

network and between osteocytes and other cell types on the surface of bone to coordinate 

structural changes and respond to mechanical loading/unloading.(3–6) The clinical 

importance of proper Cx43 gap junctions function is apparent in oculodentoligcal dysplasia 

(ODDD) which is characterized by craniofacial and skeletal abnormalities caused by 

mutations in GJA1 that result in amino acid changes at critical highly conserved locations in 

Cx43’s structure.(7)

Cx43’s structure consists of an intracellular amino terminus, four transmembrane loops 

connected by two extracellular loops and one intracellular loop, and an intracellular carboxyl 

terminus.(1) The N-terminal domain is small compared to the C-terminal domain and 

modulates the voltage-gated behavior of the channel whereas the larger C-terminal domain 

serves as a scaffold for downstream signaling molecules to associate with the channel and 

regulates channel closing.(8–10) Due to both channel dependent and independent functions of 

the C-terminal domain,(11, 12) it has been the target of recent research. However, the role the 

C-terminal domain plays in regulating the quality and mechanical integrity of bone tissue is 

a largely uninvestigated area despite evidence that tissue-level mechanical properties are 

altered at the macroscale with the removal of Cx43.(13, 14) Additionally, while studies have 

investigated conditional knock outs of Cx43 in either osteoblasts and osteocytes or only 

osteocytes,(4, 6, 14) the role the C-terminal domain plays in determining tissue quality was 

not directly investigated and was limited to its modulation of parathyroid hormone 

treatment.(13)

The current study sought to address the importance of the C-terminal domain of Cx43 within 

osteocytes and other cell types in determining the microscale mechanics of bone by 

identifying changes in tissue composition that could alter the bone’s mechanical integrity, 

e.g. collagen morphology. To assess the role of C-terminal domain, genetically modified 

mice were used that either express a truncated form of Cx43 without the C-terminal domain 

or lack endogenous Cx43 in their osteocytes.(6, 15) Changes to the nanoscale morphology of 

collagen due to the altered Cx43-mediated signaling were investigated for the first time. We 

hypothesized that the lack of the C-terminal domain of Cx43 would alter collagen 
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morphology, tissue composition, and mechanical properties as measured by reference point 

indentation and fracture toughness testing in a murine model.

2. MATERIALS AND METHODS

2.1 Animals

Knock-in mice containing one allele coding for endogenous Cx43 and a mutant allele that 

has the C-terminal end of the Cx43 truncated at amino acid 258 (Cx43K258stop)(15) were 

crossed with mice having two loxP-flanked (floxed) endogenous Cx43 encoding alleles 

(fl/fl)(16) to generate mice with one truncated Cx43 allele and one floxed allele (ΔCT/fl). 

ΔCT/fl mice were bred with mice expressing Cre recombinase under the control of an 8kb 

fragment of murine dentin matrix protein 1 promoter (DMP1-8kb-Cre) with both alleles 

floxed (fl/fl:Cre) which selectively removes Cx43 from osteocytes.(6) This cross resulted in 

mice able to express endogenous Cx43 in all cell types (fl/fl), mice lacking Cx43 in 

osteocytes but able to express endogenous Cx43 in all other cell types (fl/fl:Cre), mice able 

to express both endogenous and truncated Cx43 in all cell types (ΔCT/fl), and mice able to 

express only truncated Cx43 in their osteocytes but able to express both endogenous and 

truncated Cx43 in all other cell types (ΔCT/fl:Cre). All mice were developed on a C57BL/6 

background, given ad libitum access to food and water, and kept in a 12 hour light/dark 

cycle environment. After sacrifice via cervical dislocation while under isoflurane anesthesia, 

left and right tibiae were harvested from four month old female mice, cleaned of soft tissue, 

snap frozen in liquid nitrogen, and stored at −80 °C. All work was performed with prior 

IACUC approval from the Indiana University School of Medicine.

2.2 Raman Spectroscopy

Samples were submerged in a PBS bath and allowed to thaw for 30 minutes. Once thawed, 

the periosteum was stripped from the medial surface of the right tibiae and PBS was 

removed from the bath until only the medial surface was exposed (n=6–12 per group). A 

LabRAM HR 800 Raman Spectrometer (HORIBA Jobin Yvon, Edison, NJ) with a 660 nm 

laser focused on the exposed surface (spot size of ~10 µm) through an integrated BX41 

microscope (Olympus, Tokyo, Japan) with a 50× objective (NA=0.75) was used to record 

Raman spectra. Five locations were measured between the medial malleolus and the tibia-

fibula junction (TFJ) 1–2 mm apart along the native medial surface of the bone while in the 

PBS bath. Five 20 second acquisitions were averaged at each location between 700 cm−1 and 

1800 cm−1 and a 5 point linear baseline correction was applied in LabSpec 5 (HORIBA 

Jobin Yvon). The areas of the PO4
3− ν1, CO3

2− ν1, and Amide III bands and the full width 

at half maximum (FWHM) of a Gaussian fit of the PO4
3− ν1 peak were calculated using 

OriginPro 8.6 (OriginLab, Northampton, MA) at each location as previously described.(17) 

Type B carbonate substitution, crystallinity/maturity, and relative matrix mineralization were 

defined as the band area ratio of CO3
2− ν1/ PO4

3− ν1, 1/FWHM of PO4
3− ν1, and band area 

ratio of PO4
3− ν1 /Amide III, respectively. Following imaging, samples were wrapped in 

PBS soaked gauze and stored at −20 °C.
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2.3 Reference Point Indentation (RPI)

RPI was performed using a BioDent Hfc microindenter (Active Life Scientific, Santa 

Barbara, CA) in the same region and along the same surface as Raman spectroscopy 

locations on the right tibiae (n=6–12 per group). Beginning just proximal to the medial 

malleolus, 4–5 locations 1–1.5 mm apart were indented using Bone Probe 3 (BP3) along the 

medial surface of the bone while submerged in a PBS bath and secured in the manufacturer 

provided stage. Ten cycles of a 2 N indentation force were applied at a frequency of 2 Hz. A 

custom MATLAB (MathWorks, Natick, Massachusetts) program was used to calculate the 

1st cycle indentation distance (ID 1st), 1st cycle energy dissipation (ED 1st), 1st cycle 

unloading slope (US 1st), 1st cycle creep indentation distance (CID 1st), indentation distance 

increase (IDI), total indentation distance (TID), total energy dissipation (ED Tot), average 

creep indentation distance (CID Avg), average energy dissipation from cycles 3–10 (ED 

Avg), and average unloading slope (US Avg).(18) Following imaging, samples were wrapped 

in PBS soaked gauze and stored at −20 °C.

2.4 Atomic Force Microscopy

After Raman and RPI, a 6 mm section between the TFJ and malleoli was removed using a 

low speed sectioning saw, mounted lateral-side up to a steel disk with cyanoacrylate glue, 

and polished using a 3 µm diamond suspension (n=4 per group). Each sample was treated 

for 15 minutes with 0.5 M EDTA at a pH of 8.0 followed by sonication for 5 minutes in 

ultrapure water. This process was repeated 3 times. Samples were imaged using a BioScope 

Catalyst AFM in peak force tapping mode (Bruker, Santa Barbara, CA). A 3.5 µm × 3.5 µm 

image was acquired from 4–5 locations spaced ~1 mm apart along the polished surface of 

the sample using a silicon cantilever with a silicon probe (tip radius ~ 8 nm). From each 

error image, 2D Fast Fourier Transforms (2D FFTs) were performed on 10–15 fibrils (50–60 

fibrils per bone) to obtain an individual fibril’s D-spacing from the first harmonic peak of 

the power spectrum as previously described.(17, 19, 20)

2.5 Micro-computed Tomography (µCT)

Left tibiae were thawed and hydrated for 30 minutes in PBS. Samples were wrapped in 

Parafilm M (Bemis, Oshkosh, WI) to maintain hydration and were scanned in air with the 

long axis of the bone vertical using a Skyscan 1172 system (Bruker microCT, Kontich, 

Belgium; n=6–9 per group). Scans were performed using a 12.5 µm voxel size with a source 

voltage of 59 kV and current of 167 µA through a 0.5 mm Al filter. NRecon (Bruker 

microCT) was used to reconstruct voxels with attenuation coefficients ranging from 0–0.11, 

apply a beam hardening correction of 40%, and apply a ring artifact correction of 5. Mineral 

density was calculated using daily scans of manufacturer supplied hydroxyapatite (HA) 

phantoms of 0.25 g/cm3 and 0.75 g/cm3. Reconstructed scans were rotated using Dataviewer 

(Bruker microCT) to ensure precise vertical alignment. The metaphyseal region of interest 

extended from the distal end of the proximal growth plate to 10% of the distance between 

the growth plate and the TFJ. A custom MATLAB script segmented the cortical shell from 

trabecular region of interest which followed the contour of the cortical shell in each slice. 

CTAn (Bruker microCT) was used to compute bone volume fraction (BV/TV), trabecular 

thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), structure model 
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index (SMI), connectivity density (Conn.Dn), and bone mineral density (BMD). The cortical 

standard site was defined as a 7 slice region centered on the slice that was 80% the distance 

between the growth plate and the TFJ from the growth plate. A custom MATLAB script was 

used to calculate total bone area (B.Ar), marrow area (Ma.Ar), cortical area (Ct.Ar), cortical 

width (Ct.Wi), periosteal perimeter (Ps.Pm), endocortical perimeter (Ec.Pm), maximum 

second moment of inertia (Imax), minimum second moment of inertia (Imin), and tissue 

mineral density (TMD). Following imaging, samples were wrapped in PBS soaked gauze 

and stored at −20 °C.

2.6 Fracture Toughness

A notch was cut into the medullary cavity through the anteromedial side of the left tibia 

approximately 1.75 mm above the TFJ by hand using a scalpel blade lubricated with a 1 µm 

diamond suspension to a depth not exceeding the midpoint of the bone (n=6–9 per group). 

The samples were tested to failure in three-point bending at a rate of 0.001 mm/sec with the 

notch in tension and directly under the applied load. The location of the fracture site was 

measured with calipers and the geometric properties of the fracture site were determined 

using µCT. After dehydration with graded ethanol (70–100%), samples were mounted to a 

stainless steel stub using carbon tape, gold-coated, and the fracture surface imaged using 

SEM to obtain the angles of stable and unstable crack growth. The force and displacement 

data, geometric properties, and crack growth angles were used to calculate fracture stress 

intensity factor (Kc) using a custom MATLAB script.(21, 22)

2.7 Statistical Analysis

Multiple locations within the same sample (Raman, RPI, and AFM) were averaged to yield a 

single sample value for mean comparisons between groups. A two-way ANOVA testing the 

main effects of the fl:Cre and ΔCT alleles as well as their interaction was applied to examine 

mean differences. Only when an interaction between main effects was likely (p<0.10) was a 

one-way ANOVA applied to reveal pairwise differences between groups with a post hoc 

Tukey test. For the main effects and pairwise comparisons, p<0.05 was considered 

significant. Unless explicitly stated, all p-values reported are two-way ANOVA p-values 

from the main effects of the fl:Cre and ΔCT. Because both main effects had only two levels, 

additional post hoc tests were not necessary in the presence of a significant main effect 

without an interaction. Applying an additional statistical model to the same data (e.g. a one-

way ANOVA to perform pairwise comparisons between groups) without the presence of an 

interaction would not be valid. A custom written MATLAB script was used to verify the 

assumptions of normality and homoscedasticity, transform the data if necessary, and run the 

ANOVA for each variable. To test if D-spacing distributions were significantly different, a k-

sample Anderson-Darling (AD) test was used and post hoc pairwise AD tests with a 

Bonferroni correction (α’ = 0.05 / 6) were used to test for differences between individual 

groups. All data are presented as mean ± SD. For all assays, a single technician performed 

the imaging and analysis in random order while blinded.
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3. RESULTS

3.1 Animals

No adverse events were noted at any time for any animal in the study. The average weight 

for all mice was 21.5 ± 3.28 g and was not different between groups. Unequal sample sizes 

between groups were solely due to the results of the cross and no animal was excluded from 

the study.

3.2 Raman spectroscopy

Crystallinity was significantly increased by removing endogenous Cx43 from osteocytes 

(main effect of fl:Cre p=0.036; Table 1). Type B carbonate substitution and relative matrix 

mineralization were statistically indistinguishable between groups as shown in Table 1. 

There were no significant interactions for any Raman parameters.

3.3 Reference Point Indentation

The presence of truncated Cx43 significantly decreased the 1st cycle and average unloading 

slopes (p=0.008 and p=0.004, respectively; Table 2). The removal of endogenous Cx43 

resulted in a decreasing trend for both 1st cycle and average unloading slope, but failed to 

reach significance (p=0.058 and p=0.062, respectively). Removing endogenous Cx43 

significantly increased the average energy dissipation (p=0.027). No interactions were 

present for any RPI parameters.

3.4 Atomic Force Microscopy

The mean collagen D-spacing for each group was 64.7 ± 1.2 nm, 65.5 ± 1.4 nm, 66.0 ± 1.2 

nm, and 64.8 ± 1.1 nm for fl/fl, fl/fl:Cre, ΔCT/fl, and ΔCT/fl:Cre, respectively. No 

significant changes in mean collagen D-spacing were observed due to the main effects of 

fl:Cre, ΔCT, or their interaction. In the fl/fl:Cre group, the absence of Cx43 in osteocytes 

resulted in a significantly different collagen D-spacing distribution compared to the fl/fl 

control group (p=0.0079; fl/fl n = 219 fibrils; fl/fl:Cre n = 228 fibrils) which was shifted to 

higher D-spacing values (Figure 1A). In the ΔCT/fl group, the addition of truncated Cx43 

also resulted in a significantly different D-spacing distribution that was shifted to higher 

values compared to the fl/fl control (p<0.0001; ΔCT/fl n= 226 fibrils; Figure 1B). The 

distributions of fl/fl:Cre and ΔCT/fl were not statistically different (p=0.1819). For ΔCT/

fl:Cre when endogenous Cx43 was removed from osteocytes in the presence of the truncated 

Cx43, the D-spacing distribution was significantly different than that of the ΔCT/fl group 

(p=0.0002; ΔCT/fl:Cre n = 221 fibrils), but the distribution was shifted to lower values as 

opposed to the upward shift noted between the fl/fl and fl/fl:Cre groups in Figure 1A. While 

the direction was reversed, the magnitude of the shift was approximately equal so that the D-

spacing distribution of the ΔCT/fl:Cre group was statistically indistinguishable from the fl/fl 

group (p=0.6407; Figure 1C). Despite a p-value less than 0.05, the distribution of ΔCT/

fl:Cre was statistically indistinguishable from fl/fl:Cre given the Bonferroni correction 

(p=0.0428).
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3.5 Trabecular Analysis

Microarchitectural changes in the proximal metaphysis of the tibia were dominated by the 

addition of truncated Cx43 rather than the removal of endogenous Cx43 from osteocytes 

with Cre recombinase. There were no significant effects due to main effect of fl:Cre. As seen 

in Table 3, the addition of truncated Cx43 caused thicker (p<0.001) and more rod-like 

trabecular struts to develop (p=0.001). However, the number of trabeculae present was 

reduced (p=0.047) resulting in a less connected microarchitecture (p=0.044) and a non-

significant trend for increased trabecular separation (p=0.080). The reduction in trabecular 

number dominated the effects of increased trabecular thickness which caused a significant 

decrease in BMD (p=0.029) although bone volume fraction was statistically 

indistinguishable. There were no significant interactions between fl:Cre and ΔCT for any of 

these parameters.

3.6 Cortical Analysis

Normality could not be restored with data transformations for endocortical perimeter or 

marrow area. Therefore, the statistical analyses for these two parameters were performed on 

ranked data. As seen in Table 4, removing endogenous Cx43 from osteocytes (main effect of 

fl:Cre) increased total bone area (p=0.005), marrow area (p<0.001), endocortical perimeter 

(p<0.001), and minimum second moment of inertia (p=0.025). Expressing truncated Cx43 

(main effect of ΔCT) had the opposite effect and reduced the total bone area (p=0.001), 

marrow area (p=0.011), endocortical perimeter (p=0.031), and minimum second moment of 

inertia (p=0.030). However, the width of the cortical shell was increased due to an 

endocortical contraction primarily along the mediolateral axis (Figure 2B and Figure 2C) 

when truncated Cx43 was present (p=0.008). The main effects of fl:Cre and ΔCT had a 

significant interaction for periosteal perimeter (p=0.006) and tissue mineral density 

(p=0.024). An underlying interaction also was suspected for maximum second moment of 

inertia (p=0.087) and these three parameters were analyzed using a one-way ANOVA. Post 

hoc analyses from the one-way ANOVA revealed that the interactive effect in these three 

parameters was primary driven by the fl/fl:Cre group (Table 4). The differences between the 

fl/fl:Cre group and the other groups were due to a large periosteal expansion in the posterior 

direction (Figure 2A) that was corrected with the addition of the truncated Cx43 (Figure 

2D).

3.7 Fracture Toughness

Two samples from the fl/fl:Cre group and one sample from the ΔCT/fl:Cre group were 

damaged during notching and were excluded. The removal of endogenous Cx43 from 

osteocytes decreased the ability of the tissue to resist crack propagation as demonstrated by 

the significant reductions in Kc (Figure 3) for crack initiation (p=0.030), maximum load 

(p=0.032), and fracture instability methods (p=0.017). No effects were observed due to the 

main effect of ΔCT, and there were no significant interactions.

4. DISCUSSION

The selective removal of Cx43 from osteocytes alters the morphology of collagen (Figure 

1A) which is interesting given that the collagen was presumably previously deposited by 
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osteoblasts with endogenous Cx43. Removing Cx43 from osteocytes increases osteocyte 

apoptosis,(6) but it is unclear whether the apoptotic debris (e.g. enzymes and growth factors 

that could alter the extracellular milieu) or local alteration of the collagen matrix by 

osteocytes would affect a sufficient volume to result in the change noted here. AFM 

locations were randomly chosen along the polished length of the bone without regard to the 

position of osteocyte lacunae and areas both away from and directly adjacent to osteocyte 

lacunae and/or dendritic processes are expected to be present in the sampling of the collagen 

matrix. While blocking lysyl oxidase (LOX) function with β-aminopropionitrile alters D-

spacing distribution and fl/fl:Cre mice have reduced LOX expression, enzymatic crosslinks 

are not likely to contribute to the D-spacing shift noted here given the shift is not in the 

expected direction and crosslink maturity was not significantly affected despite reduced 

LOX expression.(14, 20)

While the shifts in D-spacing caused by the removal of full-length Cx43 from osteocytes and 

the shift accompanying the truncation of the C-terminal domain of Cx43 in all cell types are 

similar (Figure 1), it is important to note that there is an interactive effect at play when both 

endogenous Cx43 is removed from osteocytes and the truncated Cx43 is expressed. Two 

separate mechanisms may be present when Cx43 is removed from osteocytes and when 

Cx43 is truncated. The distribution shift observed between fl/fl and ΔCT/fl may be driven by 

the presence of the truncated form of Cx43 in osteoblasts which is mitigated by either the 

complete removal of the C-terminus of Cx43 from osteocytes or a possible reduction in 

Cx43 expression in ΔCT/fl:Cre. Another possibility may be that the heterogeneity of the gap 

junctions when both endogenous and truncated Cx43 was present resulted in the interactive 

effect observed for the D-spacing as uniform distribution of Cx43 in osteocytes would be 

restored in ΔCT/fl:Cre mice. However, future research is needed to test these hypotheses and 

account for the interactive effect on D-spacing.

The pattern of differences noted in D-spacing distribution was not observed for any other 

parameters, but there were interactions in cortical geometry that were driven by alterations 

in the fl/fl:Cre group that were not present in other groups (Table 4). The expanded cortical 

geometry in fl/fl:Cre (Figure 2A) was similar to previous reports and not present in other 

groups (Figure 2B–D).(4, 6) While this expansion altered the distribution of material in the 

bone and would increase the section modulus, the deficient mineral density in fl/fl:Cre 

would likely negate any beneficial effect. The difference between fl/fl:Cre and all other 

groups was the lack of the transmembrane domains, their connecting loops, and N-terminal 

domains of Cx43 in the osteocytes of these mice. Therefore, one can conclude that the 

presence of these domains and not the C-terminal domain in osteocytes is integral to the 

regulation of cortical geometry by Cx43 as suggested by the lack of ODDD-inducing 

mutations in the C-terminal domain.(8)

While the C-terminal domain may not be vital for periosteal expansion, the presence of this 

domain in osteocytes is crucial to preserve tissue level mechanical integrity. When 

osteocytes are not able to express any Cx43 containing the C-terminal domain (fl/fl:Cre and 

ΔCT/fl:Cre), bone’s ability to resist crack propagation was decreased (as demonstrated by 

the decreased fracture toughness measures in Figure 3). This effect also was observed at the 

microscale as increased average energy dissipation (Table 2) likely due to damage induced 
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during the first indentation cycle propagating through the bone easier during subsequent 

cycles thereby dissipating more energy. Increased mineral crystallinity with the absence of 

the Cx43 C-terminus in osteocytes may explain the tissue’s increased proclivity to crack 

propagation. Larger crystallites are suspected of decreasing the deformability of bone and 

post-yield properties,(23) which could decrease toughness and allow greater crack 

propagation. A previous study using Fourier Transform Infrared Imaging (FTIRI) did not 

observe differences in crystallinity in the femoral diaphysis between fl/fl and fl/fl:Cre mice 

although there was a slight non-significant increase.(14) The differences between these 

observations and the data presented here may be due to the differences in method (FTIRI vs 

Raman spectroscopy), sample preparation (5 µm sections of embedded bone vs native 

hydrated surface), sample location (femur vs tibia), or statistical design (Mann–Whitney U 

test with 6 total samples vs two-way ANOVA with 34 total samples).

The presence of the C-terminal domain of Cx43 is also important for cell types other than 

osteocytes and reducing the amount of Cx43 molecules containing this domain in other cells 

(e.g. osteoblasts) results in altered cortical geometry, trabecular architecture, and microscale 

mechanics (main effect of ΔCT). The increased average and first unloading slopes suggests 

that the bone is stiffer on a microscale which may be due to increased TMD. While the 

interactive effect for TMD prevented statistically testing the main effect of ΔCT, TMD is 

modestly elevated in the ΔCT/fl and ΔCT/fl:Cre groups compared to fl/fl (Table 3). In regard 

to only the C-terminal domain, the main effect of ΔCT was the result of removing it from 

only one allele whereas the main effect of fl:Cre was the result of removing the C-terminal 

domain from both alleles in osteocytes (by way of completely removing Cx43 due to Cre). 

There were no interactions due to ΔCT/fl despite that group having only one allele capable 

of producing the C-terminal domain in its osteocytes. The ΔCT/fl group did not result in an 

intermediate phenotype when there was a main effect of fl:Cre indicating that only some 

osteocytic Cx43 containing the C-terminal domain is necessary for proper function. 

Therefore, osteocytes are not as sensitive as other cell types to the presence of the C-

terminal domain of Cx43.

While this study was able to highlight the effects of the C-terminal domain of Cx43 in 

osteocytes and other cell types, the study was not without its limitations. Removing floxed 

Cx43 with Cre allowed us to investigate the absence of the C-terminal domain in osteocytes 

but the effects are confounded by the complete removal of Cx43 in the fl/fl:Cre group. 

Additionally, it is unclear if the effects noted in ΔCT/fl:Cre may be partially due to a 

reduction in the total amount of Cx43 present in osteocytes as it is not known if the 

expression of the truncated form of Cx43 is increased to compensate for the loss of one 

allele. The expression of both the endogenous and truncated forms of Cx43 may result in a 

distribution of phenotypes given the dodecameric nature of gap junctions and the many 

combinations of truncated and endogenous Cx43 that could be present in any given gap 

junction. While changes are discussed in relation to intercellular signaling via gap junctions, 

undocked hemichannels allow the exchange of ions and small molecules between the 

cytoplasm and the extracellular milieu,(24) and these changes to the extracellular 

environment may influence the effects noted here.
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5. CONCLUSIONS

The presence of the C-terminal domain of Cx43 was important to maintain normal structure 

and mechanical integrity of bone. However, the presence of the other domains of Cx43 was 

necessary to maintain proper tissue mineral density. Removing the C-terminal domain from 

osteocytes reduced fracture toughness and increased bone area whereas removing this 

domain from other cell types resulted in bone that was more resistant to microscale 

indentation with thicker trabeculae and a thicker cortical shell. Future research should be 

aimed at determining the toughening mechanisms attributed to the C-terminal domain of 

Cx43 in osteocytes and isolating the role of this domain independent of reducing the amount 

of Cx43 expressed. Altering Cx43 specifically in osteocytes shifted the D-spacing 

distribution of collagen and future research into the feedback mechanism between gap 

junction-mediated cell signaling in osteocytes and collagen morphology is needed.
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Highlights

• Murine model with connexin 43 lacking C-terminus or removed from osteocytes 

used

• Bone quality, mechanics, and morphology assessed in tibiae

• Collagen morphology altered if connexin 43 removed or truncated

• C-terminal domain of connexin 43 in osteocytes maintains fracture toughness

• Global lack of C-terminal domain alters microarchitecture and microscale 

mechanics
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Figure 1. 
AFM D-spacing distributions from lateral surface of distal right tibiae. A) Removing Cx43 

from osteocytes significantly shifts the D-spacing distribution to higher values. B) 

Expressing the truncated form of Cx43 also shifts the D-spacing distribution to higher 

values. C) When only the truncated Cx43 is expressed in osteocytes the distribution is 

indistinguishable from the fl/fl control.
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Figure 2. 
Average profiles from standard cortical site in left tibiae. All profiles oriented with the 

anterior direction up and the medial direction to the right. A) Removing endogenous Cx43 

from osteocytes results in cortical expansion in the posterior direction. B) Expressing the 

truncated form of Cx43 alongside endogenous Cx43 results in a thicker cortical shell due to 

an endocortical contraction. C) This endocortical contraction is maintained when truncated 

Cx43 is the only Cx43 expressed in osteocytes. D) The presence of the truncated form of 

Cx43 prevents the marked posterior periosteal expansion noted in panel A.
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Figure 3. 
Fracture toughness from mid-diaphysis of left tibiae. All three methods of calculating 

fracture toughness revealed a significant main effect of fl:Cre. The strongest effect was 

observed using the fracture instability method.
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Table 1

Raman spectroscopy on medial surface of distal right tibiae

fl/fl (n=9) fl/fl:Cre (n=12) ΔCT/fl (n=7) ΔCT/fl:Cre (n=6)

Crystallinity* 0.0493 ± 0.0027 0.0515 ± 0.0029 0.0490 ± 0.0016 0.0508 ± 0.0025

CO3
2−/PO4

3− 0.380 ± 0.042 0.347 ± 0.026 0.375 ± 0.040 0.377 ± 0.044

PO4
3−/Amide III 1.97 ± 0.31 2.02 ± 0.32 1.78 ± 0.27 1.98 ± 0.22

Data presented as mean ± SD.

*
Main effect of fl:Cre.
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Table 2

Reference point indentation on medial surface of distal right tibiae

fl/fl (n=9) fl/fl:Cre (n=12) ΔCT/fl (n=7) ΔCT/fl:Cre (n=6)

1st ID (µm) 36.9 ± 6.4 42.5 ± 7.6 36.8 ± 7.7 36.9 ± 9.8

1st ED (µJ) 33.9 ± 8.7 39.1 ± 9.4 33.6 ± 11.0 33.8 ± 13.1

1st US (N/µm)† 0.232 ± 0.020 0.206 ± 0.021 0.249 ± 0.025 0.240 ± 0.037

1st CID (µm) 4.74 ± 1.99 5.06 ± 1.32 4.58 ± 2.31 4.73 ± 2.17

IDI (µm) 8.76 ± 4.54 9.31 ± 3.20 8.01 ± 3.56 8.78 ± 4.33

TID (µm) 41.8 ± 8.9 47.7 ± 9.5 40.9 ± 8.7 41.8 ± 12.0

Total ED (µJ) 74.5 ± 14.6 83.8 ± 15.9 70.7 ± 15.4 79.8 ± 22.6

Avg CID (µm) 1.45 ± 0.44 1.62 ± 0.34 1.37 ± 0.45 1.53 ± 0.40

Avg ED (µJ)* 4.16 ± 0.68 4.63 ± 0.72 3.83 ± 0.60 4.80 ± 1.32

Avg US (N/µm)† 0.240 ± 0.020 0.215 ± 0.020 0.259 ± 0.024 0.250 ± 0.038

Data presented as mean ± SD.

*
Main effect of fl:Cre

†
Main effect of ΔCT
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Table 3

Trabecular analysis of proximal metaphysis of left tibiae

fl/fl (n=8) fl/fl:Cre (n=9) ΔCT/fl (n=7) ΔCT/fl:Cre (n=6)

BV/TV (%) 12.1 ± 3.4 14.1 ± 3.8 11.3 ± 4.1 12.3 ± 2.7

Tb.Th (µm)† 73.7 ± 4.5 73.8 ± 6.0 84.2 ± 4.1 82.3 ± 5.5

Tb.Sp (µm) 260 ± 47 238 ± 24 287 ± 49 268 ± 49

Tb.N (1/mm)† 1.64 ± 0.46 1.91 ± 0.48 1.34 ± 0.49 1.50 ± 0.33

SMI† 2.39 ± 0.23 2.26 ± 0.32 2.75 ± 0.38 2.67 ± 0.17

Conn.Dn (1/mm3)† 72.4 ± 32.0 90.6 ± 34.0 48.9 ± 21.3 66.0 ± 32.7

BMD (g/cm3 HA)† 0.134 ± 0.022 0.145 ± 0.028 0.115 ± 0.034 0.119 ± 0.029

Data presented as mean ± SD.

†
Main effect of ΔCT.
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Table 4

Cortical analysis from diaphyseal standard site in left tibiae

fl/fl (n=8) fl/fl:Cre (n=9) ΔCT/fl (n=7) ΔCT/fl:Cre (n=6)

B.Ar (mm2)* † 1.160 ± 0.078 1.414 ± 0.181 1.087 ± 0.106 1.135 ± 0.070

Ma.Ar (mm2)* † 0.468 ± 0.044 0.695 ± 0.133 0.395 ± 0.03 0.433 ± 0.048

Ct.Ar (mm2) 0.692 ± 0.041 0.718 ± 0.082 0.692 ± 0.077 0.701 ± 0.057

Ct.Wi (µm)† 220 ± 8 205 ± 22 232 ± 16 228 ± 18

Ps.Pm (mm)# 4.79 ± 0.18 5.23 ± 0.35a 4.70 ± 0.23 4.75 ± 0.14

Ec.Pm (mm)* † 3.08 ± 0.18 3.74 ± 0.42 2.89 ± 0.11 2.97 ± 0.14

Imax (mm4)# 0.1084 ± 0.0159 0.1440 ± 0.0338a 0.0972 ± 0.0221 0.1015 ± 0.0127

Imin (mm4)* † 0.0828 ± 0.0105 0.1067 ± 0.0227 0.0783 ± 0.0160 0.0832 ± 0.0105

TMD (g/cm3 HA)# 1.192 ± 0.018 1.155 ± 0.037a 1.207 ± 0.024 1.217 ± 0.019

Data presented as mean ± SD.

*
Main effect of fl:Cre.

†
Main effect of ΔCT.

#
Interaction between main effects.

a
Different from all other groups (determined by post hoc Tukey test if interaction present).
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