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Abstract

Survival bias is difficult to detect and adjust for in case-control genetic association studies but can 

invalidate findings when only surviving cases are studied and survival is associated with the 

genetic variants under study. Here, we propose a design where one genotypes genetically-

informative family members (such as offspring, parents, and spouses) of deceased cases and 

incorporates that surrogate genetic information into a retrospective maximum likelihood analysis. 

We show that inclusion of genotype data from first-degree relatives permits unbiased estimation of 

genotype association parameters. We derive closed-form maximum likelihood estimates for 

association parameters under the widely used log-additive and dominant association models. Our 

proposed design not only permits a valid analysis but also enhances statistical power by 

augmenting the sample with indirectly studied individuals. Gene variants associated with poor 

prognosis can also be identified under this design. We provide simulation results to assess 

performance of the methods.
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1. Introduction

In genetic association studies based on case-control data, many cases may not be available 

for genotyping only because they did not survive or they are too sick to participate. Such 

losses impose an ongoing challenge for research involving important debilitating or life-

threatening conditions, because bias in inference, known as “survival bias” or healthy 

participant bias, will result if those losses are genetically informative. Survival bias, as one 

type of selection bias [1], has been recognized as a source of potential bias in many 
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published genetic association studies (e.g., [2, 3, 4, 5]). It can also be a source of between-

study heterogeneity in meta-analyses of genome-wide association studies [6], and may be 

responsible for failure to replicate some genetic association signals [7].

Current literature is sparse on study designs and statistical methods for addressing survival 

bias. Using simulation studies, Andersen et al. [7] evaluated the extent of bias by jointly 

modeling survival and association. The prospective study design was suggested as an 

unbiased alternative (e.g., [8]), but cohort studies are often infeasible. Alternatively, more 

stringent eligibility criteria can be applied to exclude some cases, e.g., based on recent 

diagnosis, (e.g., [9, 10]). But such constraints can lead to substantially reduced sample size 

and impose other kinds of selection that limit the generalizability of the study findings. Here, 

we develop a family-supplemented design (FSD) that permits correction and sensitivity 

analysis of survival bias in population-based case-control studies by genotyping family 

members. The central idea is that genotypes of family members of a deceased case can help 

provide information on the genotype of the deceased case, although the type of information 

depends on which family members are included. With our proposed strategy of genotyping 

cases and controls who are alive and also family members of representative deceased cases, 

we describe valid and efficient statistical methods for quantifying genetic associations both 

with disease and with survival given disease. We apply our method to a study of young-onset 

breast cancer where genotype data was available for slightly over half of the eligible case 

women by genotyping the available unaffected sister as a proxy for each unavailable case. 

We show that our method can greatly improve statistical power while simultaneously 

controlling healthy participant bias.

2. Method

We provide explanations for all notations in Section 6 Appendix Table 1 and Appendix 

Figure 1. We begin by considering only genetic effects. Let Y (coded as 1 or 0) denote case-

control status. Suppose that among N1 cases, n1 have survived and provided genetic data. 

For simplicity of exposition, we assume that genetic data are available for one child, 

possibly together with that for the spouse (the other parent of that child), for each of the m= 

N1−n1 deceased cases, or for a random subset of them. The method we describe below can 

be readily extended to incorporate data from multiple offspring or a mix of available family 

structures that could include a variety of genetically informative first-degree relatives, e.g. 

some siblings or parents of deceased cases, in lieu of offspring.

Assume that we have genetic data for N0 controls, who are representative of the control 

population (i.e., those not studied are missing at random, and if stratified sampling was used 

the analysis will also be stratified). We wish to study the association between Y and a di-

allelic autosomal single nucleotide polymorphism (SNP), with major/minor alleles A/a. Let 

Gi denote the SNP genotype data for subject i, and let  denote the genotype data of family 

members for the ith subject (only family members of deceased cases will be asked to 

provide genotype information). When one child (of the deceased case) and their spouse are 

accessible, , where  and  denote their respective genotype data. When 

only one child or the spouse is accessible,  or  is coded as missing when 

Chen et al. Page 2

Stat Med. Author manuscript; available in PMC 2017 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



no family member has been genotyped. We assume that a logistic regression model 

describes the association between Y and G:

(1)

where f(G) is a function of G that captures the penetrance model of interest, and β can be a 

vector. For example, for a co-dominant genetic model, f(G) is a vector with two indicator 

functions I(G=1) and I(G=2), and β = (β1, β2). For a log-additive model, f(G) would be the 

number of copies (0, 1, or 2) of the minor allele a. Let S coded as 1/0 indicate the survival of 

a case (where S = 1 if survived). We assume that cases with genotype g have survival 

probability qg = p(S=1|G=g, Y=1). With a co-dominant model for survival, different 

probabilities, q0, q1 and q2, are allowed, while q1 and q2 are equal when a dominant model is 

used.

When the genotype G is predictive of both risk of disease and survival given disease, one 

cannot assume that fitting model (1) with data from n1 < N1 cases and N0 controls will yield 

unbiased estimates of the association parameter β. Under FSD, we consider that genotype 

data for one child, or the spouse (the child’s biological parent), or both can be made 

available for all or a random subset of the m deceased cases. We develop a maximum 

likelihood estimation (MLE) method for estimating the log odds ratio parameter β with 

genotype data for the N0 controls and n1 cases and genotype data for the family member(s) 

of the m deceased cases. We shall assume Mendelian inheritance and that the influence of 

the spouse genotype on risk is only through the implicit genetic information that the spouse 

and child genotypes provide about the missing genotype of the case and not through any 

mechanism related to genetic population structure, or effects of the variant on fertility or 

assortative mating. The likelihood for the observed data can be written as:

(2)

Note that for now we are assuming for simplicity that only survival of cases and not that of 

controls is related to the genotype at the studied locus. However, this likelihood (the right-

hand product factor) could easily be expanded to include an effect of the variant genotype on 

survival in those without the disease.

We further assume that the child’s and spouse’s genotypes at the locus under study are not 

related to the case’s survival, conditional on the genotype of the case, i.e., 

, and that the family members of cases whose 

genetic data are available are representative of case family members in the source population 

conditional on the case phenotype. Using a result from Satten and Kupper [11] to relate p(G|

Y=1) to p(G|Y=0) for a rare outcome,
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and by partitioning according to the composite events and applying the assumed models, the 

log of the observed data likelihood function (2) for a rare phenotype can be rewritten as:

(3)

Under Hardy-Weinberg equilibrium (HWE), random mating, and Mendelian inheritance at 

the test locus in the population from which cases and controls arise, and assuming a rare 

phenotype, the probabilities p(G, Gf |Y=0) and p(G|Gf,Y=0) are functions of the MAF, pa 

(Web Appendix 1). Let n10, n11, n12 denote the respective numbers of living cases (the 

second index) with genotypes AA, Aa, and aa. Let mjk denote the number of deceased cases 

whose child’s and spouse’s genotype data, Gc =j and Gp =k, is available, where j and k take 

values 0, 1, or 2 corresponding to genotypes AA, Aa, and aa, respectively. Note that not all 

combinations are possible; for example m02 and m20 cannot occur. Let mjc denote the 

number of deceased cases whose child’s genotype Gc =j is available, while the spouse’s 

genotype data is not.

Define inverse probability weighted cell counts N1̂0 = n10/q̂0, N̂11 = n11/q̂1, and N̂12 + n12/

q̂2, which can be seen as the predicted number of subjects with genotypes AA, Aa, and aa 
among the original total of N1 case subjects. Note that, as one might hope, N̂10 + N̂11 + N̂12 

+ N1 (see Web Appendix). Under co-dominant coding for both association, f(G), and 

survival (to study) conditional on disease, we obtain the maximum likelihood estimated odds 

ratio (OR) association parameters as

where N̂00 = N0(1−p̂a)2, N̂01 = 2N0p̂a(1−p̂a), and  are the expected numbers of 

controls with genotypes AA, Aa and aa, respectively, under the rare disease approximation 

and HWE. These estimates are of the same form as those obtained from the two-by-three 

contingency table that cross-classifies the genotype and case-control status should the 

genotype be available for deceased cases, except that the “observed” counts are replaced by 

the “estimated” (for cases) or “expected” (for controls) counts. These estimators are also 

very similar to those obtained by Chen and Chatterjee [12] for estimating OR association 

parameters with case-control data under the constraint of HWE in the control population, 
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where they reported improved statistical efficiency when the observed numbers of controls 

were replaced by the “predicted” under HWE.

The expressions for β̂1 and β̂2 involve the estimated survival probabilities q̂0, q̂1 and q̂2. But 

it turns out that two of the score functions for the three suvival probabilities are equivalent, 

resulting in only two independent score equations. One cannot uniquely solve for three 

independent parameters from only two equations without additional constraints. Therefore, 

these three parameters as well as the two association parameters are not identifiable when a 

co-dominant model is adopted for both association and survival. Intuitively, this is because 

the genotype information of children and/or spouse is not fully informative in predicting 

cases’ genotype. For example, when parents have genotype Aa and aa, one will expect that 

their child’s genotype is Aa with probability 0.5 and aa with probability 0.5. However, when 

one child has genotype aa and the spouse has genotype Aa, one will only know that the case 

parent has genotype Aa or aa but cannot estimate the probabilities without taking advantage 

of the risk parameters for disease or survival.

When either the association model (1) or the survival model adopts an additional constraint, 

the parameters become identifiable. We note that children and spouses’ genotype data are 

involved in formulas both for β and (q0, q1, q2). Consequently, with genotype data from 

children and spouses, it is feasible to obtain maximum likelihood estimates that are 

consistent and at the same time assess the magnitude of survival bias. Below we provide 

estimates of OR parameters for association and survival probabilities under two commonly 

considered models. For each model, we consider three different scenarios of how family 

members of deceased cases are available: the general mixed scenario where genotype data 

for one child and spouse, or only for one child, or only for spouse is available for all or for a 

subset of deceased cases; one child and spouse scenario where genotype data for one child 

and spouse is available for some or all deceased cases; and one child only scenario where 

genotype data for only one child is available for all or some of the deceased cases. We also 

describe an extension of these results for studying gene-environment interactions. Here the 

estimates of log OR for association also resemble those if genotype data were available for 

cases, except that the genotype counts for cases and controls are replaced by the estimated 

(for cases) and the expected (for controls), respectively.

2.1 Modeling association as log-additive and survival as co-dominant

Under a log-additive association model for risk and a co-dominant model for survival, we 

obtained closed-form MLEs that incorporate family genotype data. The MLE for the log OR 

for association is

where again N̂00 = N0(1−p̂a)2, N ̂01 = 2N0p̂a(1−p̂a), , and N̂10 + N̂11 + N̂12 are the 

inverse probability weighted counts, with N̂10 = n10/q̂0, N̂11 = n11/q̂1, and N̂12 + n12/q̂2 (Web 

Appendix). The MLEs for the three survival probabilities take the following forms:
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where , the estimated allele prevalence among affected individuals, takes the form 

. For the three scenarios to be described below, Ma and the 

estimated MAF p̂a will take different forms and be defined differently. Note that Ma is not a 

parameter but an intermediate expression to represent half the estimated total number of 

copies of a in the ungenotyped cases, i.e. the part in  that differs among the three 

scenarios. Later in this section we will give an intuitive explanation for  and Ma. The 

scenarios considered in sections 2.1.2 and 2.1.3 are special cases of that to be described in 

section 2.1.1.

2.1.1 The General Mixed Scenario—We first consider a design where a representative 

sample of deceased cases has either a spouse or child or both available for genotyping. Let 

mO denote the number of deceased cases who do not have child genotype data available. Let 

m1A (m1a) be the number of deceased cases for whom we have a genotyped child and who 

must have passed allele A(a) to the child, m1Aa be the number of deceased cases for whom 

we have a genotyped child and the child has genotype Aa, m1* be the number of deceased 

cases whose family members’ genotypes provide no information in predicting cases’ 

genotype. These counts are calculated as m1A = m00 + m01 + m12 + m0c + m0+ + m12, m1a = 

m10 + m21 + m22 + m2c = m10 + m2+, m1Aa + m1c, and m1* = m11 + mO. Then Ma 

mentioned above is the positive solution of the following quadratic equation, which is 

obtained directly by solving the likelihood score equation (See Web Appendix):

There is no closed-form solution for the maximum likelihood estimator for the MAF pa. 

Therefore we obtained the profile likelihood for pa based on the closed forms of q̂0, q̂1, q̂2 

and β̂1, and maximized it numerically. Because of the correlation between parental 

genotypes conditional on the child’s genotype, incorporating the spouse genotype data 

should increase the precision of estimating both the association parameter β1 (through more 

precise estimation of pa) and the survival probabilities. We note that the scenarios considered 

in Sections 2.1.2 and 2.1.3 are both special cases of this general scenario. When for every 

deceased case only one child is recruited, mjk = 0 for all j and k. When for every deceased 

case both the spouse and one child are recruited, mjc = 0 for all j.

2.1.2 The One Child and the Spouse Scenario—Under this scenario, we assume that 

genotype data for one child and the spouse are available for all or a representative sample of 

the deceased cases. We calculated Ma and derived the MAF estimate p̂a as:
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Here m1a = m10 + m2+ according to section 2.1.1, m1p and m2p are the numbers of deceased 

cases who have spouse genotype Aa and aa, respectively, and m+p = m0p + m1p + m2p. Note 

that the MAF estimate p̂a uses data for both controls and spouses of the deceased cases. This 

is because the spouses do not have the disease and can be treated as an independent source 

of data for estimating the MAF.

The terms Ma and  have intuitive interpretations. For the m2+ deceased cases whose 

child’s genotype is aa and m10 cases whose child has genotype Aa and spouse has genotype 

AA, each case must have passed an “a” allele to the child. Similarly, for the m0+ deceased 

cases whose child’s genotype is AA and the m12 cases whose child has genotype Aa and 

spouse has genotype aa, each case must have passed an “A” allele to the child. Thus there 

are m2+ + m10 and m0+ + m12 deceased cases who passed “a” and “A” to the offspring, 

respectively. Note that m−m1* = m2+ + m10 + m0+ + m12. Since “A” and “a” have equal 

probability to be transmitted from a heterozygous parent to his/her child, the total number of 

deceased cases who have passed “a” alleles can be estimated as , which is Ma. 

The number of surviving cases who have passed “a” alleles to the offspring is estimated as 

. Then the estimated total number of cases passing “a” alleles to their offspring is 

. Define the estimated MAF among cases as  then

Note that  is a consistent estimator for the MAF in the case population also because the 

genotype in the case population conforms to HWE under the log-additive risk model.

2.1.3 One Child only Scenario—We next consider a design where a representative 

sample of cases has a child available for genotyping and spouses are not genotyped. 

Sometimes it may be feasible to obtain genotype data only for offspring, but not spouses. 

Let m0c, m1c, m2c be the respective number of children with genotype AA, Aa, aa, and mO = 

m−m+c the number of deceased cases without child genotype data. In this case, Ma is the 

positive solution of the following quadratic equation:

No closed form estimate exists for the MAF. Therefore we obtained the profile likelihood for 

pa, which is a function of the closed-form estimates q̂0, q̂1, q̂2, and β̂1, and maximized it 

numerically as for the general scenario.

2.2 Use of dominant coding for both association and survival

We next consider the use of a dominant model for survival. This version may be needed in 

situations, e.g., if the frequency of the minor allele under study is low, where a co-dominant 
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model for survival becomes impractical due to sparse data and more parsimonious models 

become necessary. With a dominant model for both association and survival, the MLEs are 

calculated using methods similar to those of section 2.1 as follows. For all the three 

scenarios considered in section 2.1, the estimated OR association parameter takes the form

where N̂00, N̂01, and N̂02 are the predicted genotype counts in controls under HWE as 

described previously,

Here , and Ma takes the same forms for the three scenarios as in 

section 2.1.1, 2.1.2 and 2.1.3, respectively. Note that Ma has the same interpretation as in 

section 2.1.2. Then (2−p̂a)Ma can be interpreted as the estimated number of deceased cases 

who have at least one copy of the minor allele. Since n11 + n12 is number of surviving cases 

who carry the minor allele,  is the estimated proportion of cases who carry the minor 

allele. Under this dominant model, we obtained p̂a based on its profile likelihood.

2.3 Extension of the Above Results for Assessing G-E interactions

The estimation and testing of multiplicative G-E interaction effects will also be subject to 

survival bias. Suppose that a binary exposure E influences the occurrence of disease and 

might also influence survival conditional on disease. We assume E is available for all N0 

+N1 study participants, regardless of availability of genotype data. If survival is 

multiplicative in E effects and G effects, and if both survival and association depend on the 

same binary coding for G or the association model (but not the survival model) depends on 

co-dominant coding for G, then the naïve estimate of the multiplicative G-E interaction OR 

parameter from standard logistic regression analysis and the accompanying standard error 

estimate are valid according to theoretical results for two-phase studies [13]. Of course the 

naïve main-effect OR estimates for G and for E would typically be biased. On the other 

hand, if survival depending on G follows a co-dominant model and the occurrence of disease 

depends on G through a log-additive model, then naïve estimates of both the main and 

interaction effect OR parameters would often be biased. The methods in the first two 

subsections can be extended to obtain consistent estimates of all OR parameters. Consider a 

simple logistic regression model for disease occurrence that quantifies the joint effect of a 

di-allelic SNP and a binary environmental variable:
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where f(G) is defined as in Equation (1), and E takes the value 1 or 0. Let Nijk denote the 

total number of subjects with Y=i (i = 0, 1), G=j (j = 0, 1, 2), and E=k (k=0, 1). Let N̂1jk be 

the “predicted number” of cases defined as above through inverse probability weighting. 

Under the assumptions of G/E independence and HWE in the source population, and 

initially assuming that survival depends only on G and not on E, we derived estimates of all 

association parameters. Note, however, that G/E independence is only assumed here for 

convenience of demonstrating our method and not needed for our general proposed design. 

If f(G) expresses log-additive coding and h(G) co-dominant coding, we obtain the same 

estimates as those in Section 2.1 for the population MAF pa and the survival probabilities 

(q0, q1, q2) and

Under a dominant model for both f(G) and h(G), estimates of q̂0, q̂1, q̂2 are the same as those 

in Section 2.2, and the estimates of the OR parameters are

The two interaction parameter estimates above only involve data for cases and their families 

and reduce to case-only estimates [14] under G/E independence in the absence of survival 

bias. The association parameter estimators resemble those derived in Chen et al. [15] in the 

absence of survival bias, except that the observed counts in cases are replaced by the 

estimated counts obtained through inverse-probability weighting. Similar results can be 

obtained when survival depends on E both through its main effect and interaction with h(G), 

where survival probabilities at each G/E combination need to be estimated.

3. Simulations

We performed numerical studies to evaluate the performance of the proposed methods in 

realistic scenarios for assessing marginal effects of G. Imposing our rare phenotype 

assumption, we generated SNP genotypes for controls under HWE, and for cases from the 

derived distribution
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where the coding we impose is either log-additive, f(G)= the number of copies of the minor 

allele, or dominant, f(G)=I(number of copies of the minor allele > 0). We generated the 

indicator for failure to survive, S=0, from the mixture distribution

Note that we do not fit this mixture distribution directly but make use here of the fact that 

without knowing the true missing mechanism, we are still able to obtain unbiased estimates 

of the survival probabilities and disease odds ratios as long as probabilities of survival are 

allowed to be different for people with different genotypes. We used a log-additive h (G) = 

α0 + α1G when generating S but fitted the less restrictive co-dominant model for h(G) when 

the association model was log-additive, and used dominant coding for both fitting and 

generating S when the true association model was dominant. We refer to eα1 as the “OR for 

death” below. Thus the true p(S=0 | G,Y =1) depends on G in a co-dominant or dominant 

fashion. Cases with S = 0 were treated as “deceased” in the analysis. We used random 

survival as the gold standard for comparison, which was generated by setting α1 = 0. Then 

we generated two separate indicator variables Rc and Rp for the general mixed scenario from 

the models p (Rc = 1| S = 0,G,Y = 1) = γc and p (Rp = 1| S=0,G,Y=1) = γp, where Rc = 1 and 

Rp = 1 indicated that the genotype data was available for the child and spouse. Similarly, for 

scenarios where the child/spouse scenario genotype data for the child and spouse are 

available or not, as a pair, we generated only one indicator R from p (R = 1| S = 0,G,Y = 1) 

=γ. For the child-only scenario, we generated indicator Rc from p (Rc = 1| S = 0,G,Y = 1) = 

γc. Below we refer to γc, γp, and γ as “recruiting probabilities”. We used a MAF of 0.2 and 

for α0 a value of −2.0, and each selected scenario was simulated 5,000 times.

Table 1 presents results showing the magnitude of survival bias for an analysis that simply 

excludes data for deceased cases, based on 5000 simulations. When the tested variant was 

independent of or only modestly associated with death (eα1 < 1.4), the bias in estimation was 

small, and the type I error rates were close to the nominal 0.05 level. When the variant was 

more strongly associated with death, the type I error rate became notably inflated. When 

only 30% of the missing genotype data were missing due to reasons not related to G and 

70% were missing due to G-related causes, under the log-additive model for association and 

co-dominant model for survival, with the OR for death being 2.0, the missing genotype data 

rates corresponding to the three genotypes AA, Aa, and aa were 0.38, 0.45, and 0.55 

respectively. The observed type I error rate corresponding to a nominal 0.05 was 0.145 when 

deceased cases were naively ignored in standard likelihood ratio tests of association. Our 

method maintained nominal type-I error rates in all scenarios. In general, the bias in the 

naïve estimation of the association OR parameter was small. For example, the mean estimate 

was 1.58 when the true value for association was 1.8 and the OR for death (eα1) was 2.0 

(data not shown). Similar observations were made when a dominant model was adopted for 

both survival and association (with the data simulation and the analytic models 

corresponding). Table 2 presents the average log OR estimates and the estimated standard 

deviations. The average estimates obtained by our method were close to the true value. As 
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expected, the child and spouse scenario resulted in the lowest standard deviations, while the 

child-only scenario had the highest standard deviations. The estimates without accounting 

for survival (rows “Naïve”) appeared to be biased, but the bias was small.

Figure 1 displays the powers under different models, scenarios and recruiting probabilities. 

In both the general mixed (“Mixed”) and child and spouse (“Child+Spouse”) scenarios, the 

recruiting probabilities for children and spouses were assumed to be 1, 0.7 or 0.5. In the 

child-only (“Child”) scenario, children had recruiting probabilities 1, 0.7 or 0.5. Except for 

the three scenarios in sections 2.1, we considered two additional scenarios: the ideal one 

where all cases survived, and the general mixed scenario where the recruiting probability of 

spouses was half of that of children (“Mixed_less Spouse”). That is, when the recruiting 

probabilities γc for children were assumed to be 1, 0.7 or 0.5, the corresponding recruiting 

probabilities for spouses γp were 0.5, 0.35, and 0.25, respectively. The power appeared to be 

in increasing order from Child-Only, Mixed_less Spouse, Mixed, Child + Spouse to Ideal. 

When the recruiting probability was 1 in the log-additive model, the powers of both the 

Mixed and Child + Spouse scenarios were close to the ideal. Not surprisingly, the power of 

all scenarios decreased with decreasing recruiting probabilities. For example, under the 

model of log-additive coding for association (odds ratio 1.4) and co-dominant coding for 

survival, in the Mixed scenario, the powers corresponding to recruiting probabilities 1, 0.7 

and 0.5 were 0.848, 0.723 and 0.606, respectively.

Interestingly, although the spouse genotype itself provides no information in predicting the 

case’s genotype, inclusion of spouses together with the child genotype can improve the 

power noticeably. Consider testing the association of a SNP under the log-additive coding 

with OR 1.4. Consider that genotype data is available for 500 controls and that the survival 

probabilities are 0.62, 0.59 and 0.55 for cases with genotype AA, Aa, and aa respectively. 

Assume that genotype data are also available for family members of 70% of deceased cases. 

If 70% of children of the deceased cases provided genotype information, the power was 

0.565. If 70% of spouses of the deceased cases were also randomly available, then on 

average, about half (49%) of the deceased cases have both children and spouses genotype. 

The study power under this setting was 0.723. If genotype data were jointly available for the 

child and spouse as a pair for 70% of the deceased cases, the study power increased to 0.782. 

A natural question that arises under a fixed budget is: which one, recruiting x children or x/2 
Child + Spouse pairs, would yield higher study power? As stated previously, the power was 

0.565 with genotype data for 70% children. The power increased to 0.595 with genotype 

data for 35% child and spouse pairs. Similarly, compared to the power 0.640 when 

genotyping only children of all the deceased cases, genotyping both the child and the spouse 

of half of the deceased cases yielded higher power, 0.682.

Even when survival was independent of G but the possible dependence of survival on G was 

nevertheless modeled, our design achieved an increase in power by incorporating family 

genotype data and exploiting the HWE assumption, partly through the improved estimation 

of the MAF. With β1 = ln(1.2) and β1 = ln(1.4) (data not shown), the power by the likelihood 

ratio test based on standard logistic regression with surviving cases only was 0.322 and 

0.792, respectively, which are lower than those with the proposed method, 0.356 and 0.853. 
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When both models were dominant, the corresponding powers were 0.247 and 0.658 versus 

0.257 and 0.676, respectively.

4. Application to a Study of Breast Cancer Genetics

We analyzed a dataset that was derived from the Two Sister Study (http://

sisterstudy.niehs.nih.gov/English/studies.htm). Although the study design was based on 

young-onset breast cancer in the daughters, the analysis presented here is based on the 

occurrence of breast cancer in the mothers. The dataset included 291 women who had in the 

past been diagnosed with breast cancer and 645 female controls who had never been 

diagnosed with breast cancer. Genetic information on 6 SNPs from the gene FGFR2 

(rs3750817, exm.rs2981579, rs2981578, exm.rs2981575, rs1219648, rs2981582) were 

available for all 645 controls but for only 126 cases. The additional 165 cases who could not 

be genotyped had a daughter (or daughters) or spouse who had been genotyped as part of the 

study. Therefore, for those 165 mothers we used the daughters’ genotype data to supplement 

their missing mother’s genotype, using one from each family (preferring an unaffected 

daughter if two were available). Among the 165 missing cases, 29 had both a daughter and 

the daughter’s father available for genotyping and 135 had only a daughter available. The 

remaining missing case had no family members available and was omitted from analysis. 

For each SNP, we conducted two analyses, each applying log-additive coding for risk: (1) 

we fit a logistic regression model, simply omitting the ungenotyped cases (column “Naïve”); 

and (2) we applied the proposed FSD (assuming co-dominant coding for missingness) to the 

dataset where we made use of the proxy family members for cases with missing genotypes, 

enabling inclusion of 290 cases instead of 126 cases (column “FSD”). Note that although the 

mechanism for missing genotype was, for simplicity, assumed to be death in the description 

of the methods given above, we here think of it more broadly as genotype-related 

missingness.

A test of Hardy-Weinberg equilibrium based on controls yielded reassuringly hefty p values 

for all 6 of the SNPs (data not shown), verifying an assumption needed for FSD. Results 

based on the three analytic methods applied for assessing effects of FGFR2 on risk of breast 

cancer are shown in Table 3. We calculated the estimates for the OR parameters and log OR 

parameters with standard errors for each SNP with both methods, and calculated tail 

probabilities for the Z statistics as the log OR divided by the standard error (column “P-

value”). In Table 4, we provide the “survival” probabilities (more accurately, recruitability) 

for each of the three genotypes for each SNP.

Although the standard errors of the Naive method are slightly smaller than those from FSD, 

with this example the FSD method always results in more significant P-values. For example, 

for the first SNP rs3750817, the Naive method indicated no association between breast 

cancer and this SNP, while the FSD method obtained a marginally significant P-value. 

Similarly, for the last SNP rs2981582, the P-value from FSD (0.003) is much smaller than 

that from the Naive method (0.028), where the latter is not significant after the Bonferroni 

adjustment of testing 6 SNPs.
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The FSD method also enables us to explore whether missingness is related to genotype. 

Results are shown in Table 4, where “a” denotes the minor allele (the allele with prevalence 

less than 0.5). All of the p values for testing equality of the recruitability probabilities were 

above 0.24. Therefore, missingness did not seem to depend on the genotype for these 

FGFR2 SNPs. We then conducted a stage 2 analysis where we constrained q0 = q1 = q2. 

Results are shown in Table 3, columns “FSDf”. Here we have sacrificed protection against 

survival bias, but retained our ability to capture the supplemental information derived from 

proxy family members. Note that, relieved of its need to estimate those three parameters, the 

analysis now returned smaller standard errors than were achieved by the original naïve 

analysis that was shown in Table 3. It is interesting to observe the estimates by “Naïve” and 

“FSDf” always yielded similar estimates, which may differ noticeably from that by FSD. 

This difference was due to the differential “survival” probabilities for women carrying 

different genotypes for each SNP, as shown in the “Survival Probabilities” column in Table 

4. Therefore, we prefer to interpret association findings based on FSD, instead of “FSDf”.

5. Discussion

The proposed design provides a useful approach for assessing and correcting survival bias in 

population-based case-control genetic association studies and improving power by enrolling 

offspring and spouses of deceased cases and making proxy use of their genotypes. The 

approach performed well for assessing both marginal genetic effects and gene-environment 

(G-E) interactions (unreported simulation results). It also yielded unbiased estimates of 

association parameters for survival (data not shown). In addition to HWE, we make the usual 

assumptions that cases and controls are drawn from the same source population and that the 

disease is rare. The current exposition considers a single di-allelic SNP in relation to 

association and survival and the same study design can be extended to study multiple genetic 

and environmental factors, through application of the EM algorithm. Our approach 

introduces a useful solution to a thorny non-ignorable missingness problem. Because it is 

based on a retrospective likelihood, mis-specification of the nuisance survival model may 

lead to biased estimates and inflated type-I error rate (Web Appendix Table 2). Therefore, a 

co-dominant model, which is always a correct model, should be fitted for survival whenever 

the data allows. We fit the log-additive or dominant model for survival only when the data is 

too sparse, i.e, the number of subjects for a genotype category is too small to fit a co-

dominant model.

The family-supplemented design does have limitations. Because of identifiability issues one 

cannot use co-dominant models for both association and survival. The identifiability issue 

can presumably be resolved if genotype data could be made available for a random subset of 

deceased cases (not likely in practice), but the issue cannot be addressed by genotyping 

family members or obtaining richer marker genotype data. It is desirable to consider other 

design options to address this challenge. In addition, extending our proposed method to 

incorporate the survival time of the deceased cases may also prove helpful.

As is true generally for case-control genetic analyses, our method requires that there be no 

population stratification. We also implicitly assume there is no assortative mating related to 

the SNP under study and that the SNP is not related to fertility (i.e. the availability of a child 
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to serve as a genetic proxy). However, we expect that a more robust approach can be devised 

for settings where there may be population stratification, using genetic control for 

population stratification, if we can approximate that the population that cases and controls 

are sampled from contains a finite number of discrete strata (e.g., [17]), mating is restricted 

to within-strata unions, and HWE holds within each stratum. Ancestry informative markers 

would need to be obtained for controls, live cases, and family members of deceased cases. 

Joint inference would be needed for association parameters, survival probabilities, stratum 

membership, and minor allele frequency (MAF) within each stratum. This task, at least 

computationally, is nontrivial and worth investigating in future research. Our proposed 

design can potentially be generalized to address survival bias in family-based case-control 

studies, which are largely free of bias from population stratification.

We focused the theory of our method on the scenario where genotype data can be obtained 

for one child and/or the spouse for each deceased case in a representative subsample. But in 

many realistic settings some deceased cases may not have a child available for genotyping 

but might have one or both parents available, while still others might provide a sibling, a 

child, or maybe a child and one parent. Under HWE and standard Mendelian transmission, 

the Expectation-Maximization (EM) algorithm [16] can be used to handle missing case 

genotypes under diverse family structures. In particular, the method is readily extensible to 

include multiple children with or without the spouse. If the number of family members 

recruited for each deceased case is specified a priori, then a relevant question is which 

family members are the most informative if they are equally recruitable. Clearly the spouse 

alone would not be very informative, whereas a single offspring alone would provide 

somewhat limited but informative genotype data as shown in the table and in the numerical 

studies. Other choices are not so clear. Consider two children versus one child and the 

spouse. When the two children have genotypes AA and aa, one can infer that the genotype 

for both parents is Aa. But other combinations of the genotypes may not be as informative as 

the same combination for one child and spouse (for example, if the two children have the 

same genotype). In some circumstances a priori knowledge of the biology might be needed. 

For example, if the gene under study may be related to longevity, the availability of the 

spouse may itself be selective (genotype-dependent), and children or siblings might be 

preferred for that reason. Nevertheless, we explored the most plausible scenarios in our 

theoretical and numerical studies, as recruitment of multiple children for a case may be 

practically challenging even if it were more efficient.

For conditions with young age at onset, such as birth defects, children and spouses will not 

be available at all and one would need to use the parents or siblings of cases as genetic 

informants. The genotypes of deceased (or therapeutically aborted) cases then become 

missing data and amenable to likelihood methods for estimation and testing through the EM 

algorithm.

We have focused on genotype data for a single SNP at a time. But genotype data at nearby 

markers could be helpful for infering the unobserved genotype data at that SNP and could 

usefully be incorporated into the likelihood analysis [18]. Consider another SNP with alleles 

B and b that is so close to our SNP of interest (which has alleles A and a) that the probability 

of recombination from parent to child (i.e. in a single meiosis) can be taken to be 0. Suppose 
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the case had a child with genotypes Aa/Bb and spouse Aa/BB at the two loci. The child must 

carry either haplotypes AB and ab or haplotypes Ab and aB, while the spouse carries 

haplotypes AB and aB. The child must have inherited either AB or aB from the spouse. If 

Ab does not exist in the population, the case must have a copy of haplotype ab. Without 

genotype data for the second locus, the child and spouse genotype at the first locus, Aa/Aa, 

are less informative for the missing parent case’s genotype. Presumably, again the EM 

algorithm could be used to take advantage in this way of the LD structure in the genome for 

imputing missing genotypes, though the details are beyond our present scope.

In conclusion, when studying the role of genetics in causing a disease that can be fatal, 

survival bias can result in nonignorable missingness of genotype information. Under 

plausible assumptions, the genotyping of family members of deceased cases can both correct 

that bias and improve power for detecting genetic associations. Our methods are simple to 

implement and therefore can be applied to analyze genomewide association studies. 

Software for implementing this method is available from the authors upon request.
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Refer to Web version on PubMed Central for supplementary material.
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6. Appendix

Appendix Table 1

Notational glossary.

N1 Number of cases, some living some deceased

N̂1j Estimated number of cases with genotype j

N0 Number of controls, all genotyped

N̂0j Estimated number of controls with genotype j

n1 Number of surviving cases

m number of deceased cases (=N1−n1)

nij Number with case status i and genotype j

mjk Number of deceased cases with offspring genotype j and spouse genotype k

mjc Number of deceased cases with offspring genotype j and no spouse genotype
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mjp Number of deceased cases with spouse genotype j

mO Number of deceased cases with no offspring genotype information

m1A, m1a
Number of deceased case for whom we have a genotyped child and who must have passed allele A (a) to 
the child m1A = m00 + m01 + m12 + m0c = m0+ + m12; m1a = m10 + m21 + m22 + m2c = m10 + m2+

m1Aa
Number of deceased cases for whom we have a genotyped child and the child has genotype Aa; m1Aa = 
m1c

m1*
Number of deceased cases whose family members’ genotypes provide no information in predicting cases’ 
genotype; m1* = m11 + mO

Nijk Number of subjects with case status i, genotype j, and environmental exposure k

Y Disease status flag (1 if case)

G Genotype of study participant

Gf, Gc, Gp Genotype of deceased case’s family member(s)

Gc Genotype of deceased case’s offspring

Gp Genotype of deceased case’s spouse (the other parent of that offspring)

S Survival status flag (1 if alive)

R, Rc, Rp Flag for recruitability of family members, offspring and spouse for deceased case (1 if recruitable)

f(G) Function of G for logistic association with disease

h(G) Function of G for logistic association with death, given disease

β Genetic association parameter for disease association model

ρ Proportion of deceased cases whose death is unrelated to G

α Genetic association parameter for death model that conditions on disease

pa MAF in the control population

Consistent estimator for the MAF in the case population

Consistent estimator for the proportion of subjects with a allele in the case population

γ Proportion of family members who are not recruitable.
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Figure 1. 
Power plot.

a. Log-additive model for association and co-dominant model for survival, recruiting 

probability = 1. In this case, Mixed and the Child+Spouse designs are identical, and the 

minor difference in the figure was due to computation precision;

b. Log-additive model for association and co-dominant model for survival, recruiting 

probability = 0.7;

c. Log-additive model for association and co-dominant model for survival, recruiting 

probability = 0.5;

d. Dominant model for both association and survival, recruiting probability = 1; In this case, 

Mixed and the Child+Spouse designs are identical, and the minor difference in the figure 

was due to computation precision;

e. Dominant model for both association and survival, recruiting probability = 0.7;

f. Dominant model for both association and survival, recruiting probability = 0.5.
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Table 4

Recruitability (“Survival”) Probabilities Estimated By FSD for SNPs.

SNPs
FSD FSDf

AA Aa aa

rs3750817 0.417 (0.053) 0.425 (0.052) 0.527 (0.130) 0.433 (0.044)

exm.rs2981579 0.465 (0.088) 0.462 (0.050) 0.356 (0.067) 0.433 (0.059)

rs2981578 0.392 (0.061) 0.451 (0.051) 0.472 (0.106) 0.433 (0.050)

exm.rs2981575 0.437 (0.080) 0.454 (0.049) 0.389 (0.073) 0.433 (0.058)

rs1219648 0.432 (0.079) 0.467 (0.050) 0.366 (0.071) 0.433 (0.058)

rs2981582 0.462 (0.083) 0.474 (0.050) 0.328 (0.066) 0.433 (0.057)

*
The Naïve method utilizes the observed data only and ignores the ungenotyped cases. The FSD method assumes that cases with different 

genotypes (AA, Aa and aa) have different “survival” probabilities (q0, q1 and q2) and incorporates genotype information of family members of 

ungenotyped cases. The FSDf method is the same as FSD except for assuming equal survival probabilities (q0 = q1 = q2 = q).
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